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Abstract We obtain an exact analytical expression for the free-energy of a system 
of Ising variables on a 2 x N strip with a random distribution of positive and 
negative bonds. 

1. INTRODUCTION 

A random distribution of inhomogeneities is essential for the macroscopic 

characterization of many physical systems. Among magnetic materials, spin 

glasses are an example of this. There. the random distribution of negative and 

positive exchange coupling constants between ions sets up a competition between 

ferro and antiferromagnetic ordering with results not yet fully understood. In 

the laboratory the non-homogeneity arises from the quenching of magnetic ions 

in, random positions in a non-magnetic matrix. Theoretically we can model the 

fundameiitals of the problem by placing the magnetic ions (spins variables) in a 

regular lattice and allowing a random distribution of positive and negative bonds. 

The model hamiltonian for short-range interactions can be written as 

with Si the spin at sites i and Ji j  the coupling constant between spins at i and j. 

The summation wi91 be restricted to the pairs < i, j > of nearest neighbors. For 

the Ising model Si = f 1. Onsagerl obtained the exact thermodynamic functions 

for the uniform (Jij = J )  tws-dimensional version of model eq.(i) through a 

formally complex model. simplified afterwards by others ( ~ a u f m a n n ~ ,  Kac and 

Ward3. Vdovichenco4. Schultz, Mattis and Lieb5). 

The model described by the Hamiltonian t!q.(i) shows the important property 

of  invariance o f  the partition function under the local transformation 
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of all bonds joining the site i to i ts  neighbors. 

This shows that if it is possible to  go from one distribution {Ji,) of bonds 

to  another { J k ) .  through local transformations as described above. the thermo- 

dynamics of the system will be the same. That equivalence is better shown if we 

introduce the concept of frustration (Toulouse6): on planar lattice with interac- 

tions only between nearest neighbors. one says that a plaquette (a primitive cell) 

is frustrated if the number of negative bonds in its perimeter is odd; otherwise 

the plaquette is non-frustrated. It is easily shown that a configuration of frustra- 

tion is not altered by the local transformation eq.(2). Then all distributions of 

frustrations have the same partition function. 

Exact solutions for  planar models with Jij assuming values +J and -J. 

with frustrations, are known only for a few regular distributions (fully frustrated 

model (Villain7). layered model (Hoever, Wolff and Zittartz8). It will be desirable 

to have the solutions for a random distribution of frustrations, in order to get a 

better understanding of the role of the inhomogeneities in the behavior of such 

systems. and also to  test the validity of the approximation methods. Solutions for 

those models are important for the study of spin glasses. The lack of any general 

solution makes exact solutions welcome, even for very simplified models. 

2. THE SOLUTION FOR A STRIP WITH RANDOM DISTRIBUTION OF 

BONDS 

In this wwk we find an exact expression for the free-energy per cell of a 

system of Ising variables in a 2 x N strip with a random distribution of f J 

bonds between nearest neighbors. in the absence of externa1 field. The basic 

assumption is that the free energy of the infinite strip shows a gaussian probability 

distribution. Because the interactions are random and short ranged, the total 

energy can be thought of as the sum of random energies of a large number of 

su bsystems (neglecting interface effects) and therefore has a gaussian distribution. 

Strips with different distributions of bonds have been studied by other authors 

(Huse and Morgenstern
Q

; Derrida, Vannimenus and Pomeaulo). 

The system is shown schematically in fig. 1. S, is the spin at site n of the 

upper row. Sn the corresponding spin in the lower rsw. The coupling constants 

between neighbor spins in the same row were taken to be positive (J). The bonds 
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between neighbors in different lines can be negative or positive (Jn = iJ) .  The 

invariance of the partition function under local transformations eq.(2) assures that 

there is no lack of generality if we take all horizontal bonds as positive. 

1 3 s2 S~ s~+l 

Fig. 1 - Schematic representation of a strip with vertical cou- 
pling constants Jn = f J randomly chosen. 

