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Abstract Two types of constraints regulated by gauge invariance are identified
for systems involving more than one potential field transforming under a single
group. They are the constraints of the symmetry and of the circumstances. An
extended Gauss law and the Hamiltonian covariance are also studied.

1. INTRODUCTION

Different aspects should be required in order to justify the possibility of in-
cluding more than one potential field in the same gauge group. it has already
been observed from arguments such as counting the number of degrees of free-
dom. Kaluza-Klein compactification® and supersymmetry with no conventional
constraints? that there are enough elements to allow the existence of gauge the-
ories which include N-potential fields transforming as

A, — AA,JF1 + z‘/gAa,,A“1
B, — AB“A‘1 -+ i/gAa,,A‘1
. (1)
D—
N, — AN,‘A‘1 +i/_qAa,‘A“1
where

A= eiw“t,

Eq.(1) means that the group parameters w®(z) specify transformations which act
on fields with different quantum numbers.

In this work our motivation is to analyse such an extended gauge model in
the Lagrangian and Hamiltonian formalisms, for they can provide important tests
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of consistency. As it is well-know, any Hamiltonian formalism wili not have its
Lorentz covariance manifested due to the fact that it is described in terms of
just one of the components of the energy momentum tensor. Thus. it is worth
understanding the general properties of the theory and, in particular, testingif the
inclusion of different potential fields transforming as eq.(1) can be supported by
the covariance of this extended model.

Considering that a momentum-independent field reparametrization does not
affect the S-matrix elements, we prefer to rewrite the original field eq.(1) as

Dy=A,+By+...+ N,
X“1=A“-—B“
: (2)

Xu<N—1> = A,, - Nu
The fields defined through eq.(2) are called constructor fields. Although our
concern is with the physical description, we will repeatedly make use of the
constructor-field sector which easily intermediates the interplay between usual
gauge theories and the kind of models studied in the text.
The most general U(1)-gauge invariant Lagrangian obtained from eq.(2) is

L= Likin + Lint. + LMass (3)

with
ACKin. = ﬁSym. + £Ant.

where

Lant. = a|(8,D,)% - 8,D,8" D¥] + b,[(8,D, — 8,D,)"* X**]
+ Clapy |0, X3 (3" XP — 8V XMP)]

Lsym. = D(ap)OuX;0*X*? + E(ap)8u XS 8" XP* + Fiap) (9 - X)*(3 - X)°
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Lint. = Gapy(9,X,*) XPP XY + bapy (3 X)*XEX¥T + Coapys X, X P X*T X¥°

and
£Mau = 1/2M3ﬁX“a . XB“

The parameters a,p ...,Capys are referred to as free coefficients of the theory.
However. in perturbation theory a physical particle is defined as the pole of the
complete and renormalized two-point Green's function. Therefore. from the fact
that eq.(3) naturally yields rnixed propagators. it happens that the physical fields.
G{,, are not trivially read off it. They are obtained as linear cornbinations of the
constructor fields

(GL Dy
G? Xy
o= 7T (4
{ Gﬁ, X'(‘N—l)
with ' '
(“10 Uy ... “L(N-—l)\
Uzp Y21 ... Uy(N-1)
U=| | ()
\UNO UN1T ... UN(N-1)

U must be orthogonal. This rneans that eq.(4) preserves the number of inde-
pendent fields given by eq.(1). The inverse matrix elements will be denoted by
i,

Thus. the theory can be focused in terrns of two differents sets of variables;
the former, described by the constructor fields

set I (D, X,) =Dy X1, r Xun—1] (6)

and the latter, based on the physical fields

set I1 (G]) = (G;;l,GuZa--')GuN] (7)
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which is built up by N independent vectors with well-defined physical masses.
Egs. (6) and (7) are connected by the relationship

Gp! = uIODn + u;aX“" (8)

Note from egs.{5) and (8) the presence of new variables. the parameters ur ;.
This work is organized as follows. In section 2, the Lagrangian and Hamilto-
nian formulations are studied for the Abelian U{1)-case and a discussion on the
concept of symmetry constraints is presented. The degrees of freedom are exam-
ined and counted in section 3. Then. in order to control the dynamical variables,
the notion of circumstances for the constraints becomes necessary. The 4 section
is devoted to the study of the Hamiltonian covariance. Finally, in section 5. as a
physical consequence from the constraint considerations. an extended Gauss law
is analysed from the Noether theorem. Our conclusions are stated in section 6.
An appendix follows where the meaning of the free coefficients is better discussed.

