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Abstract A cosmology inspired structure for phase space is introduced, 
which leads to finitization and lattice-like discretization of position and mo- 
mentum eigenvalues in a preferred, cosmic frame. Lorentz invariance is 
broken at very high energies, inaccessible at present. The divergent per- 
turbation terms in quantum electrodynamics become finite and small: this 
could become a requirement leading to model restrictions in other pertur- 
bative gauge theories. So the very success of the usual renormalization pro- 
cedures is simply explained by their finitization, and is viewed as indicating 
the reality of the lattice. 

1. The boundless but finite cosmic lattice 

The idea of assigning a fundamental length to physical space has a long his- 

tory. A large part of the literature can be traced from the work of Gudder and 

Naroditskyl. This notion arises from dissatisfaction with the way renormalization 

operations are performed in quantum field theory - both the non-rigorous and the 

too rigorous methods. A lattice structure for space or spacetime is an obvious 

remedy for the worst problem, ultraviolet divergences, but people have been dis- 

couraged by the prospect of Lorentz and rotational non-invariance. But recently 

some work has appeared which faces just this possibility. Thus Nielsen and collab- 

orators have developed both a quantum electrodynamics (QED) and a Yang-Mills 

theory that violate Lorentz invariance2, and Zee3 has gone as far as suggesting 

experimental verification of such a breakdown. Some time ago Wheeler4 pointed 

out a possible breakdown of the spacetime concept itself on the scale of Planck's 

length. 
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In this paper I introduce iipper limits for both measurable length and measur- 

able momentum, as a means of reaching a kind of lattice structure for phase space. 

The conclusion will be that the perturbative series of QED works so well because 

its terms become, in a quasi-invariant sense to be defined, convergent to small 

numbers. The idea has a cosrnological inspiration: a Friedman-Robertson-Walker 

(FRW) model with flat space sections6 has the local metric ds2 = c2 dt2 - b(t)' dx2. 

Its global spatial geometry is taken to be that of a flat torus T3, which is an iden- 

tification space isometric to E3 /I', where E3 is Euclidean space and I' is the group 

generated by finite translations in the three directions. For the development and 

motivations of this idea in cosmology see the list of refs. 6, in particular Ellis and 

Schreiber's recent work. 

The expansion factor in this metric is b(t) = (t/to)2/3, where to - 10'' yr 

is the age of the universe. Since (db/dt)(to) - 10- l 8  sec-', let us put b(t) = 1 

in ds2 for the discussion of laboratory physics (adiabatic approximation). We 

are left with a locally Minkowskian spacetime, whose T3 spatial sections may be 

obtained from a cube of side L, upon the identiscation ("gluing") of opposite faces. 

Therefore \/3 L will be a mzdmum distance in space, and I take L = c/H, where 

H ~ i :  75 km/sec/Mpc is Hubble's constant. 

Now I make the crucial assumption that momentum space (relative to the 

above cosmic frame) has the same T3 topology as configuration space, so that the 

corresponding phase space is the product manifold T3 x T3. Besides providing an 

upper limit for momentum, this sort of duality appears to the author as a more 

reasonable way of assuring discretization of position than just drawing from crystal 

structure analogy, with its "rieo-ether" connotation. The flat torus for momentum 

is obtained by identifying opposite faces of a cube of side P = 2.lrh/a, where 

a = ( G ~ / c ~ ) ' / ~  = 1.61 x 1(B-33 cm is Planck's length. Incidentally, a cutoff for 

momentum is quite reasonable, for otherwise the energy of a singie virtual particle 

can exceed the total mass of the observable universe. It is also in agreement 

with Wheelerns idea cited above: if spacetime breaks down at Plmck's length, so 

must the validity of momenta greater than P. (Of course the T3 x T3 topology 

postulate may come to be seen as a phenomenological assumption, if and when 
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future developments lead to a more general theoretical framework, where phase 

space is seen as an approximation suitable for 1988 physics - much like the idea of 

orbit became an approximation suitable for classical motion.) 

