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Abstract Two types of constraints regulated by gauge invariance are identified 
for systems involving more than one potential field transforming under a single 
group. They are the constraints of the symmetry and of the circumstances. An 
extended Gauss law and the Hamiltonian covariance are also studied. 

1. INTRODUCTION 

Different aspects should be required in order to  justify the possibility of  in- 

cluding more than one potential field in the same gauge group. It has already 

been observed from arguments such as counting the number of degrees of free- 

dom. Kaluza-Klein compactificationl and supersymmetry with no conventional 

constraints2 that there are enough elements to  allow the existence of gauge the- 

ories which include N-potential fields transforming as 

where 

Eq.(l) means that the group parameters w a ( x )  specify transformations which act 

on fields with different quantum numbers. 

In this work our motivation is to  analyse such an extended gauge model in 

the Lagrangian and Hamiltonian formalisms, for they can provide important tests 
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of consistency. As it is well-know, any Hamiltonian formalism will not have i ts 

Lorentz covariance manifested due to  the fact that it is described in terms of 

just one od the components of the energy momentum tensor. Thus. it is worth 

understanding the general properties of the theory and, in particular, testing if the 

inclusion of different potential fields transforming as eq.(l) can be supported by 

the covariance of this extended model. 

Considering that a momentum-independent field reparametrization does not 

affect the S-matrix elements. we prefer to  rewrite the original field eq.(l) as 

- X , < N - ~ >  = A, - N, 

The fields defined through eq.(2) are called constructor fields. Although our 

concern is with the physical description, we will repeatedly make use of the 

constructor-field sector which easily intermediates the interplay between usual 

gauge theories and the kind of models studied in the text. 

The most general U(1)-gauge invariant Lagrangian obtained from eq.(2) is 

with 

where 
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The parameters a, b,, ..., are referred to  as free coefficients of the theory. 

However. in perturbation theory a physical particle is defined as the pole of the 

complete and renormalized two-point Green's function. Therefore. from the fact 

that eq.(3) naturally yields rnixed propagators. it happens that the physical fields. 

G:, are not trivially read off it. They are obtained as linear cornbinations of the 

constructor fields 

with 

U must be orthogonal. This rneans that eq.(4) preserves the number of inde- 

pendent fields given by eq.(l). The inverse matrix elements will be denoted by 
- 
" I J .  

Thus. the theory can be focused in terrns of two differents sets of variables; 

the former, described by the constructor fields 

set  I (D, Xa) r [ D p  Xpi, X~N-11 (6) 

and the latter, based on the physical fields 
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which is built up by N independent vectors with well-defined physical masses. 

Eqs. (6) and (7) are connected by the relationship 

Note from eqs.(5) and (8) the presence of new variables. the parameters U I J .  

This work is organized as follows. In section 2. the Lagrangian and Hamilto- 

nian formulations are studied for the Abelian U(1)-case and a discussion on the 

concept of symmetry constraints is presented. The degrees of freedom are exam- 

ined and counted in section 3. Then. in order to  control the dynamical variables, 

the notion of circumstances for the constraints becomes necessary. The 4 section 

is devoted to  the study of the Hamiltonian covariance. Finally. in section 5. as a 

physical consequence from the constraint considerations. an extended Gauss law 

is analysed from the Noether theorem. Our conclusions are stated in section 6. 
An appendix follows where the meaning of the free coefficients is better discussed. 

2. LAGRANGIAN AND HAMILTONIAN FORMALISMS 

The different field parametrizations that the theory provides to  analyse the 

same system yield the existence of Lagrangians with different functional depen- 

dentes on these respective fields 

and vice-versa. Although reference systems eqs.(6) and (7) are connected by sim- 

ple field transformations, eq.(8). it is propitious and necessary to  include some 

discussion about the fact that they describe the same physics. Take for example 

their respective equations of motion and consider the action functional correspond- 

ing to  eq.(6) 

Considering the minimum action principle. we get the following correspondence 

and 



Revlsta Brasllelra de Flslca, Vol. 18, no 4. 1988 

Eqs.(l l) and (12) exhibit the same content for both sectors. since reparametriza- 

tions do not alter on-shell information: if the referente system eq. (7) describes 

on-shell physical fields. then the constructor field D, and XE in eq.(6) will also 

be on-shell. Thus. one can argue that there is an initial consistency for choosing 

the physical set. eq.(7), to  organize the Lagrangian 

The cori-esponding canonically conjugate momenta are given by 
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Observe that eq.(18) shows that the system works with all fields contributing 

to  the dynamics of a particular field. These contributions are obtained from the 

kinetic and interaction terms. In this aspect, eq. (18) has a similarity with the 

case of scalar QED. However. in the Oatter. only compensating fields appear in the 

momenta of the scalar fields. 