2. LAGRANGIAN AND HAMILTONIAN FORMALISMS

The different field parametrizations that the theory provides to analyse the
same system yield the existence of Lagrangians with different functional depen-
dentes on these respective fields

£(D; Xa) = L'(G1(D; Xa)) (9

and vice-versa. Although reference systems egs.(6) and (7) are connected by sim-
ple field transformations, eq.(8). it is propitious and necessary to include some
discussion about the fact that they describe the same physics. Take for example
their respective equations of motion and consider the action functional correspond-
ing to eq.(6)

S = / d2* £[ Dy (2), 3, Dy(x); X2 (2), 80 X2(2)] (10)

Considering the minimum action principle. we get the following correspondence

aL oL . AL az']___o

a“a(a,,D,,) Tep, [a“a(a,‘a{,) T 3G! (11)

and
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3 (12)

Egs.(11) and (12) exhibit the same content for both sectors. since reparametriza-

al L aL aL'
- = ul [3 - ] =0
" (0.Xa)  0,X=  “=l°*3(3,GI) ~ 3G

tions do not alter on-shell information: if the reference system eq. (7) describes
on-shell physical fields, then the constructor field D and X2 in eq.(6) will also
be on-shell. Thus. one can argue that there is an initial consistency for choosing
the physical set. eq.(7), to organize the Lagrangian

£I(GI) = BIA"" + ‘c's!l'n- + Ac,Mau + £,Int. (13)
where
£,Ant. = ai-lOIt;oJ [3“G{,3"G"J — a“Gl!’aUGJ“]
+ b“aOIan [a#G{i - auG‘I‘] B“G""
ca-f I vJ v J
+ Clap)tr ¥; [aI"GV (#G¥7 - G* )] (14)
L' sym. = D(apyuy 79,GL3C*” + E(apyiy uy8,GL5" G
+ F(aﬁ)&‘;&';aycl‘faugv! (15)
and
L' Mass = 1/2{‘7;§M33G{‘G“" (.16)

The corresponding canonically conjugate momenta are given by

" . -
% = uek [2au01(80G£ -8,G"%) + bauj(aogz _ 32.1)]

+ 5 lphax [batto;(8°GE — 8,G°T) + Cap) u5(8°G] — 8,6°7)
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—a -8 "
+ 7 [D(ap) G} + E(ap) 8,67 +2F(ap)8,G* b0, |

+ Gapq ity un GOTGPL + bag i iul 6°GLGHE (18)

Observe that eq.(18) shows that the system works with all fields contributing
to the dynamics of a particular field. These contributions are obtained from the
kinetic and interaction terms. In this aspect, eq. (18) has a similarity with the
case of scalar QED. However. in the fatter, only compensating fields appear in the
momenta of the scalar fields.

The next purpose to understand such an extended model regards its con-
sistency with the following topics: Lorentz covariance. equal-time commutation
relations without conflicting covariance and a Hamiltonian formulation that satis-
fies covariance.

Lorentz covariance of the system. described by the Lagrangian density
eq.(13), is immediatly verified by the facts that the equations of motion can be
derived from an action principle and that eq.(13) is a Lorentz invariant functional
of the fields and their gradients.

The second consistency topic can be verified now. Assuming that the original
fields satisfy the fundamental Poisson brackets. we get the following relation for
the constructor fields

{5 (=), D ()} 4o yo = —8L6°(Z~ )

{112 (2), X5(9)} oo = —0as6™6%(% - §) (19)
with ali other commutation relations vanishing. And then. let us express the
conjugate momenta of the constructor fields in terms of the conjugate momenta
of the physical fields

Hg = uml'Ig, (20)
¥, = ulallg, (21)

Replacing egs. (20) and {21) in eq.(19). and considering from eq.(18)} that the
canonical momentum of the time component is not generally zero. one notices that,
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for the physical fields. the usual mismatch between the right- and left-hand sides
of the equal time commutation relations is bypassed. Nevertheless. it is possible
that the quanta associated to each longitudinal part of the physical fields risk
creating states with negative norm. thus violating unitarity. The third purpose, a
covariant Hamiltonian formulation. is left to section 4.

