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Abstract For the case of several interacting chiral superfields the prop-
agators for the unconstrained superfield potentials in the 'shifted' theory,
where the supersymmetry is explicitly broken, are derived in a compact
form. They are used to compute the one-loop effective potential in the
general case, while a superfield calculation o the renormalized effective po-
tential to two loopsfor the Wess-Zumino madel is performed.

1. Introduction

For the globally supersymmetric theories' the superfield’ formulation is very
economical to calculate quantum corrections. The cancellation of (higher) diver-
gentes associated with the bosonic loops against those of the fermionic loops is
automatically taken care of through the superpropagators. The number of su-
pergraphs required to be considered is greatly reduced compared to that needed
in the component formulation. The non-renormalization theorems may be shown
directly. The superfield path integral formulation is a powerful calculational tool,
for example, through the background field method3, of calculating the effective
potential, and the possibility o performing a change of variables to derive Ward
identities apart from its compactness. The superfield formulation has now been
developed suficiently®'* so as to dlow manangeable calculations to higher order

loops.
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We derive in Sec.2 for the case of several interacting chiral superfields the
superpropagators of the unconstrained superpotentials in the presence of a classical
background®®. In Sec.3 we discuss the superfield tadpole® and bubble methods
for calculating the effective potential using the shifted theory propagators. The
expressions for the one-loop effective potentials are derived and a procedure for
the two-loop case as wel asfor renormalization isindicated. In Sec4 we discussin
detail the superfield calculation o effective potential up to two loops for the case
o asingle chiral superfield. The computation is performed in a modified minimal
subtraction scheme as well as in a scheme wherethe renormalization constants are
functions o the background field’ in order to avoid, for sufficiently large values of

the physical (scalar) field, the kinetic terms with the wrong sign.

2. 'Shifted" theory propagators

The chira superfields ,®;, i = 1,2,...,n, satisfy the differential constraints
D®; =0, D%, =0 and it seemsdifficult to formulate the functional integral over
® and . We may, bowever, analogous to the case of e.m. field, introduce the
unconstrained superfield potentials®® Sand § such that

8, =-1/4D"S, and &, =-1/4D*5, (2.1)

This introduces in the theory an additional invariance under the Abelian
gauge transformations:. S — S+ DF, § — § + DF. We may take care o it by
adding to the action the following ghost-free gauge-fixing term’®

IG.F. = a‘l/dszs"(l - Pl)DS, (2-2)

The functional integral may then be formulated easily over S and S'°. The
perturbation theory performed with S, § propagators rather than &, ® ones in-

volves integrals over full superspace as is evident from

1 ‘ )
Lt = 300 /d"zs,- ( ~1/4 DZS,-ig)(— 1/4D°8,ig) +cc.  (2.3)
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The Feynman rules for the vertices may be read from eq.(2.3) on applying
Wick’s theorem in the conventional way.

The background field method for calculating the effective action requires the
splitting o each superfield into a classical background piece plus a quantum one.
In our context we perform the shifts ®; — ®; +C;, where C; are background chiral
superfields, DC; = 0. Inthecased n interacting chiral superfieldswith the action

/dsz $.2,9,t [/dssW(Q) + c.c.ig] (2.4)

where W (@) is the renormalizable superpotential

1 1
W(Q) =X%; + Em;,"I’,- 61‘ + ’égijk Qié.i@k (25)

the ‘shifted’ theory contains the following terms :

I = /dsz [S“.P,DZ,-,-S,- -1/8C;;S.D*S; - 1/86"1.5,.1)25,.]

tat /d“zg‘. (I—Pl)DZ,-,-S,- +/d8z (J;s.. +.735".) (2.6)

L. = lgtjk /d82§¢31-<— 1/4D25,,)

3

-i—/dss [\ +mi;Ci8, + 0 CiC; 0, +/d200_".Z,~,~{>,~]

+ee 27
I =/d8zC".Z,~jC’,- + [/desW(C') +c.c.] (2.8)

Here I, is the free action to which we have added the gauge-fixing and external
source term, whereas I, is the background action. We define the matrix C =
(C‘--) = (m.-,-) + 2(g¢,~ka) and have intmduced for later use the renormaliration
constant Z;; which are the elements of a positive definite hermitian matrix.
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The free ‘shifted’ theory effective propagators'' may be derived straightfor-

wardly and we find®®

ASS = LZ:;—;—C—)D“ ASS (2.9)
ASS = i[a(_g{;—ljfl " {D - Z“C’PlZ_IC}—lfPl]ss (z—2)  (2.10)

with analogousexpressionsfor ASS and AS$ . Theterm independent of the gauge-
fixing parameter in eq.(2.10) may be expressed for the constant background C; =
ax + £ 8% in a compact form by making explicit the poles and 4, § dependence®

which renders the superspace integrations to be performed easily. Wefind (Z = 1)

