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Abstract Two classical routes towards higher-derivative gravity theory are de- 
scribed. The first one is a geometrical route, starting from first principies. The 
second route is a formal one. and is based on a recent theorem by Castagnino 
et a) .  [J.Math.Phys. 28 1854 (1987)). A cosmological solution of the higher- 
derivative field equations is exhibited. which in a classical framework singles out 
this gravitation theory. 

1. INTRODUCTION 

In spite of the fact that all available evidence from experiments in macro- 

physics attests to  the validity of Einstein's general theory of relativity as a de- 

scription of the gravitational interaction. it is highly desirable. for the sake of unity 

and consistency of physics, that we can quantize gravity. Certainly. some unifica- 

tion between (essentially) microphysics (quantum mechanics) and macrophysics 
(general relativity) must be part of nature's design. 

At present the R + R 2  theory of gravity has been suggested as a possible 

solution to  the infinities plaguing the quantization of general relativityl-5. I ts 

action for gravitation is given by 

where a and @ are dimensionless coupling constants (in natural units). and k and 

A are the Einstein and cosmological constants. respectively. For the quantum field 

theorist this fourth-order theory has the great advantage of being renormalizable by 

power counting2, whereas. as it is well known, classical general relativity is clearly 

perturbatively nonrenormalizable by power counting in four dimen~ions'*~. Recent 
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workl has shown that the presence of a ghost responsible for a pseudononunitarity 

of the theory. which was considered its Achilles's heel. is no more a vulnerable 

point of  it. The reason is that the ghost is unstable. Consequently, the quantum 

interest concerning these quadratic Lagrangian theories is well suited. 

Here we want to  focus our attention on the classical features of such higher- 

derivative theory. The main purpose of this investigation is to  show. from a 

classical viewpoint. that the aforementioned theory may be considered as a possi- 

ble generalization of general relativity with the extra advantage that it can predict 

some results not expected to  be found in standard general relativity. In particular, 

we discuss the possibility of  regarding this theory as a kind of therapy to certain 

chronic pathologies of general relativity. 

We begin by describing two classical routes towards this higher-derivative 

gravity theory in Sec.2. The first one is a geometrical route that. in a sense, 

starts frorn first principies. In other words, we build up the theory taking as a 

prototype Einstein's gravity theory. The second route is a formal one, and is 

based on a very recent theorern by Castagnino and In Sec. 3 we exhibit 

a completely causal vacuum solution of the Godel type concerning the higher- 

derivative field equations. This very peculiar and rare result is the first known 

exact vacuum solution of the fourth-order gravity theory that is not a solution of 

the corresponding Einstein's equations. 

2. T W O  CLASSICAL ROUTES TOWARDS HIGHER-DERIVATIVE GRAVITY 

Suppose we want to  construct a geometrical theory of gravitation, via a 

principie of least action, that is, frorn a staternent that some functional of the 

dynamical variables, the action, is stationary with respect to  small variations of 

these variables. A possible way to achieve this, and here we appeal to  Einstein's 

theory as a paradigm, is to  start from a purely gravitational action of the form 

Here G is a scalar that depends on geometry alone or. in other words, is a functions 

of g,, and i ts derivatives, but it otherwise arbitrary. For the sake of generality of 
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the theory, we require that the above action be invariant under arbitrary (continu- 

o u ~ )  coordinate transformations (general covariance), whose infinitesimal form is 

written as follows 

Under this transformation 

where 

Equating 6 1  to  zero and taking into account that the <p are arbitrary. we conclude 

that 

Thus, mathematically. the contracted Bianchi identities are a consequence of 

the fact that the action integral eq.(2.1) is invariant under general (continuous) 

coordinate transformations. It is worth noticing. in passing. that this result was 

obtained regardless of any particularization of the form of G. On the other hand. i f  

we appeal to  Noether's powerful second t h e ~ r e m ~ ~ ' ~ .  we get the same conclusion 

in a trivial way. In fact. this theorem asserts that the invariance of the action 

under local gauge transformations implies the so called generalized Bianchi 
identities. a name just borowed from general relativity. for which they are identical 

to  the contracted Bianchi identities. The existence of the identities eq.(2.5) reveals 

the singular riature of the Lagrangian density of the theory, i.e., it indicates the 

presence of constraints in the theory. 