Since the theory has survived initial tests of consistency, let us follows the
Dirac method quantizationg. In order to calculate the canonical Hamiltonian den-
sity, X.. for the theory it is advantageous to introduce the matrix notation

I, Gt

1%, fels

>3 2

g, GY
by
b2

b=1 . |; B = bb* — 4a(C + D) (24)

by

where II%, displays the N conjugated physical canonical momenta in a column
vector. and C, D, E and F correspond to symmetric n X n matrices depending on
the free coefficients Cyp, Fap, Eqp. and F,g respectively. Then

¥, = alIEU' 81U, — AU’ B~ 0Ur oIl — TIAU' =2 (b8 — 4a(C — E))U'%8,G°
+ [ 1/4a( = 1+ 87 20) UroUso) N ~ N UroU103: G°
+ 20U bt B~ Y(E + D)T'3;,G° + 1/4N%U'(D + E + F)~1U'T%
+ 8GO0 nU'3,G° + 8,G*U" F(D + E + F)~'FU'3,G

+ YU (D + E+ F)~'FU'8,G° + 9 + A
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where
- _ﬁ_ .
X = u;'u._,u}{{ - GOI[(aap., + bapy )G GOK + ba,g.,G{G‘K]
— Gapy [G* GG + 3;G% G GHT] 4 8apy8:GY G, 1G% }
+ Capysuis bou g GLGL G GHE GVL
and

B0 = (g0, (8iG3°G? — 8iGIG)] + baty uy,0°G7(3:G] - 8,;G])
+ Clap)u 170 GL(F G — 39GH) + Dyup)usi70:GLI G
+ E(apyur *u3”8;GL37 G + Flapyur *u;?8,G'1 8,677
+ (D + E)(ap)uiut3:G18° G + 1/2ufuf M2, GLGHY (25)

However. it is necessary to understand whether or not eq.(25) provides a
unique Hamiltonian. Therefore, we have to analyse its singular nature. Since
eq.{13) appears as an extension of the usual Lagrangian with one potential field
associated to the same group, one would expect that it should contain, as bound-
ary conditions. the initial paoperties of the common gauge model. Therefore. we
make use of the intermediate constructor model where the correspondent time
component of IT%, must still vanish weakly giving the prirnary constraint

A =T%(z) ~0 (26)

So we have the following correspondent formulation for the physical set {i:

Al = UOIH%’ ~0 (27)
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Notice once more that. since eq.{27) characterizes the constraint due to the pre-
cence of more potential fields in the same group. it preserves the properties ob-
tained for theories which include just one field. This means that, if the primary
constraint is obtained for QED, then it should appear again in this U(1)-case with
more fields. However, the difference in eq.(27) is that. although the constraint
is preserved. it is not any longer associated to a specific field. For this reason,
q.(27) should be called a symmetry constraint, just because it acts over the field
system as a whole. Consequently. quantizing the system with this constraint will
not in principle violate the covariance property of the commutation relations in
terms of physical fields.

Requiring consistency of the primary constraint eq.(26) provides. in terms of
the physical fields, the secondary constraint

/\2 = u;oa.-II"G, ~0 (28)

Constraints egs.(27) and (28) are then also first class ones and the consistency
conditions show that there are no other constraints.

Considering that first class constraints are associated to local gauge invari-
ance, one should expect

Generator = €141 T ea¢2 (29)

where @, is given by eq.(26) and ¢, = 8;1I%,, generates the gauge transformation

Dy(z) — Dulz) + duc(z) (30)

Thus, from the information obtained above through the sector I, and using eq.(8).
we get
Gur(z) — Gur(z) + vr09,a(2) (31)

Relations eq.(30) or eq.(31) express here that the first class symmetry constraints
are taking at most two degrees of freedom. However, they do not select what the
particular physical field is which has its dynamical variables reduced by the gauge
symmetry. Another information from these relations is about the gauge-fixing
terrn. The existence of a single group provides only one gauge parameter. Thus
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there is only one general expression for expressing such a gauge function parameter
as a functional of the N-potential fields that are involved.

Egs.(27) and (28) indicate the presence of two auxiliary conditions to quantize
the system. Considering the Coulomb gauge, we have them given in terms of
physical fields

Az =1, G¥~0 (32)
i =uy; Gy ~0 (33)

Egs. (30) and (31) are made compatible through the equation

8ods = —Aup Gy ~0 (34)

Thus. the Dirac bracket for the generalized radiation gauge is

> dnotsn{ Gurle T, ()" = (6 = ¢°0")6%(e —0) + 20 gz (89)

and all other combinations are equally zero.

Finally we would observe that eq.(35) represents a Dirac parenthesis derived
when the U(1) symmetry is considered as a source acting over all fields. Thus,
we leave for sec. 3 a clear description of the Dirac bracket that is associated to
each particular field.

