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Abstract: We suggest a power series method of solution of Einstein's equations 
including the cosmological term when a neutral massive scalar field is the only 
external source of gravity. 

1. INTRODUCTION 

General Relativity establishes that in the presence of a gravitational field there 

are irnportant changes in the description of physical phenomena. Particularly. in 

this theory all the material fields are considered as sources of gravity and, following 

the general covariance principle. the variables of the induced gravitational fields 

have to  appear in the equations of the material fields themselves. resulting in some 

modifications in the behavior of the sources. We should note that this coupling 

between gravity and i ts  sources usually implies a difficult handling c'f mathematical 

problems doe to the highly non-linear character of  Einstein's equations. 

One of the examples of gravity-source coupling found in the literature of 

General Relativity concerns a neutral scalar field acting as the external source 

of gravitation. When the scalar field is massless, the arisisig system of coupled 

equations allows some analytical handling of possible solutions (see Fr@ylandl 

for important references on this subject). Nevertheless, when the scalar field 

has a non-zero mass the above mentioned analytical approaches collapse. In this 

case the complication of the coupled equ ations suggests the necessity of  differen t 

techniques for the study of possible solutions. 

In this paper we consider the coupling of a scalar neutral massive field with 

gravity. For this purpose we develop a power series method of solution for the 

coupled equations. A similar methodology was first used by Wyman2 in a partic- 

ular case ~f a massless scalar field coupled to  gravity. More recently, Varela3 has 

shown the natural extensions of the Wyman's methodology to  the most general 

case of Einstein's equations, including the cosmological term. 

l h e  plan of this work is as follows: 
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In Section 2 we formulate the field equations for the coupled systern. In 

Section 3 we search for Schwartzschild-like solutions for the system of coupled 

equations. For this purpose we develop a power series method and discuss some 

important aspects of the results. Some comments on the results are presented in 

Section 4. 

2. THE FIELD EQUATIONS 

In Einstein's theory of gravitation the metric tensor g,, may be obtained in 

principie as the solution of the field equations 

where R,, den,otes the Ricci tensor: R. the curvature scalar, is the trace of R,,. 
The cosmological constant A has a non-zero value in the most general case of 

the theory. n denotes the gravitational coupling constant and T,, is the energy- 

momentum tensor representing the external sources of gravitation. 

Now we suppose 4 (the neutra1 massive scalar field) is the only external source 

of the gravitational field. Then T,, depends only on the variables associated t o  

the field 4. This tensor. minimally coupled to  gravity, is defined as 

Here a comma (,) denotes partia1 derivatives. rn is the mass of the field and n is a 

positive constant. The field 4 satisfies the minimally coupled equation of motion 

given by 

where semicolon (:) denotes a covariant derivative. 

From the field eq. (2.1) we can express R in terms of A and T a .  the trace 

of T,,. Eq.(2.2) allows T a  to  be expressed as a function of 4. i ts mass and 

derivatives. Introducing this result in eq.(2.1) we rewrite Einstein's equations in 

the equivalent form 



Revlsta Brasllelra de Flslca, Vol. 18, no 4, 1988 

In Section 3 we face the problern of solving the coupled differential eqs.12.3) 

and (2.4). For this purpose we irnpose suitable simplifying conditions on,the field 

4 and on the components of the metric tensor g,,. 

3. SOLUTION OF THE EQUATIONS 

Let us consider the static case with spherical symmetry. Then the 

Schwartzschild-like tine element. with signature (+ - - -). i s  given by 

where 

d x 2  = de2 + sin2 8d2p 

both v and X being only functions of r. Here we consider 4 depending at most on 

r. Let 4' denote the derivative of 4 with respect to  r. Then 4,, takes the form 

Under our symmetry assurnptions. the only non-null cornponents of R,, are4: 

Frorn the known structure of R,, and the definitions of d, ,  and g,, given in eqs. 

(3.3) and (3.1). respectively. we obtain the nontrivial field equations 
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The covariant d'Alarnbertian in eq.(2.3) is expressed as 

where g is the deterrninant of the rnetric g,,. Then. considering eqs. (3.1) and 

(3.3). eq.(2.3) can be put in tke forrn 

2 v' - A' 41' + -# + -4l= 
r 2 (3.9) 

where 4" denotes the second derivative of 4 with respect to  r. We should note 

that although eq.(3.9) is derived for points placed out of the origin of  coordinates 

(r # O). it rnay give us valuable inforrnation about the solutions at r = O by using 

a suitable lirniting process. 

Eqs. (3.5) to  (3.7) imply 

When we develop the power series method of solution. the basic fact to  

consider is that in the absence of explicit solutions for gpv and 4 in this systern 

of coordinates. the coupsed eqs. (3.9). (3.10) and (3.11) allow the ialculation of 

the Taylor expansions for the solutions at any point of  space. In particular. we 

shall develop the procedure at r = 0. 

