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Abstract An analysis is made of the motion of a quantum particle in a gravita- 
tional field. and it is shown that a geometric phase arises under certain conditions. 
The connection of this result with the emergence of gravitational anomalies is de- 
scribed. 

1. INTRODUCTION 

Classical symmetries which do not exist at all at the quantum-mechanicsl 

leve1 occur naturally in field theory, but are rare in systems with a finite number of 

degrees of freedom. These anomalous symmetries are always broken. because 

the introduction of a regulator. indispensable for renormalization. either spoils 

some symmetry or violates some other requisite, such as unitarity. Anomalies ap- 

pear under a variety of guisesl: gauge and non-gauge. Abelian and non- Abelian, 

perturbative and non-perturbative. Some. such as the axial U(1) in QCD and cer- 

tain non-perturbative anomalies in string theory4, are welcome. while others. like 

the axial gauge anomalies in the standard model of  electroweak interactions, are 

truly urrdesirable. Anomalies in the latter category render the theory inconsistent. 

so their absence can be turned into a powerful criterion in reducing the collection 

of renormalizable theories: indeed, the condition of anomaly-freedom usually fixes. 

or at least restricts, the value of an otherwise arbitrary parameter in the theoryl. 

On the other hand. there exists a class of model theories (so far all bidimensional) 

that can be consistently quantized in the presence of anomalies, at the expense 

of gauge invariance2 or canonical quantization rules3. Probably the last word has 

not been said yet as to  when it is inevitable to  free oneself from anomalies. 

In view of this prominent role played by anomalies in quantum field theory, it is 

essential to understand them from a variety of viewpoints. Perhaps the most sub- 

tle and least explored are the anomalies which arise in theories with gravitational 
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couplings. These (gravitational) anomalies appear in two versions - perturbative4 

and global5 - obstructing the realization of spacetime symmetries. In refs. 4 and 5 
a number of interesting results concerning gravibational anomalies were obtained 

with the Lagrangian (or path-integral) formalism. In this approach one examines 

the effective interaction induced by integration over the fermionic sector, looking 

for explicit symmetry breaking or ambiguities under global transformations. 

An alternative approach. applied to chiral anomalies5, is the Hamiltonian 

or Hilbert space formulation. In fhis language an anomaly occurs whenever the 

symmetry cannot be implemented as a true representation. but only as a projective. 

or ray representation: such cases involve topologically unremovable phases. which 

break the gauge invariance. Here, when one examines the effective Hamiltonian for 

the bosonic fields one finds617 that the anomalous content of  the theory is concisely 

comprised in a phase whose origin is purely geometric: the phase acquired by the 

wavefunction of a system subject to  (an adiabatic) periodic potentia18. 

In this note a study is begun of gravitational anomalies which makes use of the 

Hamiltonian interpretation. It is shown that a quantum mechanical particle with 

spin and interacting only with a gravitational field can develop a geometric phase. 

The next section reviews Berry's results8 on adiabatic phases and a generalization 
due to  Aharonov and AnandamO. In the following section an analysis i s  made of 

the motion of a spinning particle in curved space. Some other related issues are 

touched upon in the concluding section. 

2. GEOMETRIC PHASES 

Let us review how a geometric phase arises in quantum mechanics, beginning 

with the case of adiabatic evolutions. Consider a system subject to a slowly 

changing externa1 field Q(t), so that it is meaningful to  describe the state of the 

system in terms of the eigenfunctions of the momentary  Hamiltonian. defined by 

As first pointed out by Berry8. the adiabatic theorem1° is modified i f  the 

motion of the background field Q(t)  is periodic. The conventional version of the 
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theorem asserts that if the initial state vector is ($,(Q(O)) >, then at a later time 

t it will have evolved into 

where 
t 

pn = - 1 dtt En (Q ( t t )  ) 

provided the background changes slowly enough* that transitions do not take 

place. The phase p, is called dynarnical, because it depends on the functional 

form of H. ln words. the system remains in the same eigenstate labelled by 

En(Q(t)). riding along with the background. 

However. if the background field resumes i ts initial configuration after a time 

T .  i.e.. Q(T) = Q(0). the state vector is instead 

where the extra phase 7,, differently from v,. depends only on the geometry of 

the surface En(Q) in Q-spaces. From the time-dependent Schrodinger equation, 

one finds 

where C is the closed circuit in Q-space generated by the background motion. 

The last expression shows tliat 7 is  a functions of C, i.e., independent of the 

parametrization t. 

When the circuit is open, it is possible to  absorb the extra phase in $,, since 

eqs. (2.1) fix it only up to  a phase factor; this is no longer possible once the circuit 

closes. because 7 is  non-integrable. 
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Frorn the viewpoint of pararneter space this rneans that there is a connec- 

tion* 

in terrns of which 

7n [c] = f dG . Ãn (4) 
C 

An alternative expression follows frorn eq.(2.1) and eq.(2.2) 

The denorninator provides a hint as to  why a degeneracy in Q-space is a 

cornmon feature of a large nurnber of systems with non-vanishing 7,. 

