
Revista Brasllelra de Flslca, Vol. 18, no 4, 1988

Fast Code for Monte Carlo Simulations

PAULO MURILO CASTRO D E OLIVEIRA and THADEU JOSINO
PEREIRA PENNA
Instituto de Ffslca, Unlvefsldade Federal Flumlnense, Calxa Postal 100296, Nlteról,
24000, RJ, Brasll

Recebido em 13 de Junho de 1988

Abstract We present a computer code to generate the dynamic evolution of the
Ising model on a square lattice. following the Metropolis algorithm. The computer
time consumption is reduced by a factor of 8 when one compares our code with
traditional multiple spin codes. The memory allocation size is also reduced by a
factor of 4. The code is easily generalizable for other lattices and models.

Monte Carlo simulations are important tools for studying statistical models

(see ref.1). Modern applications of the method are widespread over an extensive

range of fields. Enhancing the performance of the- applications is a challenge

for physicists and other scientkts. particularly as microcomputer are ever more

present in the scene. In this context. the demand for higher processing speeds

and lower memory allocation requisites is crucial.

Most modern applications of Monte Carlo simulations use a multiple spin

code (see, for instance. ref.2). in which the bits of integer type variables are used

for storing the current state of the system. In the Ising model. for example. each

site of lattice holds a spin value O or 1, and the local energy due to the interaction

of this site with i ts neighbours ean assume integer values between O and the lattice

coordination number, considering O (1) energy per parallel (antiparallel) neighbour-

spin-pair. For the square or cubic lattice, the complete state of each site requires

four bits, one for the spin value itself and three others for the local energy. A 32-bit

processor can hold 8 spins per word, and the advantage of this storing strategy

is the simultaneous update of these 8 spins by a single bitwise operation. The

local energy value is needed to implement the Metropolis3 algorithm: updating of

a given spin is decided by comparing a random number with a suitable Boltzmann

factor previously calculated from this energy. The calculation of the local energy

is also done'simultaneously for the 8 spins of a word.

In this short paper we present a computer code which improves the perfor-

mance of the multiple spin code strategy beyond i ts usual limits. As we show

Financia1 support from FINEP and CNPq (Brazilian Government Agencies)

502

Revlsta Brasllelra de Ffslca, Vol. 18, no 4. 1988

below, this procedure is especially suited for implementation in microcomputer

units. owing t o i ts simplicity and memory-saving characteristics. We use only one

bit per spin. yielding a ratio of 32 spins per computer word. The local energy

value is calculated simultaneously for the 32 spins. using bitwise operations. with

no need of storing it. We tested our code against the traditional multiple spin

code. obtaining a reduction by a factor 8 in the computer time consumption and

a factor 4 in the memory size allocation. for the square lattice Ising model. As

the code can be easily modified for other lattices and other discrete spin models.

hereafter we will treat only this simple case.

We divide the square latice into four sublattices a. b. c and d, and store

the whole spin configuration in four one-dimensional vectors corresponding to the

lattices, as defined in ref.4 (only with 32-bit words instead of the 64-bits available

on the Cray XMP used in that reference). The even (odd) rows are stored in

vectors a and b (c and d) and even (odd) columns stored in vectors b and c (a

and d). as shows in table 1. Periodic boundary conditions are adopted in both

directions. taking advantage of the bit-shift operators.

Table 1 - Vector storing arrangement for the L x L square lattice Ising model.
where L = 64 x m with integer m. Vectors a, b. c and d contains mn = L2/128
32-bit-integers each. The upper symbol rneans the bth bit of the corresponding
word, the bracket [j] is the vector index, and m2 = mn - m + 1.
Od[11 ' c [11 .. . Od[m] Oc[m] . . . 31d[11 31c[11 .. . 31d[m] 31c[m]

Our code is written i n C-Programming-LanguageS. Declarations. definitions

and the code for the whole d sublattice updating are given below . Translated to

Fortran syntax code. symbols -. -, & and A correspond respectively to NOT.

OR and XOR logical bitwise operators. while A << B means the shift of the

Revlsta Brasllelra de Flslca, Vol. 18. no 4, 1988

word A by B bits to the left. and >> means the same operation to the right. The

sequence A = E ? X : Y is a conditional assignment operator that stores X or Y

into A i f E is TRUE or FALSE respectively. A symbol like x OP = y means x =
x OP y, where OP is binary operator. Texts between /* and */ are comments.

The variable JkT holds the coiipling constant value J/kT, while rn holds L/64 for

a LxL lattice.

/* declarations : */
const unsigned long bit31 = 1 << 31;

unsigned long r , i l , i2 , i3,i4, bit[32];

unsigned long exO, e z l , eO, e l , t , a[3201], b[3201], c[3201], d[3201]

unsigned i, j, k , ib ,m, mm, m n , ml, m2,ndz;

double J k T ;

/* defined quantities : */
mm=m-1;n=32*m;mn=m*n;ml=mn-m;m2=ml+1;

exl = 4294967295 * exp(-4 * J k T) ;

ezO = 4294967295 * exp(-8 * J k T) ;

for (ib = 0;ib < 32;ib + +)b i t [i b] = 1L << i b ;