In quantum mechanics we are used to box quantization with periodic bound- 

ary conditions imposed for convenience. But in the above defined cosmic tori 

these conditions are just the natural ones. So we get eigenvalues xk = n ka  and 

pk = nk (ah/Na), k = 1,2,3, -N < nk = integer 5 N = L/2a x 3.8 x 1060. Space , 

thus becomes a very large box, which is both finite and boundless, with discrete 

eigenvalues for particle position and momentum. This suggests that we cal1 it a 

'cosmic lattice' (CL), but note that is an abstract, not a granulated, crystal-like 

lattice. 

2. Lorentz quasi-invariance 

What about Lorentz invariance? First, the preferred status of the CL frame 

should not cause much surprise, It is the home frame of our cosmos, similar 

to the comoving system of Einstein-de Sitter's cosmology, the 2.7OK radiation 

providing its concrete realization (except for spatial orientation; see Gott6 for 

an explanation on how the apparent isotropy of cosmic observations is preserved 

despite the loss of global invariance under rotations). Second, let us define the 

composition of 4-momenta py and p: in the CL system. Setting h = c = 1, if 

Ip: + ( 5 a l a ,  then energy-momenta are composed as usually: p" = p? + p:. 
If Jp: + p;I > a l a ,  then we add or subtract 2a/a, so as to obtain pk in the 

allowed range. This pk ( p: + p; mod 2nla) is defined to be the resultant. With 

s = (p: + p:)' - (pi + pz)', the resultant energy is p0 = (s + P~)'!' < p? + p: . 
Therefore energy-momentum is only conserved incollisions if p, + pz is a CL 

momentum eigenvalue. But this is hardly a constraint, since laboratory momenta 

are far from our limit, &/a - 1OZ0 GeVlc. 

Thirdly, Lorentz transformations (including rotations) are performed as usu- 

ally, but the limits of pk in an arbitrary frame are derived from those in the CL 

frame. Thus if = ( v ,  0, O), v > 0, with no rotation, then 
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and 

pmi, = ?[-n/a - v(ma + ra/aa)l12] FS 2ya/a, 

for large 7. The limits for p2, p5emain unaltered. If we now rotate this frame, the 

physics will be invariant if a11 rlelevant momenta are smaller than r/2a7, although 

the limits on each component could be different from each other (and awkwardly 

expressed). Again, in laboratory situations we do not have to worry about these 

limits. Summarizing, Lorentz and rotational invariance are preserved if we restrict 

ourselves to laboratory energies and to a theoretical range of frames - say, 7 < 10'' 

with respect to the CL, which guaranteees invariance up to - 10' GeV in the 

moving frame. I shall refer to this restricted meaning as Lorentz quasi-invariance. 

3. Finite renormalization 

The practice of renormalization in QED has been so strongly associated with 

the removal of infinities that the fundamental meaning of the former became 

blurred. See for example Sch~weber's7 warning against this tendency. kctually 

the aim of renormalization is to combine some unobsewable parameters of a ba- 

sic model into observable ones, so that the renormalized model is expressed in 

terms of the latter. The advantage of this is obvious when one considers that the 

purpose of theoretical models is to represent experimental facts. Consider mass 

renormalization in QED: we write m = mo - 6m, and say that m is the experi- 

mental mass of the electron. 'But the underlying formalism suggests that we also 

interpret mo and 6m anyway, as bare mass and the effect of virtual photons always 

surrounding the electron respectively. It seems to the author that if mo and 6m 

can be made finite, so much the better: their interpretation is reinforced, and we 

may even think of making them observable in another context - as when we tried 

to assign mass differences in isospin multiplets to electremagnetic interactionss. 

(See, however ,ref? .) 

Therefore my program is not to abandon renormalization, but rather to make 

it step-by-step finitelO. I will essentially follow the stablished formalism with a 

few adaptations: (a) integralzi are in principle replaced by sums over the CL, but 
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in practice the latter are appraximated by integrals that formally resemble the 

original ones but are now finite and small (and justifiably so); (b) the calculations 

are preferably performed in the CL, which is the natural system in this context, 

just like a Sun-centered system is natural for planetary astronomy (this naturalness 

can of course be formalized); (c) restricted Lorentz transformations, as discussed 

in Sec. 2, are seen to hold for the results of calculations. 