3. DEGREES OF FREEDOM

A covariant formulation treats the components of a quadrivector without any
distinction. Therefore, the mechanism that must select the non-physical degrees
of freedom is fixed by the theory. Normally. arbitrary functions are identified
through the canonical momenta and eliminated by a convenient choice of gauge.
However such a localization is not immediate when more than one potential field
is involved. The difference liere is that, although there #°  ~nly one parameter
o(z) originated from the gauge group, the transforination is acting over N-fields.
This means that at least one degree of frerdom is taken by the gauge symmetry,
but the theory does not distinguish which is the potential field that suffers such
a reduction in its degrees of freedom.
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The presence of more potential fields in the same group yields more arbitrari-
nessin the quantization programme. They are the symmetry and the circumstance
constraints. The former is represented by the expressions (27) and (28). It gen-
erates a gauge arbitrariness due the fact that they are first class constraints. and
so, arbitrary variables can be fixed by fixing the gauge. Then. the contribution of
such a first mode is just to eliminate at least one degree of freedom from eq.(13).
However it does not indicate which field has its phase space reduced. Thus it is
still necessary to control the isolation of degrees of freefom (d.f.). Up to now.
we have understood that a gauge group transforming N-potential fields generates
a minimum of (4N — 1) degrees of freedom. A procedure to systematize the
d.f. localization is by splitting the canonical momenta eq.{18) in symmetric and
antisymmetric pieces

A S
g, = gy +Mg; (36)

Observe that eq.(36) depends on free coefficients. This means that such coeffi-
cients may take any value without violating gauge invariance. From this property,
the concept of constraint of circumstances is developed. For instance. a field
G 1 will carry only transverse d.f. if. through a convenient choice of the free
coefficients, I is taken to be zero.

Lagrangian eq.(13) is made of some momenta that are not independent vari-
ables. This fact can be identified through the Hessian for the D,-sector. As we
know, classicaly it means that the accelerations will not be uniquely determined by
positions and velocities. However. such an extended model also contains another
aspect about its singular nature to be studied. This means considering the Jaco-
bian of the transformation (g, g9 — (g, p) for each field separately. The specific
constraint associated to each potential field is determined through

32 ﬂl

HE 37
Wi Z 3065Gu1)2(3:Cot) (37)

Thus eq.(37) contains the meaning of identifying the existence of the so-called

constraint of circumstances that involves each potential field. Through an engi-
neering offered by the presence of such free coefficients, we can manipulate

Iy =%, ~0 (38)
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Eq.(38) is referred to as constraint of circumstance. For instance. in the case
of the non-interacting U(1) case. the Hessian matrix eq.(37) for each G -field is
given by

W = ¢ — ¢°¢"° (39)

Then note that it verifies eq.(38). The respective secondary constraint to eq.(38)
is determined by the consistency condition which gives

Ay = 2(&iT05, — C61,06%) — MPGoy =0 (40)

eqs.(38) and (40) form a second class constraint. Observe that eq.(40) already

fixes G9. Furthermore eq.(40) can also be restricted to the QED-case (many

photons)
Ts =8I, ~0 (41)

For this it is necessary to demonstrate the existence of transformations which
are explicitly controlling such arbitrariness that some components of the quadrivec-
tor Gy are carrying. For this test we will choose the radiation gauge. From
eq.(31) one gets the existence of two parameters

Ap=—[ dtG? (42)

and
A= /dy3—$—_-;-€7,,af(z°;z) (43)

that together with the equation
V-G;=0 (44)
(satisfied for restricted situations) conduct the following transformation

(62,6956 =0 G1) 25679 =0, -G, = 0) (45)

Thus, eq.(43) completes the sufficient conditions for assuming the specific set of
secondary constraints that each field can carry. The last two are
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[3=G?=~0 (48)

and

Consequently. the Dirac brackets are computed and the result is as already ex-

pected
{Me@),ar0)} = @ - )G + 0 s (49)
and ) .
{N6,(2). 6, (0)} = {G1la), G1(0)} =0 (49)

Thus. eq.(41) contains non-physical aspects to be considered. Although these
transformations provide just one gauge-fixing term that in principle should be in-
volving all G, fields. the theory contains more than one procedure for taking
d.f. Considering that a necessary condition to eliminate one d.f.is to construct
its correspondent constraint. this case where the gauge group is manifested by
including more fields realizes that such task now can be organized by two qual-
ities of constraints. In the first one, equally to QED, the symmetry constraint
naturally eliminates the same nurnber of degrees of freedom. However it does not
localize on each field such d.f. are subtracted. Nevertheless, the theory contains
more information about its spectrum to be analysed. This means that it contains
circumstances, relatively to gauge invariance, that generate a second type of con-
straint to be used. Egs. (38) and (40). (47) and (48) are conditions for isolating
the d.f. of each physical field. Note that they are not imrnediately connected. For
instance. subtransformations as eq.(43) suffer restrictions as eq.(44).

