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Abstract Two classical routes towards higher-derivative gravity theory are de-
scribed. The first one is a geometrical route, starting from first principles. The
second route is a formal one. and is based on a recent theorem by Castagnino
et al. [J.Math.Phys. 28 1854 (1987)). A cosmological solution of the higher-
derivative field equations is exhibited. which in a classical framework singles out
this gravitation theory.

1. INTRODUCTION

In spite of the fact that all available evidence from experiments in macro-
physics attests to the validity of Einstein's general theory of relativity as a de-
scription of the gravitational interaction. it is highly desirable. for the sake of unity
and consistency of physics, that we can quantize gravity. Certainly, some unifica-
tion between (essentially) microphysics (quantum mechanics) and macrophysics
(general relativity) must be part of nature's design.

At present the R + R2 theory of gravity has been suggested as a possible
solution to the infinities plaguing the quantization of general relativity!=5. Its
action for gravitation is given by

I= / day/ =[5 ¢ + o + BRy B (L.1)

where a and £ are dimensionless coupling constants (in natural units). and k and
A are the Einstein and cosmological constants. respectively. For the quantum field
theorist this fourth-order theory has the great advantage of being renormalizable by
power counting?, whereas. as it is well known, classical general relativity is clearly
perturbatively nonrenormalizable by power counting in four dimensions®”. Recent
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work! has shown that the presence of a ghost responsible for a pseudononunitarity
of the theory. which was considered its Achiiles’s heel. is no more a vulnerable
point of it. The reason is that the ghost is unstable. Consequently, the quantum
interest concerning these quadratic Lagrangian theories is well suited.

Here we want to focus our attention on the classical features of such higher-
derivative theory. The main purpose of this investigation is to show. from a
classical viewpoint. that the aforementioned theory may be considered as a possi-
ble generalization of general relativity with the extra advantage that it can predict
some results not expected to be found in standard general relativity. {n particular,
we discuss the possibility of regarding this theory as a kind of therapy to certain
chronic pathologies of general relativity.

We begin by describing two classical routes towards this higher-derivative
gravity theory in Sec.2. The first one is a geometrical route that. in a sense,
starts frorn first principles. In other words, we build up the theory taking as a
prototype Einstein's gravity theory. The second route is a formal one, and is
based on a very recent theorern by Castagnino and al.®. In Sec. 3 we exhibit
a completely causal vacuum solution of the Godel type concerning the higher-
derivative field equations. This very peculiar and rare result is the first known
exact vacuum solution of the fourth-order gravity theory that is not a solution of
the corresponding Einstein's equations.

2. TWO CLASSICAL ROUTES TOWARDS HIGHER-DERIVATIVE GRAVITY

Suppose we want to construct a geometrical theory of gravitation, via a
principie of least action, that is, frorn a staternent that some functional of the
dynamical variables, the action, is stationary with respect to small variations of
these variables. A possible way to achieve this, and here we appeal to Einstein's
theory as a paradigm, is to start from a purely gravitational action of the form

I= / d*zy/~gG (2.1)

Here Gis a scalar that depends on geometry alone or. in other words, is a functions
of g, and its derivatives, but it otherwise arbitrary. For the sake of generality of
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the theory, we require that the above action be invariant under arbitrary (continu-
o u~Yoordinate transformations (general covariance), whose infinitesimal form is
written as follows

=g (2:2)

Under this transformation

61 =2 / d*z/—g€,G*, (2-3)

where

-1 [9y=9G) , 3(v=4G) o(v=9G) _
G 1= \/_7{ S~ i T 0ad8 s e -} e

Equating 6 1to zero and taking into account that the £€# are arbitrary. we conclude
that

¥ =0 (2.5)

Thus, mathematically. the contracted Bianchi identitiesare a consequence of
the fact that the action integral eq.{2.1) is invariant under general (continuous)
coordinate transformations. It is worth noticing. in passing. that this result was
obtained regardless of any particularization of the form of G. On the other hand. if
we appeal to Noether's powerful second theorem®1%, we get the same conclusion
in a trivial way. In fact. this theorem asserts that the invariance of the action
under local gauge transformations implies the so called generalized Bianchi
identities. a name just borowed from general relativity. for which they are identical
to the contracted Bianchiidentities. The existence of the identities eq.(2.5) reveals
the singular nature of the Lagrangian density of the theory, i.e., it indicates the
presence of constraints in the theory.