In order to guarantee a regular behavior of  the solutions at r = O we shall 

impose A(0) = 0, $(O) = /3 and #'(O) = 0. where /3 is an arbitrary real number. In 

particular. let v(0) = O. Under these conditisns. eqs. (3.10) and (3.11) become 

n [ { I -  (ym2#2 + A)r2}eA - 1 
v' (O) - A' (O) = lim 2- I = 2X1(0) (3.13) 

r - 4  Y 
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Solving eqs. (3.12) and (3.13) for vf(0) and Xf(0) we obtain 

Xf (O) = O (3.15) 

Taking eq.(3.9) t o  the l imit r -+ O and recalling the conditions imposed on 

A(o), Xf(0), #(O) and #'(O). we find . 

Differentiating eqs.(3.10) and (3.11) with respect to r we find. in the limit r -r O. 

the equations for ~ " ( 0 )  and A"(0). From the values o f  the functions. their first 

derivatives at r = O and eq.(3.16), we obtain 

~ " ( 0 )  - Xff(0) = Xff(0) - nm2p2 -- 2A 

Then. the values of ~ " ( 0 )  and X"(0) are given by 

1 2 
U" (O) = - -nrn2/j2 - -h  

3 3 

If we differentiate eq.(3.9) with respect to  r and evaluate the resulting expression 

in the l imit r -+ O. we find 

dfff(0) = O (3.21) 

In the l imit r -+ 0, the second derivatives of eqs.(3.10) and (3.11) lead to  the 

equations for v"'(0) and X"'(O), resulting, after some rnanipulations, 



Revista Brasllelra de Flslca, Vol. 18, no 4, 1988 

Z v"'(0) - X"'(0) = -XJ"(0) 
3 

From eqs. (3.22) and (3.23) we obtain 

Taking the second derivative of eq.(3.9) to  the limit r -r O.  we find the value of 

the fourth derivative of b(r) at r = O. The result is: 

Finally, evaluating the third derivatives of eqs. (3.10) and (3.11) in the limit r -, O 

we obtain. after some involved algebra. the system of equations whose solutions 

are v ( ~ ) ( o )  and x ( ~ ) ( o ) .  This is given by 

Solving eqs. (3.27) and (3.28) we find 

From eqs. (3.16). (3.21) and (3.26). and recalling that d ( 0 )  = ,9 and $'(O) = 

O. we can develop the first terms of the Taylor expansion for d ( r ) .  around r = 0. 

We obtain 
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Analogously, our results concerning the values o f  v ( r ) ,  A(r) and their first deriva- 

tives enable us t o  express the first terms of the Taylor expansions for e" and e' 

around r = O. These terms are given by 

Expansions (3.32) and (3.33) provide us with some degree of information 

about the metric structure of space-time. If we restrict our attention to small 

r ,  these equations enable us to  make approximate predictions on the behavior 

of clocks and measuring rods and the motion of single test particles. However, 

the calculation of the tidal forces acting on systems of test particles may only be 

achieved when the components of the Riemann tensor are known. The next step 

is to  show how our previous results make the derivation of the curvature at r = O 

a straightforward matter. 

Within the framework of the assumed space-time symmetries and considering 

the intrinsic symmetries of the Riemann tensor it can be shown that all i ts non- 

vanishing components may be computed from the knowledge of only six of them. 

These are given by4 

I Ril3 = - r e - ' ~ ' s i n ~  e 
2 

Ri2, = (1 - e-') sin2 B 
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Then if we introduce in eq.(3.34) the values of X and v at r = 0. and those derived 

for ~'(0).  X1(0) and v"(O),as given by eqs. (3.14), (3.15) and (3.19). respectively, 

we see that the only independent component that does not vanish is gol, the 

value of which is found 

Then. in the particular 

value given by 

case when the cosmological constant takes the negative 

the value of R:,, also vanishes and the space-time manifold may be considered 

flat at those points suficiently close to r = O. This in turn implies the vanishing 

of every locally mearurable effect of gravity (including tidal forces) at r = 0. 

Furthermore. since in this case the Einstein tensor also vanishes. the condition 

given by eq.(3.36) may be associated to  an eflective vacuurn at r = 0. 

4. CONCLUSION 

We have proposed a power series method of solution of the field equations 

with cosmological term and a massive scalar source. The derivation of the first 

four terms of the Taylor expansions about r = O of the metric and the scalar 

field has been shown explicitly. Also. we have calcuiated the componentes úf the 

curvature tensor at r = O and discussed some implications in a particular case. A 

further development would be to introduce a similar technique in the study of the 

asyrnptotic behavior of the solutions. 

The author is grateful to Prof. Luis Herrera for some valuable suggestions 

on this paper. 
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Resumo 

Sugerimos um metodo de solução em série de potências para as equações de 
Einstein incluindo o termo cosmológico. quando um campo escalar massivo neutro 
B q única fonte externa de gravidade. 


