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Abstract  For the case of severa1 interacting chiral superfields the prop- 
agators for the unconstrained superfield potentials in the 'shifted' theory, 
where the supersymmetry is explicitly broken, are derived in a compact 
form. They are used to compute the one-loop effective potential in the 
general case, while a superfield calculation of the renormalized effective po- 
tential to two loops for the Wess-Zumino madel is performed. 

1. Introduction 

For the globally supersyrnmetric theories' the superfield' formulation is very 

economical to calculate quantum corrections. The cancellation of (higher) diver- 

gentes associated with the bosonic loops against those of the fermionic loops is 

automatically taken care of through the superpropagators. The number of su- 

pergraphs required to be considered is greatly reduced compared to that needed 

in the component formulation. The non-renormalization theorams may be shown 

directly. The superfield path integral formulation is a powerful calculational tool, 

for example, through the background field method3, of calculating the effective 

potential, and the possibility of performing a change of variables to derive Ward 

identities apart from its compactness. The superfield formulation has now been 

developed suficiently3.' so as to allow manangeable calculations to higher order 

loops. 
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We derive in Sec.2 for the case of severa1 interacting chiral superfields the 

superpropagators of the unconstrained superpotentials in the presence of a classical 

background6se. In Sec.3 we discuss the superfield tadpole6 and bubble methods 

for calculating the effective potential using the shifted theory propagators. The 

expressions for the one-loop eEective potentials are derived and a procedure for 

the two-loop case as well as for renormalization is indicated. h Sec.4 we discuss in 

detail the superfield calculation of effective potential up to two loops for the case 

of a single chiral superfield. The computation is performed in a modified minimal 

subtraction scheme as well as ia a scheme where the renormalization constants are 

functions of the background field7 in order to avoid, for sufficiently large values of 

the physical (scalar) field, the kinetic terms with the wrong sign. 

2. 'Shifted' theory propagators 

The chiral superfields ,a i ,  i = 1,2,. . . , n, satisfy the differential constraints 

DOi = O , D&i = O and it seems difficult to formulate the functional integral over 

@ and 5. We may, bowever, analogous to the case of e.m. field, introduce the 

umonstrained superfield p o t e n t i a l ~ ~ . ~  S and S such that

Q 

@i = -1/4D2Si and 5; = -1/4D2Si (2.l) 

This introduces in the theory an additional invariance under the Abelian 

gauge transformations: S -+ S + DF,  -+ s + DF. We may take care of it by 

adding to the action the following ghost-free gauge-fixing term1° 

The functional integral may then be formulated easily over S and s". The 

perturbation theory performed with S, S propagators rather than Q ,  5 ones in- 

volves integrals over full superspace as is evident from 
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The Feynman rules for the vertices may be read from eq.(2.3) on applying 

Wick's theorem in the conventional way. 

The background field method for calculating the effective action requires the 

splitting of each superfield into a classical b d g r o u n d  piece plus a quantum one. 

In our context we perform the shifts @i -t ai +Ci, where Ci are background chiral 

superfields, DCi = O. In the case of n interacting chiral superfields with the action 

/ d a z * i ~ i j a j  + [ / h s w ( a )  + c.c.ig] (2.4) 

where W(@) is the renormalizable superpotential 

1 1 
W(@) = + -mi ja ia j  + -gijkQiGjak 2 3 (2.5) 

the 'shifted' theory contains the following terms : 

+ C.C. (2.7) 

Here I, is the free action to which we have added the gauge-íking and externa1 

source term, whereas Ib is the background action. We define the matrix C = 

(cij) = (m,,) + 2 (gijk C,) and have intmduced for later use the renormaliration 

constant Zi, which are the elements of a positive definite hermitian matrix. 
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The free 'shifted' theory effective propagatorsl' may be derived straightfor- 

wardly and we find6s6 

with analogous expressions for ASS and . The term independent of the gauge- 

fixing parameter in eq.(2.10) may be expressed for the constant background C k  = 

ak $ fkB2 in a compact form by making explicit the pdes and 0, # dependence6 

which renders the superspace integrations to be performed easily. We find (2 = 1) 

where 

and 

The expressions for A, B, G, E are given in Appendix A. The second term in 

eq.(2.11) arises solely from the explicit supersymmetry breaking terms in eq.(2.6) 
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Fig.1 - One-loop tadpole supergraph, 

and clearly vanishes when fi = O. For the case of a single superfield (A = 0) 

where a' = m + 2ga, f' = 2g j. 

3. Superfield method for Susy effective potential 

The effective scalar potential may be easily computed using the explicit ex- 

pressions of the 'shifted' theory superfield propagators given in eqs.(2.9) and (2.11). 

In the superfield tadpole method6, for example, we are required to compute the 

tadpole supergraphs for the 'shifted' theory to the desired number of loops. The 

number of such supergraphs is greatly reduced compared to those encountered in 

a calculation using the component fields. Moreover, the well-known compensation 

in a S. S. theory of the higher divergences of boson loops with those arising from 

fermion loops is already taken care of through the effective superfield propagators 

derived above. The superfield tadpole method allows us to read off directly the 

partia1 derivatives12 of the effective potential with regard to a11 the scalar fields 

present in the theory. 