ASS =P (O— MM) "6 (2 - 2')
+ii(000 8+ 000F) (459’2 4 B+ CF" + E0?]6* (2 - o)
—; ) 7 B 2,-2i000 8
—1P,-{P1(D~MM) + [Aa P 4 s D 2000 U

+GO'P, + EP, 02]13}58 (z - 2) (2.11)
where
b= (34) = e 0.
f= Z(Qijkfk)
and
C =M+ f6

The expressionsfor A, B, G, E are given in Appendix A. The second term in

eq.(2.11) arises solely from the explicit supersymmetry breaking terms in eq.(2.6)

10
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Fig.1 - One-loop tadpole supergraph,

and clearly vanishes when f; = 0. For the case of asinglesuperfield (A =0)
A Z__3‘fl‘2
(0= z27 R (22 B2 - 272
Z—Sflal
2
[(D— Z—z(a/lz) —_ Z‘Z(f'(z]

PB=2""d]P4

G=E= (2.12)

wherea = m~ 2ga, f' = 2gj.

3. Superfield method for Susy effective potential

The effective scalar potential may be easily computed using the explicit ex-
pressionsd the'shifted' theory superfield propagatorsgivenin egs.(2.9) and (2.11).
In the superfield tadpole method®, for example, we are required to compute the
tadpole supergraphs for the 'shifted' theory to the desired number of loops. The
number of such supergraphs is greatly reduced compared to those encountered in
a calculation using the component fields. Moreover, the well-known compensation
ina$S. S. theory d the higher divergences d boson loops with those arising from
fermion loops is aready taken care of through the effectivesuperfield propagators
derived above. The superfield tadpole method alows us to read df directly the
partial derivatives’? o the effective potential with regard to all the scalar fields
present in the theory.

The one-loop correction V; to the effective potential for the action in eq.(2.4),
to give an illustration, requires the evaluation o a single tadpole supergraph for
the 'shifted' theory (seefig. 1) and we find

11



R.P.dos Santos and P.P. Srivastava

) _ .1 & &
T _133/d20 |50 8:(0,6,8) (& ),-.,]m.'
=i / 8%, Trg, A% (3.1)
where (¢.):; = gu; » (0,6,8) = A(0) +v26%(0) + 6 F(0) and atilde denotesthe

Fourier transform. Performing the # integration we read off from the coefficients
of A(0) and F(0) the following partial derivatives®

ovi _ i, O(HH); _ gy
of, 2 6f.
1 2 -1
= ~tr( o, )(k L, + X?) (3.2)

v _ ~—tr[ d(MM)
2

=1
= o (K + MN) ™ (1, ~ HA)

¢t ¢

250 e sy 1, - )
= du(Z) 102 +x0) " - (e ) 3

and

1 .
V, = Etrln [I,- HH)

= L[, + x7) - In(# 4 +¥7)] (3.4)

N

which was also derived by other methods!®. Here

-1

Hzf(k’ +MM)

. [ d*k
tr = ——z/ (z-;r—)-;Tr,
av _av

3f.~ F %z}

etc.,

12
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where ¢ indicates classical field and we define 2n x 2n matrices X? , Y2 by

MM MM ©
d ] (3.5)

0 o 70 )
f MM 0 MM

The logarithmic divergence in egs. (3.2) or (3.4) may be handled employ-

ing dimensional regularization'*. Since the coefficient of the divergent integral in

eq.(3.4) is ff which arises in the kinetic term, we need to perform only a wave
function renormalization.

The superfield vacuum bubble method, on the other hand, directly gives rise

to the effective potential and may sometimes be convenient. For example, at the

zero-loop we obtain from eq.(2.8)

i, =i[/d*oc‘gz.~,-c,- +/d“0W © +/d"7W(C’)

w2 GW]

=i[f. 2t + g + . (3.6)

The two-loop contribution similarly requires the computation of the following vac-
uum bubble supergraphs for the 'shifted’ theory (see fig.2). In the superfield
tadpole method we simply have to attach, in all possible ways, an external & (or

) leg to these diagrams.

QRN

Fig.2 - Two-loop vacuum bubbles supergraphs.