At this point it is reasonable to  turn our attention to  the problem concerning 

the determination of the scalar G. Certainly, the simplest choice for this scalar 

should be G = R. which leads to Einstein's gravitational theory. It is obvious 

that this is only one of the possible options for this scalar. while a multitude 
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of invariants regarding curved space-time remains at our disposal. We restrict 

our analysis to  those in variants that are quadratic in the curvature tensor it i ts  

ordinary contractions, namely 

R2, R,, R," , RaB7' R aB76 

In this case the corresponding field equatione are given by 

In reality these theories are not independent due to  the Ba~h-Lanczos"*'~ identity 

which is usually known as Gauss-Bonnet theorem. Consequently only two of the 

theories under consideration are independent. As usual. we adopt simplicity as 

our criterion of judgement, which leads us to choose the theories generated by R2 

and RaBRaB. respectively. to analyse. 

We remark that any vacuum solution of Einstein's equations is also a solution 

of the vacuurn equations concerning our gravity theories. This result is trivially 

verified by inspection. The reciproca1 is not true in general, because Einstein's 

equations are second order whereas the equations regarding the alternative theories 

we are considering are fourth-order. 
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In order to  introd uce the sources into the theory we appeal again to  Einstein's 

gravity theory, which leads us to take the sources proportional t o  the energy- 

momentum tensor T'". It follows then that our gravity theories may be written 

formally as 

wherein k is a constant with a suitable dimension. whose numerical value will be 

taken equal to  the usual Einstein's constant, in order to  have Einstein's general 

theory of relativity as a member of the above set of  gruvitational theories. We 

restrict our study to  theories of second and fourth order respectively. In the first 

case, [k] = L2. whereas in the second one k is dimensionless. 

Otherwise, the generalized Bianchi identities imply that the covariant 

divergence of Tfi" is null. In other words. the gauge invariance conducts us locally 

to  the conservution luw 

Undoubtedly. any candidate for a gravitational theory must be compatible 

with Newton's law of gravitation in the nonrelativistic limit. So. in order t o  test 

our theories. we look at i ts behaviour in the light of the weak field approximation. 

Following the conventional method13. we write the metric tensor as 

where 

v,, = (1, -I1 -I1 -1) 

and we retain in our field equations only the terms which are linear in h,, or the 

derivatives of h,,. In this approximation our field equations assume the form 
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where 

The comma denotes partia1 derivative. and the indices are raised and lowered 

with the Minkowski metric v,,,. The symbol (L) stands for linear approximation. 

On the other hand. it is not difficult to  show that 

( i ) ~ ( L )  ,, = o 

Thus, the linearized equations imply that 

which is the conservation law of energy and momentum is special relativity. 

Now the linearized gravitational field equations are invariant under the gauge 

transformation 

where A, are four small but otherwise arbitrary functions. Also, eq.(2.21) allows 

us to put the harmonic condition 
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which we assume henceforth. The linearized eqs. (2.15) and (2.16) are then given, 

res pectively. by 

1 1 
2 " [ ( a p a v  - i ~ v ~ )  h - ~ h p v ]  - kT'v 

Contracting these equations. we get respectively 

Let us consider the gravitational field of a point particle located at the origin. 

for which Tp" is gíven by 

From eqs. (2.25) and (2.26) we get in the nonrelativistic limit that 

where r  = 151, k = 8rG. and G is the gravitational constant. In deriving this 

result we have used the fact the Green function for V4 is - r / 8 ~ .  From eq.(2.28) 

we obtain V2h,12 # 0, while from eq.(2.23) we get V2h,12 = O. Therefore the 

systern eq.(2.23) has no solution at ali for a point mass at rest at the origin. 

If we proceed in a similar way with respect to eq.(2.24) we arrive at the 

following result 

Obviously this result is physically unacceptable, since it provides us a gravi- 

tational potential proportional. rather than inversely proportional. to  the distance. 