The one-loop correction V, to the effective potential for the action in eq.(2.4), 

to give an illustration, requires the evaluation of a single tadpole supergraph for 

the 'shifted' theory (see fig. 1) and we find 
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where (gc)ij = gaj , @(O, 6, B) = A(0) +&?$*(O) +d2F(0) and a tilde denotes the 

Fourier transform. Performing the B integration we read off from the coefficients 

of A(0) and F(0) the following partia1 derivatives6 

av, i a (mq = --tr--- (In - H H ) - l  
af, 2 ar; 

and 

1 
V, = -trln [I, - H H ]  

2 
1 

= -tr [ ln (k2 I,, + P) - ln (kl &, + ya)] 
2 

which was also derived by other methods13. Here 
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where c indicates classical field and we define 2n x 2n matrices X , Y2 by 

The logarithmic divergence in eqs. (3.2) or (3.4) may be handled employ- 

ing dimensional regularization14. Since the coefficient of the divergent integral in 

eq.(3.4) is f f  which arises in the kinetic term, we need to perform only a wave 

function renormalization. 

The superfield vacuum bubble method, on the other hand, directly gives rise 

to the effective potential and may sometimes be convenient. For example, at the 

zero-loop we obtain from eq.(2.8) 

The two-loop contribution similarly requires the computation of the following vac- 

uum bubble supergraphs for the 'shifted' theory (see fig.2). 1n the superfield 

tadpole method we simply have to attach, in a11 possible ways, an externa1 dí (or 

6) leg to these diagrams. 

I 

Fig.2 - Tweloop vacuum bubbles su~ergraphs. 
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The renormalized effective potential may be obtained by constructing the 

counterterms recursively starting from the action given in eq.(2.4) where it is 

understood to be written in t e r m  of the renormalized quantities (the suffix R being 

supreçsed for convenience). The renormalization constant matrix Z is expanded15 

in powers of ti 

and Zl , Z,, . . . are determined by requiring that the divergences cancel to the order 

of loops being considered. 

The procedure adopted here and in the previous section is clearly adapted for 

the case when the gauge superfields are also present. However, we obtain quadratic 

terms of the type @V in the free action of the 'shifted' theory. In the presence of 

the explicitly broken supersymmetry we have not been able to find16 a suitable 

gauge-fixing condition which may remove such terms and consequently diagonalize 

the superfield propagators. 

4. Two-loopf effective potential for the Wess-Zumino model 

In the case of a single chiral superfield we obtain at the tree leve1 from eq.(3.6) 

V, = - [zlf 1' + (ma + ga2) f + (mã + &)i] (4.1) 

Writing 

v, ::= + v p  + + . . . (4.2) 

we find 

V:" = V,, = - - [ I  f 1' + (ma + ga 2) f  + (mü + g ü 2 ) i ]  (4.3) 

v(" = -fiz1 1 f l 2  (4.4) 

v p  = -h2 Z21 f l 2  (4.5) 

where is the (regular) ieero-loop contribution to the effective potential while 

V:') , , . . . act ã~ counterterrns for the cancellation of the divergent terms in 

the higher loop contributions. 
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We find from eq.(3.2) at one-loop 

where we make the change of variable k -+ Zk . On performing dimensional 

regularization we obtain 

Writing 

we find from eq.(4.7) 

a2 

+ h (a: ln 2 - a! In c)] f 1  

b2 b2 

3 1 - --( a: In -i. a2 - a! In - 
4 (f 'vert  p2 

where a2, = b2 * 1 f' 1 and we set b2 = la'12. The expression for the partial derivative 

dVl /aã' is also found easily and we find, after integrating the partial differential 

equations 
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112 1 a2 

+2b41n--+ -[fll(a: l n r - a ?  In- 
/b2 2 cc2 

They are seen to vanish for f -> O .  In order to remove the divergence to first 

order, e.g. in (V,('' + V:')) we may choose for 2, the value 

The regularized one-loop contribution to the effective potential is then given by 

1 a2 a? 
V,, = -;[a: In' +a! In- - 2b4 ln- 

64n p2 fia p2 b2 1 
For the corrections up to two loops we may set Z = 1 in the computation of 

the two-loop vacuum bubles (fig.2) (or tadpoles). It is also convenient to integrate 

by parts over the full superspace integrals and write the contributions in the form 

/&al  hs2 (D;D:A~')~ 

We find for the divergent terms 

b2 1 a2 a"_ 
+2b4 ln- + -(fl((a: I n L - a !  h-)] +...} 

p2 2 p2 c2 
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The divergent terms 1 / ~  as  well as 1/e2 are removed up to second order, e.g. in 

vo(" + V:" + V2 if along with eq(4.13) we choose for Z2 the value 

where 7 = 0.5772 is the Euler-Mascheroni constant . 
The regularized two-loop contribution to the effective potential is obtained to 

be 

and V,"" = VoR + VIR + VZR gives the regularized effective botential up to two 

loops in the modified minimal subtraction scheme specified by eqs.(4.13) and (4.19) 

where the function J is defined in Appendix B. 