At this point it is reasonable to turn our attention to the problem concerning
the determination of the scalar G. Certainly, the simplest choice for this scalar
should be G = R. which leads to Einstein's gravitational theory. It is obvious
that this is only one of the possible options for this scalar. while a multitude
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of invariants regarding curved space-time remains at our disposal. We restrict
our analysis to those in variants that are quadratic in the curvature tensor it its
ordinary contractions, namely

R?, R R", R*"Rapns (2.6)

In this case the corresponding field equatione are given by

1
R2 —"(1) G“y = '_"?:Rzg“u + ZRR“p + 2R;IJV - 2g“VDR = 0 (2.7)

R¥ Ry —(2) Guo = Ry + 2Rupar R°* —0R,,,
1 1
_ Eg“VDR et -Z'RpoRpog“y =0 (28)

1
Raﬂ76Raﬁ76 —3) Guv = _ER“ﬁ76Raﬂ169uv + 2Ruap4 R, op

+ 23“0,,5"" + 212““";,“” =0 (2.9)

In reality these theories are not independent due to the Bach-Lanczos!:12 identity

) / V=9d*z(Rap,s R°P7® — 4R.pR*? + R*) =0 (2-10)

which is usually known as Gauss-Bonnet theorem. Consequently only two of the
theories under consideration are independent. As usual. we adopt simplicity as
our criterion of judgement, which leads us to choose the theories generated by R?
and Ra.gR*#, respectively. to analyse.

We remark that any vacuum solution of Einstein's equations is also a solution
of the vacuum equations concerning our gravity theories. This result is trivially
verified by inspection. The reciprocal is not true in general, because Einstein's
equations are second order whereas the equations regarding the alternative theories
we are considering are fourth-order.
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In order to introduce the sourcesinto the theory we appeal again to Einstein's
gravity theory, which leads us to take the sources proportional to the energy-
momentum tensor T%¥. It follows then that our gravity theories may be written
formally as

Gy = —kT,, (2.11)

wherein K is a constant with a suitable dimension. whose numerical value will be
taken equal to the usual Einstein's constant, in order to have Einstein's general
theory of relativity as a member of the above set of gravitational theories. We
restrict our study to theories of second and fourth order respectively. In the first
case, [ k]=L?. whereasin the second one K is dimensionless.

Otherwise, the generalized Bianchi identities imply that the covariant
divergence of 7% is null. In other words. the gauge invariance conducts us locally

to the conservation law

™, =0 (2.12)

Undoubtedly. any candidate for a gravitational theory must be compatible
with Newton's law of gravitation in the nonrelativistic limit. So. in order to test
our theories. we look at its behaviour in the light of the weak field approximation.
Following the conventional method!3, we write the metric tensor as

Guv = Ny + Py (2.13)
where
M = (1,-1,-1, -1)
[huv | << 1

and we retain in our field equations only the terms which are linear in h,, or the
derivatives of h,,. In this approximation our field equations assume the form

$GCE) = —kT,, (i =1,2) (2.14)
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(I)G;(tIxJ) =D0(8u8y ~ nuD)h — 20 *n*? (3,8,
- r'MVD)'-",\a,pp (2'15)

(2)G£‘I:') = %D[(a“a" - %"“"D)h - Dhuv] ~ n*Pnebh

“Aa,Bouv
o+ %mpg(izmw + Ryt an“hmﬂp) (2.16)
where
Ry = s — %nuuh: h=n"hy, (2.17)
O= 083, (2.18)

The comma denotes partial derivative. and the indices are raised and lowered
with the Minkowski metric n,,. The symbol (L) stands for linear approximation.