13
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The renormalized effective potential may be obtained by constructing the
counterterms recursively starting from the action given in eq.(2.4) where it is
understood to bewritten in terms of the renormalized quantities (thesuffix R being
supressed for convenience). The renormalization constant matrix Z is expanded*s
in powers o &

Z=I+hZ1+h2Zg+.-- (3.7)

and Z,, Z,,... aredetermined by requiring that the divergences cancel to the order
of loops being considered.

The procedure adopted here and in the previous section is clearly adapted for
the case when the gauge superfields are al so present. However, weobtain quadratic
terms of the type ®V in the free action o the 'shifted’ theory. In the presence o
the explicitly broken supersymmetry we have not been able to find*¢ a suitable
gauge-fixing condition which may removesuch terms and consequently diagonalize
the superfield propagators.

4. Two-loopf effective potential for the Wess-Zuminomodel

In thecasedf asinglechira superfield weobtain at the tree level from eq.(3.6)

Vo = —[Z[fl2 + (ma+ gad)f + (ma+ g&z)f] (4.1)

Writing
Vo = VO +y O +y™® 4, (4.2)

we find
VO =y, = ~—[]f12 + (mat ga?)ft (mat gag)f} (4.3)
v = —hz, |t (4.4)
v = 2 Z,|f? (4.5)

where VO‘O) is the (regular) zero-loop contribution to the effective potential while
v V.. act as countertermsfor the cancellation of the divergent terms in
the higher loop contributions.

14
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Wefind from eq.(3.2) at one-loop

él_i = %trZ“2 i 3
[(kz +Z—2|a:}2) — Z—zlf:lz]
. / d'k f (4.6)

2
(2m)* [(k’ + lalP) __Z'I‘fllZ]
where we make the change of variable k — Zk . On performing dimensional

regularization we obtain

o AN

8f  64n? Z*
1 e Y1 1€+ 211
+E‘—ﬂ[(|a[ +2)f'|) In "

- (1P - z171) 1w 2L (4.1)

Writing
v, =V + v 4 ...

we find from eq.(4.7)

af 6472
1 a2, a
+ T (a’i ln—u—; -a®ln ,—‘;)]f' (4.9)
v 1 1 1/, a a?
of  om [(G+3-7)+3(mis+wiz)
3 1 2 . 2% 3, 4
_2 ailna-—a? ln=)\|yp 4.10
4[f’vert( T u? >]f (4.10)

wherea? = b?+|f'| and weset ¥ = |a’|*. Theexpressionfor the partial derivative
8V, /3@ is dso found easily and we find, after integrating the partial differential
eguations

15
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m_ 1 2 %
v, = 647"’[ ( +3- 2'7)[)'[ +a,+1n
2 bz
+atin s 26t in ] (4.11)
? u?
V(z)___ Zl [2(1 1) 112 4] a’i 41 0.2;
A ~167r2‘ -+ )PP —da} nor-elln-g
22 a
+ 2b* ln — + lf’[(ai In —ﬁ;- —a® In ;2—)] (4.12)

They are seen to vanish for f — 0. In order to removethe divergence to first
order, e.g. in (Vo‘” + Vl“)) we may choosefor Z, the value

PR (54-3—27> (4.13)
! 1672 \e ' ’

The regularized one-loop contribution to the effective potential is then given by
1 & a? B
V — — 20 In— 4.14
" 7 B 2[a+]nu’+a lnu nlﬂ} (4.14)

For the corrections up to two loops we may set Z = 1 in the computation of
the two-loop vacuum bubles {fig.2) (or tadpoles). It is also convenient to integrate

by parts over the full superspace integrals and write the contributions in theform

/d‘“’s1 &°s, (DszAss)s (4.15)
. _ .\ 3

/dﬁsl &5, (DfpgAss) (4.16)
2 / &5, &5, (D:D3a%* )’ (417)

We find for the divergent terms

____égi__ __1_ (2 _]_- :_3_ ‘12 " g,_i“ . g?;
i (167"2)2{62“ | +e[(2m7)‘f[ _a+ln/z2 e Inm}
b 1 , 32 a?_
+2b4|n—+§‘fl<a_2*_ lnj—az_ ln;[;)} -!--...} (4.18)

16
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The divergent terms 1/¢ as wel as 1/¢* are removed up to second order, e.g. in
v* +v® +v, if along with eq.(4.13) we choosefor Z, the value

Z, = (492)2[1 1-n 149 ”2] (4.19)

T16m2/) le T e 4 24
where 7 = 0.5772 is the Euler-Mascheroni constant.