The next purpose to  understand such an extended model regards i ts  con- 

sistency with the following topics: Lorentz covariance. equal-time commutation 

relations without conflicting covariance and a Hamiltonian formulation that satis- 

fies covariance. 

Lorentz covariance of the system. described by the Lagrangian density 

eq.(13), is immediatly verified by the facts that the equations of motion can be 

derived from an action principie and that eq.(13) is a Lorentz invariant functional 

of  the fields and their gradients. 

The second consistency topic can be verified now. Assuming that the original 

fields satisfy the fundamental Poisson brackets. we get the following relation for 

the constructor fields 

{l%a ( x ) ,  x ~ ( Y ) } ~ ~ +  = -60d"63(1 - 6 (19) 

with all other commutation relations vanishing. And then. let us express the 

conjugate momenta of the constructor fields in terms of the conjugate momenta 

of the physical fields 

11; = u ~ o r r &  (20) 

I I ~  za = u  ~anG, (21) 

Replacing eqs. (20) and (21) in eq.(19). and considering from eq.(18) that the 

canonical momentum of the time component is not generally zero. one notices that, 
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for the physical fields. the usual mismatch between the right- and left-hand sides 

of the equal time commutation relations is bypassed. Nevertheless. it is possible 

that the quanta associated to  each longitudinal part of  the physical fields risk 

creating states with negative norm. thus violating unitarity. The third purpose, a 

covariant Hamiltonian formulation. is left to  section 4. 

Since the theory has survived initial tests of consistency, let us follows the 

Dirac method quantization
g
. In order to  calculate the canonical Hamiltonian den- 

sity, U,. for the theory it is advantageous to  introduce the matrix notation 

where displays the N conjugated physical canonical momenta in a column 

vector. and C, D, E and F correspond to symmetric n x n matrices depending on 

the free coefíicients Cap, Fap, Eap. and Fap respectively. Then 
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where 

and 

However. it is necessary to  understand whether or not eq.(25) provides a 

unique Hamiltonian. Therefore, we have to analyse i ts singular nature. Since 

eq(13) appears as an extension of the usual Lagrangian with one potential field 

associated to  the same group, one would expect that it should contain, as bound- 

ary conditions. the initial paoperties of the common gauge model. Therefore. we 

make use of the intermediate constructor model where the correspondent time 

component of llg must still vanish weakly giving the prirnary constraint 

A1 = rI;(z) = o  (26) 

So we have the following correspondent formulation for the physical set 11: 
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Notice once more that. since eq.(27) characterizes the constraint due to  the pre- 

cence of more potential fields in the same group. it preserves the properties ob- 

tained for theories which include just one field. This means that, if the primary 

constraint is obtained for QED, then it should appear again in this U(1)-case with 

more fields. However, the difference in eq.(27) is that. although the constraint 

is preserved. it is not any longer associated to  a specific field. For this reason, 

eq.(27) should be called a symmetry constraint, just because it acts over the field 

system as a whole. Consequently. quantizing the system with this constraint will 

not in principle violate the covariance property of  the commutation relations in 

terms of physical fields. 

Requiring consistency of the primary constraint eq.(26) provides. in terms of 

the physical fields, the secondary constraint 

Constraints eqs.(27) and (28) are then also first class ones and the consistency 

conditions show that there are no other constraints. 