To conclude. we should stress that. depending on particular situations for
the canonical variables. this model describes systerns of photons interacting with
massive vector fields and scalar photons. photons along with massive vectors or
simply N-interacting photons.
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4. HAMILTONIAN COVARIANCE

In order to prove that the proposed model is relativistically invariant, when
expressed in the Hamiltonian form eq(25), we are going to follow (ref.4}. For
simplicity. the proof will be made in terms of the constructor fields. where the set
of constraintsis simpler and easier to manipulate. Thus the Hamiltonian is given

by

XC = }(Free + XI (50)
where
Hpree = allif g 1IE — I B 10TIE, + (1/4a)115 (— 1 + 6P 4~ 1B) 1T,
+ (/4% (D+ E+ F) ' —11%(D + E+ F) 'Fa, X
~ T 8~1 (bb* — 4a(C — E))3;X° — 15,3, D°
+(3:X*)![F(D + E+ F)'Fla;x*
+ 256 87 (E + D)3; X° — 8, — 8; X% 8, X° (51)

with

n = —4a(e ~ D)Bb6*8Y(E + D) + 2(bb* — 4a(C — E))B~*bb*~*(E + D)+
— 2bb'8~Y(E + D) - (bb* — 4a(C — E))B~*(C + D)8~} (bb* - 4a(C — E))+
+ 2(bd* — 4a(C - E))B~*(C - E) - (C - D) (52)

and

8, = [8:D;8' D’ — 8;D;8° D*] + b, [8° X7 (8: D; — 8;D;)]
+ 8 XLC(0° XY — ¥ X¥) + 8; X1 DI* X7
+&XIEF X' + 8; X" F3;X7 + 8; X} (D + E)o'X* (53)
Eq.(51) follows the second class set of constraints
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M=0%=~0

A = &I, ~0

ds=D°=~0

A=8D ~0 (54)

The proof of covariance will be made in two stages. In the first one we will consider
the equivalence between the canonical quantization method and the functional path
integral for the Hamiltonian without the interaction term. In the second step, this
equivalence is shown directly for the interaction term due the presence of a space-
time derivative in £y eq.(3).

So. considering that the functional phase space has redundant constrained
paths. the functional integral of departure is

4
< out|Slin >= / TI T 0DuDX,DTEDIE, det |8:8:6° (- )|6(Aa)e™S (55)

z u=0

where
S= / dz* [n;',f)" + X+ X = Npree (56)

It is well-known* that the presence of the genuine second class A4 in the
rneasure through the é-fuaction does not prevent us from constructing a manifestly
relativistic functional integral. Since we have a Gaussian form for the IIS we can
immediately perform the integration. Similarly for the integration over II%,. Then.
one is left with

4
< out|Slin >= / II II 2DuDX,e*5'6(0) det|3:0:6%(% — 9|01, (57)

z pu=0

where
S = —4 / dzt[1/2115 (~1/2a) 11, + Bpllp + Ca) (58)
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with

—by = (1/2a)0*X* T (1/2a)6* 81 (bb* — 4a(C - E))8; X°
+ (D' + 8, D°) - 288~ Y(E + D)3; X°
and - C2 = X* (871 /4a) X* + X** [(bb' — 44(C - E))/a]3: X°+
+ (1/40)3; X%t (bb* — 44(C — E))B~*(bb* - 4a(C - E))3;X°
+8;X%n3; X° + 9, (59)

Finally, integrating over IT%, we get the expected result

< out{Slin >= /H fI DD,‘DX,‘S(M)e"fdx‘nK""' (60)

z pu=0
However. eq.(60) only demonstrates that the relativistic invariance is not lost for
the free part. In the case where the interaction term is switched on, with