Let us examine some problems of perturbative field theory in terms of the 

above ideas. The great successes of the usual formalism suggests that we try 

to keep its analytical basis, rather than for example switching to difference 

equationsl.ll. This is physically reasonable, since the scale of Planck's length 

is so much finer than those of currently observable processes. Therefore I will 

here assume minimum departures from established analytical expressions. For 

comparison with standard results I will rely on Itzykson and Zuber's textbook12, 

henceforth referred to as (IZn), n = page number. 

The infrared catastrophes will be transformed in finite contributions (since 

the minimum energy of a massless particle is TINU,  not zero), and if these are 

still too Iarge they may be dealt with as usuaiiy, e.g. as in (12334). Consider now 

charge renormalization in QED. The notation below is adapted from (IZ319ff). 

The one-loop contribution to vacuum polarization, after use of Feynman's trick 

(ab)-' = S,' dz[az + b ( i  - z)]-', is13 

iii,, (k) = -4e2 dz (z - z2) i { 

This expression is well defined, so it can safely be simplified by gauge invari- 

ance, which leads to 
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with 

Eq.(2) is Lorentz quasi-invariant, as defined above. Although calculated in the CL 

system, 0(k2) is an invariant - like, say, the contribution of vibrational energy to 

the mass of a crystal. Approximating" the sum over the cosmic box by an integral 

over a ball of radius Ala, and neglecting positive powers of ma, I obtained, for 

k2 < 4m2, 

~ ~ ( k l )  = (0 : /3~)[ log(2~/ma)~ - 2 + k2/5m 2...]. 

Hence Z, = [1+ 0(0)]-' = ,925 and e = 962 e,. The Uehling term is the same 

as in (12237). Similarly, to the same order I got 

and, in Feynman's gauge, 

hence Z2 = 1.160. 

If we compare the above results with their counterparts in (12325, 334, 335), 

we see that the logarithmic terrns in the former can be obtained from those in the 

latter if we replace A by 27r/a, p by a/Na. This is as expected (at least to order of 

magnitude), since a cutoff prescription is one of severa1 regularization procedures 

that produce the same final results in ordinary renormalization (12374). The au- 

thor hopes to derive similar results for higher orders in quantum electrodynamics, 

and for other gauge theories of fundamental processes. The important immediate 

consequence of the achieved finitization is that the perturbative series, which are 

normaily understood in a coritext of formal procedures, to "extract sensible results 

from apparently ill-deíined expressions" (IZ318), become legitimized as ordinary 

convergent series. Theories satisfying this condition could be called perturbatively 

renormalizable, and this property might be a further guide for model building. 
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(So, for example, the perturbative treatment of Xp'  models might be deemed un- 

acceptable, because of quadratic divergence in mass renormalization.) As bonuses, 

the calculations become less difficult - the "naive prescriptionn (12374) of cutting 

off large momenta becomes the natural one - and the meaning of the renormalized 

lagrangia. gets a numerical foundation - compare (12345346). Interpreted in this 

light, the fact that renormalization theory has been so successful can be invoked 

as an argument for the physicality of the CL or some related conception. It re- 

mains to be seen whether this notion will be tested, for example in proton decay 

as suggested by ZeeS. 
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Resumo 

Introduz-se uma estrutura para o espaço de fase, baseada na cosmologia re- 
lativística, que leva à finitixação e discretização dos autovalores de momentum e 
posição num sistema de referência preferencial. A invariância de Lorentz é que- 
brada para energias muito altas, presentemente inacessíveis. Os termos de per- 
turbação divergentes em eketrodinâmica quântica tornam-se finitos e pequenos; 
isto poderia tornar-se uma condição que restringiria os modelos em outras teorias 
de gauge perturbativas. Assim o próprio sucesso do procedimento usual de renor- 
malização é explicado pela sua finitização, e é visto como indicando a realidade da 
rede cósmica. 