The regularized two-loop contribution to the effective potential is obtained to
be

Vor = —14—(:];;2{%@1 ln:i; +a? lna{;— —2b'In g—;_)z
_r—3—_521(a4+ 1n%2+;+a1 ln%—%‘ln%)
3= My (ai ln% +a? ln‘;i; —2b* lnlb;;)
- 43 Q74 a - 28) (1)
_1
8

— (a2 +a”? f'.f,: +a”‘2”%—)af.](ai /bz)} | (4.20)

and V"' = Vyx TV, T Vir givesthe regularized effective potential up to two
loops in the modified minimal subtraction schemespecified by eqs.(4.13) and (4.19)
where the function J is defined in Appendix B.

Each o V, , Vir and V,; and their partial derivativesvanishin thelimit f —
0 in agreement with the non-renormalization theorem when the supersymmetry is

not broken at the tree level. The tree level renormalization constraints

17
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§ver
—-aaaf a=f=0

1oV
2 da2df
are also unaffected by the radiative correctionsshowing that the superpotential is

=m

=g (4.21)

a=f=0

not renormalized. However, the wave function renormalization results in

2yel! 2 2
3757 o =1 (i) forom ]

+ %(lg;)[3—27—J(1) —J(1) +

3—-2y, b
. 1n;;] (4.22)

We may also calculate the S-functions. In the context of dimensional reg-
ularization the canonical dimension of the superfield @ is [@] = (n - 2)/2 while
[g]= (4 — n)/2 = ¢/2 . Introducing the dimensionless renormalized coupling con-
stant, § = gp~</? we have g, = u/*§(u)Z-3/* where g, is the bare coupling
constant. Hence!” to two loops!®

LA
ﬁ—-l‘a,‘g

3 2 03 » \?
o= 9[5(401!”) - 5(4{1#7) ]

It is worth remarking on the ensuing renormalization constraint (eq.(4.22).

(4.23)

Its left hand side arises in the kinetic energy term @ and a negative value for
it, say, for sufficiently large b> may lead to the wrong sign for the kinetic energy
terms of the physical fields. Since” in supersymmetric theories in general we have
no independent coupling constant renormalization we cannot rectify the situation.
In our case we may, alternatively, determine Z, and Z, by imposing the following

constraint:

J2vers
3f* af I=0
The renormalization can be successfully performed and we obtain at the back-

=] (4.24)

ground field value we wish to consider

18
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2 2

g 4
g=-it (22 )
1T 162 T e

(L [~ G rrens) e

1 ., 1 5 x?
_ - —_ - =J ~J" —— 4.25
3 I oz = 37 4J(1)+8J (0)+3 24] (4.25)

which depend on p as well as the background field constant b2. For the effective
potential we find now

1 #y
Vi = Vig ———(3+21n;;)|f 2

6472
7 gz 1 " 1 ’ 1
Vm=m+(——272-[(3-7+§J W-370-370
5—q, B 2PN e 1(3 BN dd
togtn g ln I —5(5 ) (e m=t

+a? ln—u—;-——2b4 ln/%) ——%lf’[(ai ln%i;~a2_ Ini—z;—)] (4.26)

The effective potential & a function o the physical (classical) field is ob-
tained Qy eliminating the auxiliary field f using its corrected equation of motion
avell [5f = 0 since it does acquire radiative corrections. The dependence of the
real and imaginary part o f as functions d the physical field a as well as the effec-
tive potential to zeroloop are plotted in figs.3(a),(b),(c) and (d) where X = |a'|/m,
Y =|f'|/m?* and G r g and to one and two loops in the Amati-Chou scheme in
figs.4(a), (b). (c) where X = |a’|fm ,Y = |f’|/m?® and G = g. We observethat the
radiative corrections do not alter the tree level minima (eq.(4.3)), the potential
remains positive definite, and supersymmetry is not broken. Around the origin
X = 0 (or a ~ —m/f2¢g ) there is a region where Y > X? (or ¢> < 0) and the
effective potential becomes complex for these values. In the minimal subtraction

scheme, figs.5(a),(b) wefind, however, also a multivalent effective potential at two

loops.
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Fig3 - (a) - Red part of f (Y); (b) - Imaginas. part of f (Y); (c) - Effective
Potential to zero loop (V0); (d) - Effective Potential VO for real X = |a’|/m.
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Y1l vi v2
G =1.57 G = 1.57 G = 1.57

Y(X) v(X) vV{X)
AR “ |

-2 £1 10 1\ 2 -2-3f01x2
¥ -2 -1 -0 1x2

ta) (b) (C)

Fig.4 - (a) - Auxiliary fidd f (Y1); (b) - Effective Potential to one-loop (V1); (c)

- Effective Potential to two-loop (V2).