Considering that first class constraints are associated to  local gauge invari- 

ance. one should expect 

Generator = eld1 + €242 (29) 

where 41 is given by eq.(26) and #2 = aillb, generates the gauge transformation 

Thus, from the information obtained above through the sector I, and using eq.(8). 

we get 

G,I (4 - G,I (4 + uroaPa(4 (31) 

Relations eq.(30) or eq.(31) express here that the first class symmetry constraints 

are taking at most two degrees of freedom. However, they do not select what the 

particular physical field is which has i ts dynamical variables reduced by the gauge 

symmetry. Another information from these relations is about the gauge-fixing 

terrn. The existence of a single group provides only one gauge parameter. Thus 
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there is only one general expression for expressing such a gauge function parameter 

as a functional of the N-potential fields that are involved. 

Eqs.(27) and (28) indicate the presence of two auxiliary conditions to  quantize 

the system. Considering the Coulomb gauge, we have them given in terms of 

physical fields 

- o X J  = uOIGI z O (32) 

X4 = iOIt$ 5! o (33) 

Eqs. (30) and (31) are made compatible through the equation 

a o ~ r  = - A ~ ~ , G ;  = O (34) 

Thus. the Dirac bracket for the generalized radiation gauge is 

and all other combinations are equally zero. 

Finally we would observe that eq.(35) represents a Dirac parenthesis derived 

when the U(1) symmetry is considered as a source acting over all fields. Thus, 

we leave for sec. 3 a clear description of the Dirac bracket that is associated to  

each particular field. 

3. DEGREES OF FREEDOM 

A covariant formulation treats the components of a quadrivector without any 

distinction. Therefore, the mechanism that must select the non-physical degrees 

of freedom is fixed by the theory. Normally. arbitrary functions are identified 

through the canonical momenta and eliminated by a convenient choice of gauge. 

~owe;er such a localization is not immediate when more than one potential field 

is involved. The difference Iiere is that, although there o - '  "nly one parameter 

a(%) originated from the gauge group, the transforrnation is acting over N-fields. 

This means that at least one degree of frerdom is taken by the gauge symmetry, 

but the theory does not distinguish which is the potential field that suffers such 

a reduction in i ts degrees of freedom. 
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The presence of more potential fields in the same group yields more arbitrari- 

ness in the quantization programme. They are the symmetry and the circumstance 

constraints. The former is represented by the expressions (27) and (28). It gen- 

erates a gauge arbitrariness due the fact that they are first class constraints. and 

so, arbitrary variables can be fixed by fixing the gauge. Then. the contribution of 

such a first mode is just to  eliminate at least one degree of freedom from eq.(i3). 

However it does not indicate which field has i ts phase space reduced. Thus it is 

stiil necessary to  control the isolation of degrees of freefom (d.f.). Up to  now. 

we have understood that a gauge group transforming N-potential fields generates 

a minimum of ( 4 N  - 1) degrees of freedom. A procedure to systematize the 

d.f. localization is by splitting the canonical momenta eq.(18) in symmetric and 

an tisy mmetric pieces 

Observe that eq.(36) depends on free coeficients. This means that such coefi- 

cients may take any value without violating gauge invariance. From this property, 

the concept of  constraint of circumstances is developed. For instance. a field 

GPr will carry only transverse d.f. if. through a convenient choice of the free 
coeficients. llzf i s  taken to  be zero. 

Lagrangian eq.(13) is made of some momenta that are not independent vari- 

ables. This fact can be identified through the Hessian for the DF-sector. As we 

know, classicaly it means that the accelerations will not be uniquely determined by 

positions and velocities. However. such an extended model also contains another 

aspect about i ts singular nature to  be studied. This means considering the Jaco- 

bian of the transformation (q, q) -r (qlp) for each field separately. The specific 

constraint associated to  each potential field is determined through 

Ir" - a2 L" 
W c ~  - a(aoG,~)a(a*c,) 

Thus eq.(37) contains the meaning of identifying the existence of the so-called 

constraint of circumstances that involves each potential field. Through an engi- 

neering offered by the presence of such free caeficients, we can manipulate 
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Eq.(38) is referred to  as constraint of circumstance. For instance. in the case 

of the non-interacting U(1) case. the Hessian matrix eq.(37) for each G,I-field is 

given by 

Then note that it verifies eq.(38). The respective secondary constraint to  eq.(38) 

is determined by the consistency condition which gives 

eqs.(38) and (40) form a .second class constraint. Observe that eq.(40) already 

fixes Gy. Furthermore eq.(40) can also be restricted to  the QED-case (many 

photons) 