Thus we conclude that gravity theories generated by the scalars R2 and RPvR,, 
are not compatible with Newton's law of gravitation in the nonrelativistic limit. 
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Now. as it i s  well known, the gravitational theory of Einstein conducts. in the 

nonrelativistic limit, to  Newton's law. Indeed. in this case. the linearized equations 

in the gauge (2.22) assume the form 

= -2kT,,,, (2.30) 

and reduce, in  the nonrelativistic limit and for a point particle. to 

which implies that the potential is given by 

It follows then that. in order to  maintain Lhe connection with Newton's law 

in the nonrelativistic limit. we ought to modify Einstein's theory in such a man- 

ner that the higher-derivative terms introduced into the theory are negligible at 

macroscopic distances. Formally, a way to  achieve this is through the replacement 

of the special relativistic operator O by 

where d is a constant with the dimension of length. In the nonrelativistic limit 

this operator reduces to  

and i ts Green function is given by 

which shows us that at distances r >> d Newton's law is not changed. 

Taking into account the previous condderations, we take the Lagrangian 

density corresponding to  our gravitational theory as 



Revlsta Brasllelra de Ffslca, Vol. 18,  no 4, 1988 

where a,  /l,7 are çonstants and L, is the Lagrangian matter density. In this case 

the field equations are 

In the weak field approximation and in the gauge eq.(2.22) these equations 

assume the form 

In the nonrelativistic limit we get 
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Comparison at infinity with the Newtonian result O = -2GMIr shows that 

the correct physical value of 7 is  112. Thus eq. (2.38) may be rnade to  approach 

the Newtonian limit l / r  as closely as we wish. by ensuring that mz and ~YQ are 

large enough. 

Of  course we are assurning that the pararneters m ~ , , r n ~  are positive. which 

in i ts turn implies that a,@ are not arbitarry. but must satisfy the relations 

What signification may we attribute to  these constrainst? The answer is 

straightforward if we note that the higher-derivative theory contains two mass 

scales. associated with the spin-0 and spin-2 particles present in the lienarized 

theory. They are given respectively. by6 

So, nontachyonic spin-0 and spin-2 particle require (3a + ,f?) to  be positive 

and @ to  be negative. respectively. It is worth noticing that the spin-2 particle has 

significance even in the nonlinear sector of the theory14. 

For sirnplicity. we have not considered the cosmological constant. which 

would only contribute with a negligible modification of Newton's law for noncos- 

mological distances. without affecting our main conclusions. 

In summary we may say that from an entirely classical point of view. higher- 

derivative gravity may be thought of as a generalization of Einstein's general rel- 

ativity. since it respects the geometrical nature of gravity as well as i ts gauge 

symmetry. i.e. i ts invariance under general coordinate transformations. The the- 

ory is also in asymptotic agreement with Newton's law in the nonrelativistic limit 

in the case whsn the parameters a,@ obey suitable relations. These constraints 
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on the parameters admit an interesting interpretation froni the quantum field the- 

ory viewpoint. In a sense, they establish a connection between macrophysics and 

m ycrop h ysics . 
Our aim now is t o  find. i n  a rigorous way. the quadratic Lagrangian density 

corresponding to  the action (1.1). To accomplish this we get benefit from a very 

recent theorem by Castagnino e t  a18. According to it. i f  L is a Lagrangian density 

of the form 

which satisfies suitable hypotheses. then gauge invariance of the associated Euler- 

Lagrange equations implies gauge invariance of the Lagrangian and it becomes 

wherein A, is the electromagnetic potential. Q is a scalar field, and F,, = A,,, - 

Av,,. 
The pure gravitational terms of the Lagrangian of eq.(2.46), with the identi- 

fication of b1Q2 with ( 2 k ) - l  and b2Q4 with -A/k, are those of the gravitational 

action (1.1). Taking now. b5 = a, b7 = p, b3 = b4 = 0. and making use of the 

Bach-Lanczos identity, which is given by eq.(2.10). we arrive immediately at the 

action (1.1). 