On the other hand. it is not difficult to show that
(,‘)G(L) uv v =0 (2.19)

Thus, the linearized equations imply that

T, " =0 (2.20)

pv

which is the conservation law of energy and momentum is special relativity.
Now the linearized gravitational field equations are invariant under the gauge
transformation

huw = By = hyy = 3uhy — Ay (2.21)°

where A, are four small but otherwise arbitrary functions. Also, eq.(2.21) allows
us to put the harmonic condition

h, =0 (2.22)

598



Revista Brasllelra de Frsica, Vol. 18, n? 4, 1988

which we assume henceforth. The linearized egs. (2.15) and (2.16) are then given,
respectively. by

0(3,0, Meul)h = —kTy (2.23)

50[ (3400 ~ 57 0) h ~ O] ~ KT (2.24)

Contracting these equations. we get respectively

3Th = kT (3.25)

ok = kT (2.26)

Let us consider the gravitational field of a point particle located at the origin,
for which T"¥ is given by

T = §66Y M§%(Z) (2.27)
From egs. (2.25) and (2.26) we get in the nonrelativistic limit that

h=-GMT (2.28)
3
where r = [£],k = 8@, and G is the gravitational constant. In deriving this
result we have used the fact the Green function for V4 is —r/8x. From eq.{2.28)
we obtain V2h 12 # 0, while from eq.{2.23) we get V2h ;2 = 0. Therefore the
systern eq.{2.23) has no solution at alf for a point mass at rest at the origin.

If we proceed in a similar way with respect to eq.(2.24) we arrive at the

following result

3
hoo = —‘Z‘rGM (2.29)

Obviously this result is physically unacceptable, since it provides us a grévi~
tational potential proportional. rather than inversely proportional. to the distance.
Thus we conclude that gravity theories generated by the scalars R? and RV R,
are not compatible with Newton's law of gravitation in the nonrelativistic limit.
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Now. as it is well known, the gravitational theory of Einstein conducts. in the
nonrelativistic limit, to Newton's law. Indeed. in this case, the linearized equations
in the gauge (2. 22) assume the form

Oh,, = —2kT,, (2.30)

By

and reduce, in the nonrelativistic limit and for a point particle, to

V2hy, = 2kM63(%)

which implies that the potential is given by

2 r
It follows then that. in order to maintain the connection with Newton's law
in the nonrelativistic limit. we ought to modify Einstein's theory ir such a man-
ner that the higher-derivative terms introduced into the theory are negligible at
macroscopic distances. Formally, a way to achieve this is through the replacement
of the special relativistic operator &1 by

a1 + ¢%0) (2.31)

where d is a constant with the dimension of length. In the nonrelativistic limit
this operator reduces to

VZ(-1+ d?V?) (2.32)
and its Green function is given by

__ a~r/d

1-e 77 (2.33)
4rr

which shows us that at distances r >> d Newton's law is not changed.

Taking into account the previous considerations, we take the Lagrangian

density corresponding to our gravitational theory as

R
L= V=5[22 + aB? + BRu B*| + /gL (2.23)
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where a,f, are constants and L, is the Lagrangian matter density. In this case

the field equations are

1
Guv = —ET'“’ (2.35)

~ 1
pr o= E (va - ERG’”})
1
+ a(—ERzg,w +2RRyy + 2R,y — 29, ,0R)
i 1
+ ﬂ(R;uu + ZRpruRop - DR#V - EgMVDR

— -21-3,,03%,,”)

5/\/—ngd4 = -;—/\/—gT,,,,b‘g“” (2.36)

In the weak field approximation and in the gauge eq.{2.22) these equations

assume the form

T B 1 1
EDhuu + aD(auaV - ’h‘uD)h + ED[(B,,B,, — Er]m,[j)h — Uh“y] = _ET‘"’
(2.37)
In the nonrelativistic limit we get
GM 1 4e ™3 e Mo
= =Ty -7T9 -= .3
® = oo v [ r 3 r 3 r ] (2.38)
2GM 1 e~ TMo
= - 2.3
=== () (2:39)
2. T 9.40
™ = 2%(3a + A) (2:40)
it |
mj = B (2.41)
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Comparison at infinity with the Newtonian result = —2G M/r shows that
the correct physical value of ~ is 1/2. Thus eq. (2.38) may be made to approach
the Newtonian limit 1/r as closely as we wish. by ensuring that mz and mg are
large enough.