For this it is necessary to demonstrate the existence of transformations which 

are explicitly controlling such arbitrariness that some components of the quadrivec- 

tor G,I are carrying. For this test we will choose the radiation gauge. From 

eq.(31) one gets the existence of two parameters 

and 

that together with the equation 

V . G r  = O  (44) 

(satisfied for restricted situations) conduct the following transformation 

(G?, @)%(G,o = O, G:)fir(Gn,O = O, V .  G a l  = 0) (45) 

Thus, eq.(43) completes the sufFicient conditions for assuming the specific set of 

secondary constraints that each field can carry. The last two are 
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Consequently. the Dirac brackets are computed and the result is as already ex- 

pected 

I 

Thus. eq.(41) contains non-physical aspects to  be considered. Although these 

transformations provide just one gauge-fixing term that in principle should be in- 

volving all GPr fields. the theory contains more than one procedure for taking 

d.f. Considering that a necessary condition to  eliminate one d.f.is to  construct 

i ts correspondent constraint. this case where the gauge group is manifested by 

including more fields realizes that such task now can be organized by two qual- 

ities of  constraints. In the first one, equally to  QED, the symmetry constraint 

naturally eliminates the same nurnber of degrees of freedom. However it does not 

localize on each field such d.f. are subtracted. Nevertheless, the theory contains 

more information about i ts  spectrum to  be analysed. This means that it contains 

circumstances, relatively to  gauge invariance, that generate a second type of con- 

straint t o  be used. Eqs. (38) and (40). (47) and (48) are conditions for isolating 

the d.f. of each physical field. Note that they are not imrnediately connected. For 

instance. subtransformations as eq.(43) suffer restrictions as eq.(44). 

To conclude. we should stress that. depending on particular situations for 

the canonical variables. this model describes systerns of photons interacting with 

massive vector fields and scalar photons. photons along with massive vectors or 

simply N-interacting photons. 
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4. HAMILTONIAN COVARIANCE 

In order to prove that the proposed model is relativistically invariant, when 

expressed in the Hamiltonian form eq(25). we are going to follow (ref.4). For 

simplicity. the proof will be made in terms of the constructor fields. where the set 

of constraints is simpler and easier to manipulate. Thus the Hamiltonian is given 

by 

where 

with 

and 

Eq.(51) follows the second class set of constraints 

466 
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The proof of  covariance will be made in two stages. In the first one we will consider 

the equivalence between the canonical quantization method and the functional path 

integral for the Hamiltonian without the interaction term. In the second step, this 

equivalence is shown directly for the interaction term due the presence of a space- 

time derivative in LI eq.(3). 

So. considering that the functional phase space has redundant constrained 

paths. the functional integral of  departure is 

where 

n& P + n: P + nztp - ~ F r e e ]  (56) 

It is well-known4 that the presence of the genuine second class Ar in the 

rneasure through the 6-fusiction does not prevent us from constructing a manifestly 

relativistic functional integral. Since we have a Gaussian form for the IIZ we can 

immediately perform the integration. Similarly for the integration over II',. Then. 

one is left with 

where 
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with 

-b, = ( l / 2 a ) b t p  + (l/2a)bt/3-'(bbt - 4a(C - E))&P 
+ (B' + &Do) - 2bt/3-'(E + D)&P 

and - Cz = ?t (/3-'/4a)X' + X t  [(bbt  - 4a(C - E ) ) / ~ ] I ~ ; x ' +  

+ (1/4a)aiPt(bbt  - 4a(C - ~ ) ) / 3 - ' ( b b ~  - 4a(C - ~ ) ) a i p  

+ aiPtvaixO + 8, (59) 

Finally. integrating over TIL we get the expected result 

However. eq.(60) only demonstrates that the relativistic invariance is not lost for 

the free part. ln the case where the interaction term is switched on, with 

the functional covariance is proved through a general statement5. It requires that 

the field variables and momenta of HI must be written in terms of free variables. 