3. NEW CLASSICAL FEATURES OF HIGHER-DERIVATIVE 

GRAVITY 

The previous analysis. even though it cannot be considered as exhaustive. in- 

dicates that from a classical viewpoint higher-derivative gravity may be considered 

as a possible generalization of general relativity. It seems natural then to  inves- 

tigate the novel consequences that can be extracted from this higher-derivative 

theory. 
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1 A 
-200n4(a+3p)-2m4(2a+p)+24m2n2(0+8)+ ,(-3n2+m2)+- = 0 (3.3) 

k 

1 A 
i 2 n 4 ( a  + 38) - 2m4(2a - 8) + 16m2n2(a + 8) + i(-n2) - ; = 0 (3.4) 

We draw the reader's attention to  the fact that these equations can be easily 

worked out from eqs.(3.9)-(3.11) with T,, = O and A # O. of Ref. 18. 

The solution of the above equations is given by 

It follows then from eqs. (3.1). (3.2) and (3.6) that 

We have thus succeeded in finding a vacuum solution (counting the cosmo- 

logiçal constant as vacuum) of the Godel type in the framework of fourth-order 

gravity. It is worth mentioning that this solution has already been found by us in 

a previous paper18. It comes in here as an illustration which makes clear that the 

higher-derivative theory admits a vacuum solution that is not a vacuum solutian 

od the corresponding Einstein's equations, although a solution. On the other hand 

this solution is also interesting because it links Newton's constant a,@ and the 

yalue of the cosmological constant, establishing a bridge between miêrophysics 

and macrophysics. 

We are ready now t o  focus our attention on the probiem of the existence of 

causal anomalies (in the form of cloased timelike curves) in our solution. The 

presence of closed timelike curves of the Godel-type, that is. the circles defined by 

t, r = constant, depends on the behaviour of  the function 
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f (r) = IJ2(r) - II2(r) 

In fact. if f (r) becomes negative for a certain range of values of r(rl < r < r2. 

say). Godel circles are closed timelike curves. . In the specific situation we are 

analysing. f (r) is given by 

1 
f (r) = - sinh2 (nr) 

n2 

So. we can guarantee that there is no violation of causality of  the ~ 6 d è l -  

type (circles) in our model. O f  course. we can not assure that a11 possible curves 

are causal by looking over the causality of r , t ,z = constant curves. On the 

other hand. following an ingenious prcedure proposed by Calvão e t  aP6, which 

in a sense, has already been used by P e n r o ~ e ~ ~ .  Maitra29. and Ozsváth and 

S c h ~ c k i n g ~ ~  among others, it is easy to  show that our solution is completely 

causal. The aforementioned procedure is valid as far as the space-time manifolds 

are homeomorphic to  R4. which can then be covered by a single coordinate patch. 

Certainly this is not too strong a constraint, since many important space-times 

have the same underlying manifold, R4 31. 

Could it be that the solution we have found is just flat space or some other 

simple space? One can demonstrate that this space-time has a seven parameter 

maximal group of motions (G,) while the remaining homogeneous Godel-tye met- 

ncs have a G5 19. Otherwise. it is a well established fact that solutions with a G, 

of motions are very rare32. 

4. FINAL COMMENTS 

We have shown, through an specific example. the potentialities of higher- 

derivative gravity in treating an involved problem such as, the causal anomalies 

(in the form of closed timeli ke curves) of the space-time homogeneous Godel-type 

universes. In particular, this theory has bequeathed to  us a very peculiar and 

rare result: a completely causal vacuum solution of the Godel type. The problem 

concerning the existence of other causal solutions is still ah open question. unless 

we introduce artificial constraints between the parameters a and @. Investigations 

concerning this subject are already in progress and we intend to  publish them 

elsewhere. 
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Resumo 
Duas rotas clássicas são apresentadas para a teoria de gravição com derivadas de 
ordem mais alta. A primeira d uma rota geomdtrica. que parte de princfpios 
primeiros. A segunda rota 4 formal, e se baseia num recente teorema de 
Castagnino et ai. [J. Math. Phys. 28. 1854 (1987)l. Uma solução cosmológica 
das equações de campo da teoria com derivadas de ordem mais alta I! exibida, a 
qual num contexto clássico evidencia esta teoria de gravitção. 