The paradigm of such systems is a degenerate two-level system subject to  an 

interaction linear in the externa1 field. namely Hint o< ü. Q(t). This class is very 

large indeed. including certain triatomic molecules, the quanturn Hall effects. chiral 

anomalies, and Skyrrnions12. Perhaps i ts simplest version is a spin-112 particle in 

a cyclic magnetic field. See fig. 1. (Here, g ( t )  is the rnagnetic field vector.) 

For this class of systerns. it can be shown that 7n[C] is proportional to  the 

solid angle L1 subtended by C frorn the origin Q = O (fig.l). Since 7 is  the flux of 

Ã through C. this rneans that there is a monopolar rnagnetic flux in parameter 

(Q) space. as if there were a monopole sitting at the origin. In particular, 7 is 

unchanged by circuit deformations which preserve the solid angle. This property 

and the fact that 7 vanishes for an open circuit are what make it a topological 

quantity. 

In principle. the only restriction on the value of 7 is that it must be a real 

number (this follows from < $,I$, >= 1). Under certain conditions even a 

system rnade out of bosons can have 7 = r, in which case i ts wave function 

changes sign upon a full rotation in coordinate space. Perhaps the most familiar 

* The phase change I$, >-+ eix(Q)l$, > induces A, -+ A, - VQX. Ã 
becornes non-Abelian if the level n is degenerate". 
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Fig.1 - The vector ( z ( t )  traces a curve C in Q-space which 
subtends a solid angle n from the origin. 

system exhibiting this property is the Skyrmion - a soliton in a theory of purely 

bosonic fields. which is nevertheless a fermion12. 

We conclude this summary on the adiabatic phase with a brief remark on the 

connection between geometric phases and chiaal anomalies. As mentioned in the 

introductory section, the integration over the fermionic sector of an anomalous 

theory induces in the bosonic sector an interaction proportional to  the phase 7. 

It turns out that the origin of this phase is very much the same as in the example 

just described; it is a property of  the degenerate fermionic vacuum in the presence 

of a bosonic background, which can be attributed to  a magnetic flux in parameter 

space. Since the parameters here are the bosonic fields, the anomalous term will 

describe monopoles living in the configuration space of bosonic fields. But this is 

precisely what Wess-Zumino terms are13. The geometric phase thus provides an 

interesting standpoint on anoinalies. tracing it in the end to  the fact that energy 

eigenfunctions acquire phases during closed loop excursions in parameter space. 

or rather they form twisted line bundles over S1 (ref.6). 

Now let us free the concept of  the geometric phase from the restriction 

to adiabatic evolutions, and consider motions of the parameter Q that are just 

periodic
Q

. Let $ ( t )  be a normalized state vector in Hilbert space H evolving with 
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the Schrodinger equation 

Suppose further that the motion is periodic, i.e.. Q(t )  = Q(0).  so that 

A real. 

Consider now the space of rays Pn associated with H ,  obtained by identifi- 

cation of all vectors which differ by a complex number. In order to  express the 

results in a concise form it is convenient to  define a mapping A which projects a 

vector $ onto i ts ray 4. namely 

so ir projects M onto Px, i r ( M )  = Px. See fig. 2. 

Notice that each periodic evolution defines a sequence of states in H - a curve 

I' : (O, T )  -i M - that begins and ends on ray (i. Through the mapping ?r it defines 

also a closed curve f in Pu, namely the projection ir(I') = f .  See fig. 2. 

One defines the geometric phase jl as that piece of the total phase A which 

is not dynamical 

Although 8 may seem to  depend on the circuit I', it is a function of f' only. 

In other words. is the same for all curves r in H which project onto the same 

curve f = ?r(I') in PM. This assertion can be easily proved in two short steps. 

First express ,8(I') in terms of 

with f so chosen that f ( T )  - f ( O )  = A ,  to  find 



Revista Brasllelra de Ffslca, Vol. 18, no 4, 1988 

Fig. 2 - H is the Hilbert space of the wave-function $. PM the 
space of rays 4, and ir is the projection map ir($) = 4. I' is a 
curve in H ,  while f is a closed curve in Px.  

Next we consider another curve I" such that ã(rl) = ~ ( r )  = {I'). This 

means that along r' there exists a phase a(t) such that 
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with 

ff(T) - fl(0) = A 

Hence. ~ [ f ]  is  independent of  the Hamitonian H, the phase A, and the 

parametrization t: it is a geometric property of closed loops in Px.  An explicit 

calculation in the next section will substantiate this feature of B. 
Notwithstanding this distincion, it is easy to verify that /3 reduces to  7 when 

adiabatic conditions prevail
g
. Moreover, the value of B associated with a given 

evolution can be calculated with the formula for 7 in terms of eigenfunctions. since 

an adiabatic Hamiltonian can always be found which generates the given rnotion. 

As our purpose is just to show that a non-vanishing phase arises. the phase /3 will 

prove more convenient. 