ﬁI(XFree: XFree) = Xoa(aaﬁ'y + baﬁq)XOpXO7 + baﬂ'yx"ﬁxi’y)
+ Gapy | — X% XOPXT 4 (8,X0%) X XOT + (8, X;)* X X77]
+ bapy i XU XEX + Capys X0 X5, XM X (61)

the functional covariance is proved through a general statement®. It requires that
the field variables and momenta of Hy must be written in terms of free variables.
This prescription is analogous to obtaining the transition amplitude in terms of
L1(8,XFree; Xrpree). This equivalence is well known in terms of the functional
generator

Z[J] =< OITC:EP _i [)(! (Xgreeﬁng'ree) - .70! gree]dzﬂo >=
=< OITCQP‘/ [‘CI (XFTCG’ X?‘rce) + jaX?'ree]dz“[O > (62)
where T is the covariant temporal ordering operator which accounts for the fact

that the derivatives of the fields are not temporal time-ordered.
Thus considering also the interaction Hamiltonian, H;, one gets
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4 v a
< out|Slin >= ,A/'/ H H DD“DX,‘5(A4)G"ICrarf-ﬂ(X,,u,(X,,u))dz‘
z pu=0
(63)

Eq.(63) shows that eq.(3), when expressed in Hamiltonian form, is relativistically
invariant. A similar result can be obtained for a constraint 1%, = 0. Considering
the Jacobian of transformation for physical field is absorbed by the normalization
constant. we finally obtain

4 N
< out|S|in >= /H H H DG,‘15(1-1103iG})0€fdz£ (64)

z u=0I5=0

where LI is given by eq.(13)

5. AN EXTENDED GAUSS LAW

The local Noether Theorem also provides information about the presence of
constraints in a quantum field theory. It implies the three following independent
equations to supervise the theory

3, J* =0 (65)
aﬁ' —_
Uro aa“Gy[ - J (66)
and
aL'
= 6
955.Gor 0 (67)

where Jy is the current associated with the one parameter global U(1) phase
invariance. Eq. (65) means a conservation law for the symmetry current. while
in eq.(66) it appears as the source for the potential fields. However, through
eq.(67). a U(1)-symmetry constraint emerges. Its strongest condition would be
to consider that the fields G,y are not dynamical. Nevertheless. it is possible
to weaken this condition by reading eq.(67) as an equation connecting different
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fields. This condition would represent a constraint between the N-fields that are
involved.
On the other hand. the most interesting physical consequence to which the
local phase transformation leads is in the case eq.(67) is weakened as
ar
—3,9 =0 68
w05 g Ondvele) (68)

Substituting eq.(67) in eq.(65) one gets

a“Z{uu] =J, (69)

where Zj,,, is an antisymmetric tensor. Observe that eq.(69) represents a Gauss
law in a covariant form. Its recognition as a constraint is due the fact that it is
not originated from the equations of mstion but from gauge symmetry. Rewriting
in terms of canonical momenta such an extended Gauss law is

u;oa;H‘G’ =0 (70)

This. through an appropriate utilization of the gauge group, means assuming the
possibiiity of introducing more than one potential field. the picture for the U(1)-
constraint is enlarged. This means that we can surpass the common impression
where the experimental Coulomb-Cavendish law is an obligation from gauge sym-
metry. Eq.(70) shows the existence of a type of Gauss law but it does not
necessarily imply the relation

V- E=p (71)

where E is the Maxwell electric field. Eq. (71) is only an equation of motion.
As it is well-known. the gauss law has topologigal implications, as it is sen-
sitive to field configurations with non-trivial topology. For this reason, in its
operational form it has the strong consequence of not allowing the spontaneous
breaking of a gauge symmetry. However. whenever weakened by the condition of
being valid only on the sector of physical states. the spontaneous breakdown of
the local symmetry can take place. In our case. the inclusion of more potentials
may circumstancially weaken the Gauss law in its original operatorial form and
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this is a fact of direct consequencein the formal study of spontaneous breaking
of an internal focal symmetry.

6. CONCLUSIONS

The possibilities and consequences obtained from the transformations eq.(1)
are under development. The strategy of this work was to study physical situations
such as constraints, degrees of freedom. Gauss law and Hamiltonian covariance
through the classical field viewpoint.