Each of VOR , VIR and V,, and their partia1 derivatives vanish in the limit f -r 

O in agreement with the non-renormalization theorem when the supersymmetry is 

not broken at the tree level. The tree level renormalization constraints 
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are also unaffected by the radiat.ive corrections showing that the superpotential is 

not renormalized. However, the wave function renormalization results in 

We may also calculate the P-functions. In the context of dimensional reg- 

ularization the canonical dimension of the superfield @ is [@] = (n - 2)/2 while 

[g] = (4 - n)/2 = ED . Introducing the dirnensionless renormalized coupling con- 

stant, 5 = gp-'/2 we have go = p'/2ij(p)~-3/2 where go is the bare coupling 

constant. HenceI7 to two 1 0 o p s ~ ~  

It is worth remarking on the ensuing renormalization constraint (eq.(4.22). 

Its left hand side arises in the kinetic energy term $@ and a negative value for 

it, say, for sufficiently large b2 may lead to the wrong sign for the kinetic energy 

terms of the physical fields. Since7 in supersymmetric theories in general we have 

no independent coupling constant renormalization we cannot rectify the situation. 

In our case we may, alternatively, determine Zl and Zz by imposing the following 

constraint: 

The renormalization can be siiccessfully performed and we obtain at the back- 

ground field value we wish to consider 
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which depend on p as well as the background field constant b 2.  For the effective 

potential we find now 

The effective potential as a function of the physical (classical) field is ob- 

tained by eliminating the auxiliary field f using its corrected equation of motion 

i3VefJ /a f = O since it does acquire radiative corrections. The dependence of the 

real and imaginary part of f as functions of the physical field a as well as the effec- 

tive potential to zero loop are plotted in figs.3(a),(b),(c) and (d) where X = [alI/m, 

Y = I f'  1 /m2 and G r g and to one and two loops in the Amati-Chou scheme in 

figs.li(a), (b). (c) where X = lat[ /m , Y = ( f'(/m2 and G 5 g. We observe that the 

radiative corrections do not alter the tree leve1 minima (eq.(4.3)), the potential 

remains positive definite, and supersymmetry is not broken. Around the origin 

X w O (or a w -mDg ) there is a region where Y > Xa (or a! < 0 ) and the 

effective potential becomes complex for these values. In the minha1 subtraction 

scheme, figs.s(a),(b) we find, however, also a multivalent effective potential at two 

loops. 
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-1 O 1 -1 0 
1 

Re X Irn X .  

Fig.3 - (a) - Real part of ,f (Y); (b) - Imaginas. part of f (Y); (c) - Effective 

Potential to zero loop (VO); (d) - Effective Potential V0 for real X = la1l/rn. 
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t a )  

Fig.4 - (a) - Auxiliary field f (Yl); (b) - Effective Potential to one-loop (VI); (c) 

- Effective Potential to two-loop (V2). 
Y1 V 2 M s  

G = 1.57 G = 1.57 
y (X) V(X) 

(a (b) 

Fig.5 - (a) - Auxiliary field f (Y2); (b) - Effective Potential to 

two-loop (V2MS) in MS scheme. 

Appendix A 

The expressions for A, R,  G and E in (2.11) are6 (& -r ik t )  
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Appendix B 

We collect here some useful integrals including the definitions of the function 

J(z): 
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J. -- '(4 (r)j[B(j)  

2 i =  x r ( j  i + 3 / 2 )  4 

'(.i + k  - l ) r ( j  + k )  

- j=l C k = l  C l?(j)I'(k)j!k! 
{ [ 2 P ( j  + k - 1) + P ( j  + k ) ]  x 

The last integral was derived in the following way. Combining the two de 

nominators in q using the conventional Feynman parametrization, integrating in 

q and in the angular part of p, we obtain 
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For m; /m: < 4 we can expand the hypergeometric function in a power series 

of the argument and integrate each term in x obtaining, after the limit n -+ 2- €12, 

the expression above for the integral and for J (z )  with x < 4. 

For the other expression for J (x)  we start combining the denominators in p, 

obtaining 

Again expanding the Iiypergeometric in series and integrating in z for 

m:/m: > 4 and performing the limit n -+ 2 - €12 we obtain the same expression 

above for the integral with the other one for J(z) .  
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Resumo 

Para o caso de vários supercampos quirais em interação, derivam-se, numa 
forma compacta, os propagadores para os supercampos potenciais não-vinculados 
na teoria 'transladada', onde a, supersimetria é explicitamente quebrada . Eles são 
utilizados para se calcular o potencial efetivo a um loop no caso geral, enquanto 
que um cálculo do potencial efetivo renormalizado a dois loops para o modelo de 
Wess-Zumino é realizado. 