This prescription is analogous to  obtaining the transition amplitude in terms of 

Li~(a ,XFree , .X~~, , ) .  This equivalence is well known in terms of the functional 

generator 

Z [ J ]  =< OIT ezp -i [Ur (X&,,, II&,,) - j,x&,,] dz410 >= 

where f' is the covariant temporal ordering operator which accounts for the fact 

that the derivatives of the fields are not temporal time-ordered. 

Thus considering also the interaction Hamiltonian, HI. one gets 
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Eq.(63) shows that eq.(3), when expressed in Hamiltonian form. is relativistically 

invariant. A similar result can be obtained for a constraint H!$ = O. Considering 

the Jacobian o f  transformation for physical field is absorbed by the normalization 

constant. we finally obtain 

where L!' is given by eq.(13) 

5. AN EXTENDED GAUSS LAW 

The local Noether Theorem also provides information about the presence of 

constraints in a quantum field theory. It implies the three following independent 

equations to  supervise the theory 

a r  
1110 - = - J'" 

~ ~ ' " G V I  

and 

where J, is the current associated with the one parameter global U(1) phase 

invariance. Eq. (65) means a conservation law for the symmetry current. while 

in eq.(66) it appears as the source for the potential fields. However, through 

eq.(67). a U(1)-symmetry constraint emerges. Its strongest condition would be 

to cohsider that the fields GpI are not dynamical. Nevertheless. it is possible 

to weaken this condition by reading eq.(67) as an equation connecting different 
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fields. This condition would represent a constraint tietween the N-fields that are 

involved. 

On the other hand. the most interesting physical consequence to  which the 

local phase transformation leads is in the case eq.167) is weakened as 

Substituting eq.(67) in eq:(65) one gets 

where ZIpV1 is an antisymmetric tensor. Observe that eq.(69) represents a Gauss 

law in a covariant form. Its recognition as a constraint is due the fact that it is 

not originated from the equations of mstion but from gauge symmetry. Rewriting 

in terms of canonical momenta such an extended Gauss law is 

This. through an appropriate utilization of the gauge group, means assuming the 

possibiiity of introducing more than one potential field. the picture for the U(1)- 

constraint is enlarged. This means that we can surpass the common impression 

where the experimental Coulomb-Cavendish law is an obligation from gauge sym- 

metry. Eq.(70) shows the existence of a type of Gauss law but it does not 

necessarily imply the relation 

where I?! is  the Maxwell electric field. Eq. (71) is  only an equation of motion. 

As it is well-known. the gauss law has topologiçal implications, as it is sen- 

sitive to field configurations with non-trivial topology. For this reason, in i ts 

operational form it has the strong consequence of not allowing the spontaneous 

breaking of a gauge symmetry. However. whenever weakened by the condition of 

being valid only on the sector of physical states. the spontaneous breakdown of 

the local symmetry can take place. In our case. the inclusion of more potentials 

may circumstancially weaken the Gauss law in i ts original operatorial form and 
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this is a fact of direct consequence in the formal study of spontaneous breaking 

of an interna1 local symmetry. 

6. CONCLUSIONS 

The possibilities and consequences obtained from the transformations eq.(l) 

are under development. The strategy of this work was to  study physical situations 

such as constraints, degrees of freedom. Gauss law and Hamiltonian covariance 

through the classical field viewpoint. 

Reflecting that such an introduction of more potential fields is just an exten- 

sion t o  the usual case, it becomes intuitive to  expect that such new properties that 

are being built up must appear with boundary conditions to  the usual case. For 

instance. the velocity for the D,-sector does not change. Similarly. the discussion 

about theory constraints emerges. Then two types of constraints are developed. 

A first one. called symmetry constraint. represents the contact with the usual 

case. However. with the condition that it is not more acting over just one field. 

Thus. in order t o  isolate the dynamical variables of a given field. the theory was 

also able to provide a second type of constraint. It was called constraint of cir- 

cumstances. It is basically an engineering mechanism that the theory propitiates 

through the presence of free coeficients. This mechanism is a regulator for the 

dynamical variables associated to  each involved field. It breaks equal time com- 

mutation relations and requires the development of a Dirac bracket for each field 

separately. 