Reflecting that such an introduction of more potential fields is just an exten-
sion to the usual case, it becomesintuitive to expect that such new properties that
are being built up must appear with boundary conditions to the usual case. For
instance. the velocity for the D,-sector does not change. Similarly, the discussion
about theory constraints emerges. Then two types of constraints are developed.
A first one. called symmetry constraint. represents the contact with the usual
case. However. with the condition that it is not more acting over just one field.
Thus. in order to isolate the dynamical variables of a given field, the theory was
also able to provide a second type of constraint. It was called constraint of cir-
cumstances. It is basically an engineering mechanism that the theory propitiates
through the presence of free coefficients. This mechanism is a regulator for the
dynamical variables associated to each involved field. It breaks equal time com-
mutation relations and requires the development of a Dirac bracket for each field
separately.

Another aspect to control in this extended model is about the degrees of
freedom. Eq.(39) shows that theory contains fields rotating with different weights
uro but under the same parameter a(z). This means that there is just one gauge
fixing. Thus symmetry takes at least one d.f. from eq.(13). This fact can also be
observed through the Ward ldentities. There. just one non-determined longitudinal
d.f. is frozen. Therefore we notice again that the introduction of more fields
respects the old situation, however globally. Thus the canonical momenta IT%,
are not expected to be naturally zero. For this, itis necessary to take into account
the free coefficients. This means that the theory contains only implicit information
on how to control ingredients as first class constraints and the auxiliary conditions
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for specifying the d.f. Generally speaking, the spectrum contains a perspective of
choice.

A third test was to verify consistency between the Hamiltonian and La-
grangian formalisms. The Hamiltonian is not a Lorentz scalar, and this brings
about the question of whether playing with the Lorentz group means only a bal-
ance between covariant and cantravariant indices. Thus in order to get credibility
with group theory arguments like pointing out the involved spin structure, such
consistency was necessary. In this work instead of verifying the closure generators
algebra we have followed the path integral procedure. Thus a minimum floor exists
for possible physical interpretation from this extended model to be assumed.

Finally this work should be concluded by offering some context for debate.
An axiomatic approach to defining Gauge Theories is to consider them as theories
where the equation

BuF™ = 5 (72)

is obtained as a symmetry constraint. Thus the respective current conservation
appears as an identity (F,, is the Maxwell-field strength). The strongest con-
sequence from this context is that Coulomb's law contains has a non-dynamical
origin. This means that gauge theories are generating such law as a definition.
Our theme for the debate is that this strong compromise is not required. Con-
sidering the viewpoint where the symmetry works as a source for transforming
more than one field as eq.(39), the conclusion above may be surpassed. Eq.{70)
reexamines this reflex between symmetry and Coulomb's law.
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about section 4. Thanks are also due to the Brazilian Council for Scientific and
Technological Development (CNPq) for our fellowships. We are also very grat-
iful to the Coca-cola of Brazil, through Sonia Barreto, and Johnson & Higgins
(Corretores de Seguros). through Dr. Michael Wyles, for invaluable financial help.

APPENDIX

This appendix is added in order to make clearer the meaning of the free coeffi-
cients. For this purpose we give the velocities for a model involving four potential
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fields. For the sake of simplicity, symmetric field-strengths and interaction terms
are avoided.
The velocity corresponding to the final Gz'l) is

Giyy = wor DF Fun Xy tup X5 tus X3 (A1)
where
X} = (—Ra)/(2aR11)
with

Roz = 2R11a8; X0 — Ry, I1% — 2aR1Rys T R16C(12) — R11C2a + 2R15C22
+ R19C32 — 2R20C33by — R21C(13)ba — 2a[C2, + CZ,IL,
Ry =TI ;b3 - TILsb,
Roo =114 b, — TILa by
Ryg = 21T bobs — Miaby by — Mibyby
Ris = 4aCsalliy — T, (b3)2 T 1%, bybs
Ry7 = 4aCsI1%, — 21051 b2bs + 1T, by bg + 1.4 byb,
Rie = 4aCosIlls — 4aC33lTa (bs)2 — IT 4 bobs
Rys = 2C5,ITLs — C(zs)niz
Rir = RizRys — RiR1o t4aC23Ca3bs — Clygyb
Ry3 = C(23)bs — 2C33b;
Ri2 =C12)
Ryy = 2RsCia T 2RsCyy — 2R1C1s — 4RoC1y — Re[C2y T G2y} T B1oCiib1 -
~ Ry|C%, + C2)] - 4C3,C33b% + (Cagyh1)?
R1o = 2C23b3 — C23)b2
Ry = RsCa3 — RyCaa T a[C2; T C3;] — Cazbabs T Casb?
Rg = 2aC35 — babs
R7 = ReC31 ~ 2C22b1b3 + Ca3)b1 b2
B = 4aCyy — b2
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Rg = RyRa — 0(23)6163 + 2Ca3b1by