/* test and update for sublattice d : */
j = 1; i 1 = a[m2];

for (i = 1;; <= n;i + +){
i2 = il;il = a[j j ; i3 = c [j] ;

ndx = j + mm; i4 = c[ndx]&bit[3lj?(c[ndx] C< 1)il : c[ndxj <C 1;

e0 = (ii&i2&i3&;4&d[j])i(- ilk - i2& - i 3 k - i 4 8 - d [j]) ;

/* e0 holds l-bi ts at sites with O local energy */
e1 = (i1 /\ i2 /\ i 3 A i 4) k - (d [j] A ((il&i2);(23&i4)));

/* e1 holds 1-bits at sites with 1 local energy */
t =- (eOlel);

/* t holds l-bi ts at sites with 2, 3 or 4 local energy */
for (i b =;ab < 32;ib+ +){
if(eO&l){r+ = (r << 1) + (r << 16) ; i f (r < ex0)t: = bit[tb];)

else i f (e l & l) {r+ = (r << i) + (r << 16); i f (r < exl)t 1 = bit[ib];))

/* r is a random odd integer number */.

Revlsta Brasllelra de Físlca. Vol. 18, no 4, 1988

) /* now. t holds I-bi ts at ali sites that must be spin-flipped */
d [j] A = t;
j+ = m;

1
if(m! = I){

f o r (k = 2;. <= m ; k + +) {

j = k; i 1 = a [m l + k] ;

f o r (i = 1;; <= n ; i + +) {

i 2 = i 1 ; i l = a [j] ; i 3 = c[j] ; i4 = c [j - 11;

e0 = (il&i2&i3&d[jJ)I(- i l & - i2dc - i3& - i4& - d [j]) ;

e1 = (i 1 r\ i2 A i 3 r\ i4)& - (d [j] r\ ((i l&i2)l(i3&i4)));

t =- (eOlel);

for(ib = 0;ib < 32;ib + +){
if(eO&i){r+ = (r << 1) = (r << 1 6) ; i f (r < eO)tl= bi t[ib];)

else{if (e l&l){r+ = (r << 1) + (r << l 6) ; i f (r < exl)tl = bit[ib];))

e0 >>= 1; e1 >>= 1;

1
d [j] ~ = t;

j+ = m;

1
1

1

The complete code was implemented for a 64x64 square lattice on an IBM-PC

based on an INTEL 8088 processor. running at 4.77 MHz. The updating velocity

was 4.4 x 103 spins/s, including the time needed to average the magnetization

and susceptibility. On another INTEL 80286-processor-based PC, running at 12

Mhz, the updating velocity was 2.0 x 104 spinsls. Both processors only deal

with 16-bit words. and the 32-bit processing is an emulation supported by the C

compiler. The time consumption on a real 32 (or 64)-bit processor will be even

smaller. Particularly important for the IBM-PC line. the segmentation in 64-K

memory blocks imposes serious restrictions upon the size of arrays: our approach

is also suitable to overcome this problem. Results are shown i n fig.1. and are

Revlsta Brasllelra de Ffslca, Vol. 18, no 4, 1988

quite satisfactory. considering the reduced amount of time and memory used in

their obtention. For comparison, the same results were firstly obtained in ref.7,

with equivalent performance. on main frame computers.

Fig.1 - Magnetization and susceptibility graphs for a 64x64
lattice. Full lines are the known exact results6. Each point
was obtained from 10 sampies with 3000 complete Monte Carlo
steps each (near the critical temperature, the full dots mean
that 12000 steps were taken).

In short, we have developed a computer code for Monte Carlo simulations,

whose performance is faster and more memory-saving than the usual multiple spin

code. Owing to these characteristics. the code is especially suited for implemen-

tation in micro-computers. Generalizations for other spin models and lattices than

.Revista Brasllelra de Flslca, Vol. 18, no 4 , 1988

this Ising model on a square lattice are straightforward; work along these lines is

in, progress.

We wish to thank S.L.A. de Queiroz for a critical reading of the manuscript.

One of us (PMCO) is also grateful to H. Manela who introduced him to the C

language.

REFERENCES

1 K.Binder (ed). Applications of the Monte Carlo in Statistical Physics.
2nd edition, Springer Verlag. Heildelberg 1987.

2 R. Zorn, H.J. Herrmann and C. Rebbi. Comp. Phys. Comm. 23, 337 (1981):
C. Kalle and V. Winkelmann, J.Stat.Phys. 28, 639 (1982).

3 N. Metropolis, A.W. Rosenbluth. M.N. Rosenbluth. A.H. Teller and E. Teller.

J.Chem.Phys. 21. 1087 (1953).

4 H.J. Herrmann. J.Stat.Phys. 45, 145 (1986).

5 B.W. Kerninghan and D.M. Richie. The C Programming Language. Pren-

tice Hall. New Jersey 1978.

6 L. Onsager. Phys.Rev. 65.117 (1944): C.N. Yang, Phys.Rev. 85808 (1952):

E. Barouch. B.M. Mc Coy and T.T. Wu, Phys. Rev.Lett. 31. 1409 (1973).

7 D.P. Landau.Phys.Rev. B13. 2997 (1976).

Resumo

Apresenta-se um código de computador para gerar a evolução dinâmica do
modelo de Ising numa rede quadrada, segundo o algorítimo de Metropolis. O
tempo de computação C reduzido por um fator 8 em relação ao código tradicional
de spin múltiplo. A memória necessária tambdm C reduzida por um fator 4. O
código C facilmente generalizável para outras redes e outros modelos.