Of course we are assurning that the pararneters mg, m2 are positive. which
in its turn implies that a, @are not arbitarry. but must satisfy the relations

3a+8>0 (2.42)

B <0 (2.43)

What signification may we attribute to these constrainst? The answer is
straightforward if we note that the higher-derivative theory contains two mass
scales. associated with the spin-0 and spin-2 particles present in the lienarized
theory. They are given respectively. by®

1
™ = Gt ) (244)
1
2 _ — s
m; = 248 (2.45)

So, nontachyonic spin-0 and spin-2 particle require (3a + B) to be positive
and B to be negative. respectively. It is worth noticing that the spin-2 particle has
significance even in the nonlinear sector of the theory4.

For sirnplicity. we have not considered the cosmological constant. which
would only contribute with a negligible modification of Newton's law for noncos-
mological distances. without affecting our main conclusions.

In summary we may say that from an entirely classical point of view. higher-
derivative gravity may be thought of as a generalization of Einstein's general rel-
ativity. since it respects the geometrical nature of gravity as well as its gauge
symmetry. i.e. its invariance under general coordinate transformations. The the-
ory is also in asymptotic agreement with Newton's law in the nonrelativistic limit
in the case whsn the parameters o, 8 obey suitable relations. These constraints
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on the parameters admit an interesting interpretation froni the quantum field the-
ory viewpoint. In a sense, they establish a connection between macrophysics and
mycrophysics.

Our aim now is to find. in a rigorous way. the quadratic Lagrangian density
corresponding to the action (1.1).To accomplish this we get benefit from a very
recent theorem by Castagnino et af. According toit. if L is a Lagrangian density
of the form

L= L(gpu; Juv,p; Juv,poy A[l; Au;u;_q); Q,u)

which satisfies suitable hypotheses. then gauge invariance of the associated Euler-
Lagrange equations implies gauge invariance of the Lagrangian and it becomes

L =b1v/=g®" +b2v/~g0* + bsv=3" 2,2,
ba/~gFpu F* + bs/ —gR?* + be\/:—gRaﬂvaR“ﬁ"6
by =g R B (2.46)

wherein A, is the electromagnetic potential. @ is a scalar field, and F,, = A,,,
Ay

The pure gravitational terms of the Lagrangian of eq.(2.46), with the identi-
fication of b;®2 with (2k)~! and 5,®* with —A/k, are those of the gravitational
action (1.1). Taking now. bg = a,by = B8,b3 = bg = 0, and making use of the
Bach-Lanczos identity, which is given by eq.(2.10). we arrive immediately at the
action (1.1).

3. NEW CLASSICAL FEATURES OF HIGHER-DERIVATIVE
GRAVITY

The previous analysis. even though it cannot be considered as exhaustive. in-
dicates that from a classical viewpoint higher-derivative gravity may be considered
as a possible generalization of general relativity. It seems natural then to inves-
tigate the novel consequences that can be extracted from this higher-derivative
theory.
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As is well known, one of the most intringuing problems in general relativity
emerges when we analyses the so-called Godel-type universes, that is, models that
are defined by the line element!®

ds? = [dt + H(r)d®]® — D*(r)d®? — dr® — d2* (3.1)

which in general admit closed timelike curves. The Godel model 27 is undoubtedly
the best known example of a cosmological solution of Einstein’s field equations
in which causality may be violated. It was Godel himself who first drew attention
to the fact that in his space-time one could possibly travel to the past, or
otherwise influence the past, breaking therefore the relation of cause and effect.
Perhaps this appealing idea justifies in part the recent surge of interest concerning
the research on Gddel-type universes!5-26,

Recently, Rebougas and Tiomno!® have demonstrated that the necessary and
sufficient conditions for a G&del-type metric to be space-time homogeneous are

! D” 2

= constant : = 20, o =const:=m (3.2)

They- have also shown that only in case
m? > 402

there is no breakdown of causality of Godel-type. They have restricted their
study to the section t = z = const (cylindrical coordinates) of the Godel-type
space-time manifolds. In other words, they have only examined the breakdown of
causality of the type that occurs in Gédel universe. Otherwise, it is not difficult to
show, from their work, that vaccum solutions of the Godel-type related to space-
time homogeneous models, are not allowed in the context of general relativity.
The following interesting question can now be posed: are there vacuum solutions
concerning the homogenous Godel-type models in the higher-derivative gravity
framework? | '