R4 = Ry Ry — R3C31 — C(23)b1b3 + 2Casb1by
Rs = 4aCs3 — b2

R; = 2aC(23) — babs

Ry =C13)

X; = (~526)/ (2351,

with

Sz6 = 2a81,8; X3 — S1711%, + 2a818C31 + S10C(12) — 2a520C13
—282,C11 — 40832011 — S23C(13) + 2524C33by — S25C(23) b1+
— 2aC3,I1E,

Szp = IE.bs — ITL3by

Sz4 =TIE by — ITE2by

83 = Miabobs — 215abibs + Isbybo

S22 = Ca,llis — 2C351T%,

Sz1 = 2aCpsllLs + IL2b% — T, bobs

820 = 2C31 1L — Clag)ILis

Sio = 2aC15)IT,s — 460331 + TIEs (b3)? — T3 bibs

Sig = S1ellLs — Ca1llis

S17 = 512813 — 514513 — 2815C11 + S16Ca161 — [C(19)]°b2

S16 = C(23)

815 = C(23)bs — 2C33bs

S14 = 2C31b3 — 2C(29)b1

S13 = Caa)bs — Cssbs

812 = Cl1g)

11 = 28,Cy2 + 2855C31 — 257C1s — 456C11 — S6|C2 + C]
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with

+2510Ca1b1 — S3[C%, + C2,] — 4C22C35(61)* + [Clasyba)?

S10 = 2C2bs — C(a3)ba

Sy = S5Ca3 — S3Caz + a[C2y + C%,] — Cazbabs + Cs3b3
Sg = 2aC32 — babs

Sy = S¢C31 — 2C22b1b3 + C(23)b1b2

Se = 4aCp3 — by

Sg = 8152 — C{23)b1b3 + 2C33b1 b3

84 = 85182 — §3C21 — C(23)b1bs + 2Cs3b1 b2

Sy = 4aCss — b2

Sz = 2aC33) — b2bs

S1 = Cas)

X§ = (-Ts)/(2aT11)

Tps = 2aT118: X3 + T14Ilp + 2aT16Ca1 — 20T17C'§2 —T15C13
+ 2T10C11 — T20C(21) — T21C(33)b1 + 2T22C322b1 — 2aCH, 15,
Typ = I, bg — L5y
Ty = I ,by — IS5
Tyo = L1 bobs + I 20y bg — 21155162
Tio = 4aCaollis — 2aC(35)TIL; + I bl bs — T35 53
Tyis = 4aCoI1t 1 bs — IIE, (b2)% + L2 byds
Tyr= 202, T1%, — ClagTLs — Cas)Iia
Tie = Tis — O 1145 o
Tis = Cuz)lhs + CiogILs
Ti4 = T12C12 — T13C21 — 2T10C11 + [CZ; + C3ybs + 2C(13)Cazby
T3 = C1a)bz + Clag)b1

475



Revlsta Bradlelra de Frsica, Vol. 18, n? 4, 1988

Ti2 = 2C21bs — C(y3)b2 ~ C(a3)b1
Ty1 = 2T4C12 + 2T5Cay - 2T7C13 — 4ToC11 — T6[Cls + C3y)
+2T10C31by — Ts[CF; + C51] — 4C22Ca3b] + [C5 + C3,b7

Tio = 2C22b3 — C23)b2

Ty = T3Caa — TsC32 + a|C2, + CZ;] — Cagbgbs + Casb®

Ts = 2aCso — babs

Ty = TeCay — 2Ca2b1bs + Ca3)b1b

Ts = 4aCyp — by

Ty = Ty T; — Cas)bibs + 2Casbib

Ty = ThT> — T3C31 — C(23)b1bs — 2C33b1b2

Ts = 4aCss — b2

T; = 2aC(23) — bbs

T1 = C13)

and

D= —[2a8; D° + I}, + b1(X1 +8:;X7) + bz(xz +8;X3) + b3(X3 + 8:X3)]

For the fields G‘@,G:s) and G‘m, the same linear combination as eq.(A1)
are obtained by just changing the respective coefficients.
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Resumo

Dois tipos de vinculos regulados pela invaridncia de gauge sdo identificados
para sistemas envolvendo mais de um potencial vetor que se transformam sob
um Unico grupo. S&o eles os vinculos da simetria e da circunstancia. Uma lei de
Gauss estendida e a covariancia do Hamiltoniano sdo também estudados.
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