Y1 V2 MS
G =1.57 G =157
Y(X) v(X)
A Y 4
AN /
£ N N . -
- -'. 0. 'c 2- -2"—In 00 1n\ 2.‘
AR , T N
/ )

(a) {b)
Fg.5- (a) - Auxiliary field f (Y2); (b) - Effective Potential to
two-loop (V2MS) in MS scheme.

Appendix A
Theexpressionsfor A, B, G and E in (2.11) are® (8, — 1k.)
A= (k* + MM)™ " — [k* + MM — f(k* + MM)~' f]7?,
KB = M(k* + MM)~' {G,
KRG =[f(k* + MM)™'f - k¥* — MM)"* fM(k* + MM)~*,
K*E = (k* + MM) VM f[f(k* + MM) ' f - k* — MM]"!
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Appendix B

We collect here some useful integrals including the definitions of the function
J{z):

[ et = e+ v ow]

/d‘ ¢ 1 .1 [_2_ {-
En)* (@ ) (72 +m’) =tem e T
_ m} In(m3 ju®) - In(m] /i? ) Ole )]

m? —m2

(B.2)

/ 'Z;;)f ‘Zz«) FT T T T
{2 m: +m) + 2 [(3-20)(2m] + md)
— 2(2m? In(m? (u) +m3 In(m2 u?) )| + [2m? 1n? (m? ju?)
+ m3 In* (m3 fu*)| - (3~ 21) [2m? In(m? fu?)
+mdiafmd )] + (5~ 31+ + )(2m1 +m3)

+ mid (m jm) } (8.3)

J(z) “£Y ~ 4 4 21n(q) - élnz (z)

- -———-ln(x 2‘ I‘f-]:)?/Z) (E)’

22
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NN Y
2 Zr(;+3/2)( ) [¥0)

— ¥(j +3/2) —21n2]

(z>4) T2 ™\l 2 I‘(j) ]
R 2 _— ) = _1 —_ a2
6 ( + 3)z+z n(z)z:ll‘(j+2):t
=

+2% F(l;‘(i)z) [w(i+2) - %.)]z_

+ (e 2 Z ’ H;);(lk)yier Aot +k-1)

200+ R) ~ UG+ 1) = ¥k +1) - ¥() - ¥R

rG+x-yrG+
et I‘(IJ(')I‘(k))jgc! Ufwt+e-y +ui+iols

IS1Rk=1

Bigl¥(j +k—1) = W(j + k) — ¥(k) — (k + 1) - ¥(j) ~ ¥(j +1)]

+ [20) + 906 + 1) [90) + ¥k +1)] - W+ k- 1)
) (8.4

The last integral was derived in the following way. Combining the two de-
nominators in q using the conventional Feynman parametrization, integrating in
g and in the angular part of p, we abtain

(#2)‘—2” r(3_'2n) 2\n—-2(, 2\n~—1 ‘
(1672)"  2-n (m{)"*(m3)

/da:F(2 n,n;3 —n;1 — z(1 — z)m?/m2)

I=-

23
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For m3 /m? < 4wecan expand the hypergeometric function in a power series

d theargument and integrate each term in z obtaining, after thelimit n — 2—¢/2,

the expression above for the integral and for J(z) with x < 4.

For the other expression for J(z) we start combining the denominators in p,

obtaining

__ )yt re—n) 1 L, neaf(__ 21— 2) 2on
T T (167*)» T(n) ,/; dza""*(1 - 2) (mfz—i—mg(l——x)) x

1 T'(»)T(3—~2n) i ) z(1 — z}m?
Ty el )

Again expanding the liypergeometric in series and integrating in z for

m2 /m? > 4 and performing thelimit n — 2 — ¢/2 we obtain the same expression

above for the integral with the other one for J(z}.
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Resumo

Para o caso de varios supercampos quirais em interagdo, derivam-se, numa
forma compacta, os propagadores para os supercampos potenciais ndo-vinculados
nateoria'transladada’, onde a, supersimetria é explicitamente quebrada. Elessdo
utilizados para se calcular o potencial efetivo a um loop no caso geral, enquanto
gue um célculo do potencial efetivo renormalizado a dois loops para o modelo de

Wess-Zumino é realizado.