Another aspect to  control in this extended model is about the degrees of 

freedom. Eq.(39) shows that theory contains fields rotating with different weights 

uro but under the same parameter a(%). This means that there is just one gauge 

fixing. Thus symmetry takes at least one d.f. from eq.(13). This fact can also be 

observed through the Ward Identities. There. just one non-determined longitudinal 

d.f. is frozen. Therefore we notice again that the introduction of more fields 

respects the old situation, however globally. Thus the canonical momenta l lCI  
are not expected to  be naturally zero. For this, it is necessary to take into account 

the free coeffkients. This means that the theory contains only implicit information 

on how to  control ingredients as first class constraints and the auxiliary conditions 
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for specifying the d.f. Generally speaking, the spectrum contains a perspective of 

choice. 

A third test was to  verify consistency between the Hamiltonian and La- 

grangian formalisms. The Hamiltonian is not a Lorentz scalar, and this brings 

about the question of whether playing with the Lorentz group means only a bal- 

ance between covariant and cantravariant indices. Thus in order to get credibility 

with group theory arguments like pointing out the involved spin structure, such 

consistency was necessary. In this work instead of verifying the closure generators 

algebra we have followed the path integral procedure. Thus a minimum floor exists 

for possible physical interpretation from this extended model to  be assumed. 

Finally this work should be concluded by offering some context for debate. 

An axiomatic approach t o  defining Gauge Theories is t o  consider them as theories 

where the equation 

is obtained as a symmetry constraint. Thus the respective current conservation 

appears as an identity (F,, is the Maxwell-field strength). The strongest con- 

sequence from this context is that Coulomb's law contains has a non-dynamical 

origin. This means that gauge theories are generating such law as a definition. 

Our theme for the debate is that this strong compromise is not required. Con- 

sidering the viewpoint where the symmetry works as a source for transforming 

more than one field as eq.(39). the conclusion above may be surpassed. Eq.(70) 

reexamines this reflex between symmetry and Coulomb's law. 
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(Corretores de Seguros). through Dr. Michael Wyles, for invaluable financia1 help. 

APPENDIX 

This appendix is added in order to  make clearer the meaning of the free coeffi- 

cients. For this purpose we give the velocities for a model involving four potential 
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fields. For the sake of simplicity, symmetric field-strengths and interaction terms 

are avoided. 

The velocity corresponding to the final is 

ql) = U , , ~ D ~  + ~~~a + u 2 1 ~  + U 3 1 e  ( ~ 1 )  

with 

R22 = 2RllaaiX - RiJIb - 2aRiR11j + - R17C23 + 2R18C22 

+ RigC32 - 2R2oC33b2 - RziC(is)ba - 2a[C& + c&]n$ 
= IIia b3 - l l i s  b2 

R20 = II',, b2 - I I k a  bl 

Rlg = 2II$ b2b3 - IIiablb3 - IIi3 blbp  

RIS = 4 a ~ ~ ~ 1 í i ~  - Il',,(b3)2 + Il$blb3 

R17 = 4 a ~ ~ ~ n i l  - + IIiablb3 + II$blb2 

R16 = 4 a ~ ~ ~ l l $  - 4aC331& (b3)2 - llis b2b3 

R15 = 2 ~ 2 2 ~ : s  - ~ ( ~ ~ ) n i 1  
Rir = RizRi3 - &Rio + 4aC22Cdl - ~ T ~ ~ ) b i  

R13 = C(23)b3 - 2C33b2 

R12 = C(12) 

Ri1 = 2R4C12 + 2R6C21- 2R&l3 - 4R9C11- &[c;~ + C&] + R10C~lbl- 

- R3[C& + C&] - 4CzzC33b: + ( ~ ( 2 3 ) b l ) ~  

R10 = 2C22b3 - C(23)b2 

R9 = - &C22 + a(Ci3 + - G 2 b 2 b 3  + c33b2 
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with 
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and 

For the fields Giz), Gt3) a" G!,), the same linear combination as eq.(Al) 

are obtained by just changing the respective coeficients. 
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Resumo 

Dois tipos de vlnculos regulados pela invariância de gauge são identificados 
para sistemas envolvendo mais de um potencial vetor que se transformam sob 
um único grupo. São eles os vlnculos da simetria e da circunstância. Uma lei de 
Gauss estendida e a covariância do Hamiltoniano são também estudados. 