The hamiltonian of the system is 

Assuming cylindrical boundary conditions. 

the transfer matrix method allows us to  write the partition function as the trace 

of a product of matrices (/3 = l/kST) 

where the 4 x 4 matrices V, can be expressed of Pauli spins operators u,,a, 

acting on the upper row and a:, d, acting on the lower row 

with 

6 = tanh- l  e2BJ 
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Choosing symmetrical and antisymmetrical combinations of the states of 

occupation numbers as basis. V, takes the following explicit form (diagonalized 

by bloc ks) : 

The product of these matrices is not commutative for different Jn's and i ts 

general expression does not display a simple form. 

Since Tr n, Wn has to  be real and 

the eigenvalues of l IWn can be written as ef r .  where I' is real positive, of order 

N. Then 

TrlIW, = 2 cosh I' (12) 

(9) v, = 

The free energy f per cell, averaged over the configurations of Jn. will be 

The difficulty is in calculating the trace of the product of the upper blocks, 

e+= cosh 28 e-+= sinh28 O O 

e'#'= sinh28 e-$= cosh28 O O 

O O o 
O O O e-&* 

In the thermodynamic limit most of r ' s  are distributed randomly around < I' > 
with width < (AI')2 >'i2. We can assume a gaussian distribution and prove the 

following relations 

(cosh r)2 >= cosh2 < I' > (15) 
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From eq.(14) and eq.(15) we have 

1 
lncosh c I' >= 21n c coshr > -- Ln < ( ~ o s h r ) ~  > 

2 (16) 
c I' > is of order N. so in the limit N -* oo, 

2 
N 

ln < (cosh I')2 > (17) -pf = l n ( 2 s i n h 2 ~ J ) + - l n < c o s h I ' >  -- 2N 
Let the probability of Jn = - J  be p and of Jn = J be 1 - p. Then. 

cosh v - (sinh2 v - 4p( l -  p) sinh2 4)' 

where we define 

cosh v = cosh 4 cosh 28 

e*& cosh 28 8 4  sinh 26' 

ef 4 sinh 26 e'fd cosh 219 

and 

d = B J  
On the other hand. 

(19) 

with 
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(The notation @ means direct product of matrices). 

The eigenvalues of the matrix pW- @ W- + (1 - P)W+ @ W+ are 1 and the 

three (real) roots of  the cubie equation * 

In the,thermodynamic limit we need only the largest roat of  the above equation 

where 

cosh a = q/r3 

with 

and 
4 L 

r = [i sinh2 ~ ( 4  cosh2 v - 1) + Qp( I  - p)(dinh2 24 + 2)] a 

Then. 
-p f = In(2 sinh 24) + 2 ln 

For a random distribution of positive and negative bonds between lines with 

probability p and 1 - i. the strip will have a random distribution of frustrated 

* A simple graphical analysis shows that if the three roots of  eq.(23) are real 

for p = O and p = 112. then they will be real for any other value of p between O 
and I. The solutions x = 1. for p = 0, and z = cosh24 for p = 1/2 are easily 

obtained by inspections. In both cases the remaining quadratic equations have 

real roots. 
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plaquettes with probability = 2p(l - p). Notice that with a random distribution 

of bonds it is not possible to  get more than fifty percent of  frustrated plaquettes. 

Curves of the free-energy per cell for several densities od randomly distributed 

frustrated plaquettes are shown in fig. 2. The results for r! = 2 (non-frustratedj 

and = 1 (fully frustrated) are obtained directly from eqs.(15) and (9). 

Fig.2 - Free energy per cell as a function of J for several den- 
sities of  frustrated cells (v). 

3. CONCLUSIONS 

As expected the behavior of the free-energy function ís analytic over all range 

of the parameters (density of  frustration) and q5 (temperature) because the sys- 

tem is effectively unidimensional in the thermodynamic limit and the interactions 

are short-ranged. We note that the effect of the frustration is only to  raise the 

free energy. 
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Resumo 

Obtemos uma expressão analhica exata para a energia livre de um sistema 
de variáveis de Ising em uma tira 2 x N com uma distribuição aleatória de ligações 
positivas e negativas. 