In order to answer this questions we write the field eq.(2.35) related to the
homogeneous Godel-type models eq.(3.2). In the present case we have no sources
and we assume the presence of a cosmological constant A. The resulting equations
are the following
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2 A
—20000*(ar+38) —2m* (2a-+ B) + 24m 0% (a+ B) + £ (=307 +m?) + £ = 0 (3.3)
1 A
1204(a t 36) - 2m4(20 - f) T 16m?0%(a+8)+ L(-0%) - T =0 (3.4)

404 + 38) + 2m*(2a + B) — 8m* (% (a + B) + %(n2 - m?) — % =0 (3.5)

We draw the reader's attention to the fact that these equations can be easily
worked out from egs.(3.9)-(3.11) with T,, =0 and A # 0. of Ref. 18.
The solution of the above equations is given by
2
2 M _ 1 = _ZA 3.6
= 8(3a + B)k 3 (3.6)

It follows then from egs. (3.1). (3.2) and (3.6) that

ds? = dt? + %sinh2(nr)d¢dt —dr? —d? - 51-,5 sinh?(0r)d®* (3.6)

We have thus succeeded in finding a vacuum solution (counting the cosmo-
logical constant as vacuum) of the Gédel type in the framework of fourth-order
gravity. It is worth mentioning that this solution has already been found by us in
a previous paper'8. It comes in here as an illustration which makes clear that the
higher-derivative theory admits a vacuum solution that is not a vacuum solutian
of the corresponding Einstein's equations, although a solution. On the other hand
this solution is also interesting because it links Newton's constant e, and the
value of the cosmological constant, establishing a bridge between miérophysics
and macrophysics.

We are ready now to focus our attention on the probiem of the existence of
causal anomalies (in the form of cloased timelike curves) in our solution. The
presence of closed timelike curves of the Godel-type, that is. the circles defined by
t, r = constant, depends on the behaviour of the function
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f(r) = D*(r) — H*(r) (3.8)

In fact. if f (r)becomes negative for a certain range of values of r(r; <r < ra,
say). Godel circles are closed timelike curves. . In the specific situation we are
analysing. f(r)is given by

f(n= % sinh?(Qr) (3.9)

So. we can guarantee that there is no violation of causality of the Godel-
type (circles) in our model. Of course. we can not assure that all possible curves
are causal by looking over the causality of r,t,z = constant curves. On the
other hand. following an ingenious prcedure proposed by Calvdo et al?®, which
in a sense, has already been used by Penrose?®, Maitra%®, and Ozsvath and
Schiicking3®® among others, it is easy to show that our solution is completely
causal. The aforementioned procedure is valid as far as the space-time manifolds
are homeomorphic to R*. which can then be covered by a single coordinate patch.
Certainly this is not too strong a constraint, since many important space-times
have the same underlying manifold, R?* 31,

Could it be that the solution we have found is just flat space or some other
simple space? One can demonstrate that this space-time has a seven parameter
maximal group of motions (G7) while the remaining homogeneous Godel-tye met-
sics have a G5 19. Otherwise. it is a well established fact that solutions with a G7

of motions are very rare32.

4. FINAL COMMENTS

We have shown, through an specific example. the potentialities of higher-
derivative gravity in treating an involved problem such & the causal anomalies
(in the form of closed timelike curves) of the space-time homogeneous Godel-type
universes. In particular, this theory has bequeathed to us a very peculiar and
rare result: a completely causal vacuum solution ef the Godel type. The problem
concerning the existence of other causal solutions is stilt ah open question. unless
we introduce artificial constraints between the parameters a and £. Investigations
concerning this subject are already in progress and we intend to publish them
elsewhere.
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Resumo

Duas rotas classicas sao apresentadas para a teoria de gravicdo com derivadas de
ordem mais alta. A primeira é uma rota geomdtrica. que parte de princfpios
primeiros. A segunda rota é formal, e se baseia num recente teorema de
Castagnino et al. [J. Math. Phys. 28, 1854 (1987)]. Uma solucéo cosmolégica
das equagdes de campo da teoria com derivadas de ordem mais alta é exibida, a
qual num contexto classico evidencia esta teoria de gravitgao.
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