3. SPINNING PARTICLE IN A GRAVITATIONAL FIELD 

As will become clear sooii, it is interesting to  consider the motion of a particle 

with non-vanishing angular momentum subject t o  a stationary gravitational field. 

that i s  to  say. one described by a metric which is zO(tirne)-independent, and an 

interval which is not invariant under time reversal (xO -+ -zO). , 

The spin vector S, of a particle in free fall obeys the equations14 

It is further constrained by the condition 

expressing the fact that only three of i ts components are independent. [In the - 
particle's rest frame. S, = (S,O). so the spin is always orthogonal to the velocity 
- dz' = yP]. Using the constraint to eliminate the component So. we are left with 
dr 
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For our purposes it sufices to solve the equations within the Post-Newtonian 

approximation. Accordingly. the expansion of the metric in powers of the particle 

velocity v. up to  second order. gives14 

where 

si = qv3) 

and 

4 = 0(u2) 

are defined by the equations* 

At this point one notices that although the magnitude of 9 is not coiistant, 

there is another vector whose motion is a pure precession. Since the constant 

value fo SaS, is proportional to  

one defines a new spin vector 

so that 
4 

$ = constant. 

The vector f is the one that processes: differentiating eq.(3.2), we find 

* For a sphere of mass M and angular momentum J at rest, C#I = -GM/r, 
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and a comparison with eq.(3.1) leads to  

In order to  see that a geometric phase arises in this situation, it is simplest 

to  consider first a spin i particle at rest. If the gravitational field is stationary. 

such as the one generated by a rotating body, then is not equal to zero. and 

there is spin precession even for a a particle at rest. The Hamiltonian becomes 

- c f i  x ,!? with c = 1 + 4. The system is therefore analogous to  a spin precessing 
I 

in a uniform magnetic field. and the geometric phase can be computed as in ref.9. 

For convenience. let us choose the coordinate axes so that fi is  along. the 

z-axis. that is, 

H = -l.(nCT* 

, with 

p = const .  

and 

If the initial state is 

cos 6 / 2  
\$(o) >= (3 in 

then 

eipnt c o s 6 / 2  
I$(t) >= eipntas 

,-ipnt s i n  6 / 2  

The spin vector < $lÜl$ > precesses at an angle 6 about the z-axis with a period 

T = ã / p f l .  (See fig. 3). Insertion of I$(t) > in the expression for B gives 
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p = ir - pnt COS e .  

After one period. p = ( 1 - c o s B ) i r ,  thus confirming that the dynamical dependence 

drops out of  B(T). 

Fig. 3 - The spin vector < $ ( t ) J Z l $ ( t )  > traces a curve in R3 

which determines a closed curve r in Pu. 

Once more the phase equals half the solid angle subtended by the curve traced 

by a vector; this is very much like the adiabatic case. but there the vector was the 

magnetic field. whereas here it is the spin. 

When the particle is rnoving, the Hamiltonian becomes -li x S. where fi 
depends on the position and velocity of the particle, and ,? is given by eq.(3.2). 

As a consequence. the motion is more complex, but the spin still precesses and 

formula (2.3) remains valid. There is no a priori reason why /3 should vanish for 

an arbitrary circuit f .  

4. CONCLUSIONS 

The result of section 3 brings new members - those with pwrely gravitational 

interactions - into the class of systems that display a geometric phase. This result 

is interesting also because it provides a first quantizea framework for one to  think 

about the elusive issue of anomalies. In analogy with chiral afiomalies. it sug- 

gests that a quantum field theory of fermions in a gravitational field may develop 
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anomalies - a prediction which turns out to be true under certain conditions415. 

In order to  avoid misunderstandings we emphasize that this result does not imply 

symmetry breaking in  the first-quantized system. which has a finite number of 

degrees of freedom. As pointed out in ref.15, the connection between geometric 

phases and Wess-Zumino terms in quantum mechanics is valid only under adia- 

batic conditions; if transitions between spin states take place, Berry phases with 

opposite signs add up to a vanishing net effect. 

Severa1 aspects of this work can be pursued further. It would be interesting 

to  treat the particle motion in more generality: for this one needs a Hamiltonian 

description of a spinning particle in general relativity. In the case of chiral anoma- 

lies, the geometric phase can be expressed in terms of indices of Dirac operators; 

what happens when gravitational couplings are present? One can also investigate 

how the anomalous terms effect the quantization of the gauge sector7. 
I Finally. it is worthwhile to  cal1 attention to a point which arises in connec- 

tion with the Lense-Thirring effect of a spinning particle in the vicinity of a large 

rotating mass. This effect indicates that it is the whole mass of distant mater 

that selects, amongst all frames. those which are inertial. On the other hand. 

short-distance effects determine whether spacetime symmetries are realized at all. 
Seemingly, these two disparate scales operate together - one specifying whether 

intertial frames exists; the other. what they are. It would be inter&ting to  inves- 

tigate this point further. looking for a possible connection between microscopic 

and cosmological scales. which is otherwise expected only in the very early stages 

of the universe. 
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