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Abstract The flux of cosmic ray protons is calculated in therealdomain.
We discuss the precision of the saddle point method up to the second de-
rivative applied to this problem.

1. INTRODUCTION

The majority of primary cosmic ray particles are known to be
protons. Their behaviour takes a leading part in cosmic ray propagation
in the atmosphere.

The energy spectrum of protons can be calculated by means of the

Mellin transformation and its inversel' as
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n(Eo,E’,t) is the probability that a primary proton of energy FE, falls
down to the atmospheric depth t where it has the energy E. A and X stand
for, respectively, the constant collision mean free path and the inelas-
ticity of protons.

In this paper, we calculate the proton flux in the real domain
so that we can compute the numerical values exactly ateverystage of cal-

culation.

2. CALCULATION OF PROTON FLUX

We calculate the energy spectrum of protons n(,,E,t), assuming
that:

a) the primary cosmic rays are all protons;

261



Revista Brasileira de Fisica, Vol. 18, n? 2, 1988

b) the collision mean free path of protons is constant, and

c) the distribution of proton elasticity is flat.
n(E,,E,t) can be expressed as a sum of products of Pn(t) and J'n(Eo,E),
where Pn(t) is the probability that a proton interacts n-times in its
passage in the air and fn(EO,E) is the probability that the primary

energy Eq reduces to F after n-interactions;
n(E,,E,t) = nZO P (1) £, (E,E) (2)

The probability Pn(t) follows the Poissonian law under the as-

sumption (b) as

n
p,(e) = LLO) ot/ (3)

The probability fn(Eo,E) may be expressed' as
n-1
[
f coo | QUSEE)E I L gO-EE, )AELE, (4)
E.<F,
-l
where Ei stands for the proton energy after the Z-th interaction and
g{k) for the inelasticity distribution. If we apply the Mellin trans-
formation and its inverse to eq. (4), we reach the solution eq. (1).
If the distribution of elasticity is flat, we cansimplify this

integration; let us introduce a global elasticity G as
¢= (-%)0-Ky) ... (1-K ), (5)

and derive the distribution of G, fn(G)'

For n=0, G has no meaning because there is no interaction; we
must treat this case especially. For n=I {single interaction), the as-
sumption (c) directly indicates that f () = 1. For n = 2,7,(¢)=-1n G.
For n=3, f,(G) = (1/2).(- InG)%. Finally the distribution of G can be
expressed as

§ (C-i) forn=20
£,(6) = .

n=-1)"!

(6)

(In _(I?)n-l forn >0
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Combining eq. (3) and eq.(6) in the way of eq.(2), we reach our

solution as

n(Ey,E,t) = e-t/AS(E-EO) + 1 P (b an(a) e §(E- @

n=|

© =1
- - 1 t E, Y
A e Lk
® y=1 (n-1)!n!
-t/ _ -t/ _t 2
=e S(E-Ey) + e E, 2 Il(z) (7)
where
z =V {bt/X) 1n(E,/E)
and Il(z) is the modified Bessel function of order 1.
Multiplying the energy spectrum of primary protons at t= 0,

Ny (E,)dE,, by n(E,,E,t) and integrating with respect to E, we can cal-
culate the differential proton spectrum N(E,t). Here we assume

No(Eo) =0, 2] (8)

then

(o]

N(E,t) j n(E,.E ) NE, T dE,
E

t _ 2
e-tﬁ‘ I\IOE’_Y-I E + J Il(z)e (v+1)A"/bt dz:[

0
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o Aly+1)
L
=NOE-Y-] e AYH (9)

where ,F; is the Kummer function.
Integrating N(E,t) with respect to E, we can calculate the in-

tegral proton spectrum N{>E,t) as
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>+
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v>E.t) =8 £ e
0Ty

3. DISCUSSIONS

As the appearance of the two kinds of results egs. (1} and (7)
is quite different, it may be meaningful to check theequivalenceof the
two.

The first term of eq. (7) can be expressed by the Mellin trans-

formation and its inverse as

1 -t/a 1 (Eg)°®
dese —E-, (E—-] i (H)

And the second term of eq. (7) can be expressed as

Ey

1 -t/A ] S T ¢
| o nz,r(m'm - (12)

Combining eqs.({11) and (12), we can find the equivalence of egs.{1) and
(7). The details of equivalence check are found in ref.2. Starting from
eq. (1) under the assumption (c), we also reach the results egs. (9) and
(10).

Here we compare the numerical values at the stages of egs. (1)
and (7). The solution (7) can be calculated exactly. In fig.1, the quan-
tity n{Eq,E,t) is shown as a function of E directly in log-log scale, in
the case of Fy = 1000 TeV and #/X = 1, for our result and for theresult
of eq.{1). The latter was computed approximately by means of the saddle
poin‘t method up to the second derivative®. As the two solutions are
equivalent to each other, the difference seen in the two computational
results comes from the approximation applied to compute the complex in-
tegral. W notice in the figure that the simple-minded application of
the saddle point method gives numerical values about 10-20% higher than

our exact values.

4. CONCLUSIONS

We have calculated the cosmic ray proton flux analytically in

the real domain, so that we can compute the numerical values exactly at
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Fig.l - Grapth of the quantity n(Es,E,t) versus E in
the case Ey = 1000 TeV and t/h = 1. The solid line
is for the result of eq.(7) and the broken one for
the result of eq. (1) computed by means of the sad-

dle point method up to the second derivative.

the

physical meaning of each term in the soiution. Also, the comparison be-

every stage of the calculation. Our result may help in grasping
tween the treatments in the real and the complex domains indicates that

we should pay an attention to the precision problem in computing some

process of the solution of the complex integral.

The authors are grateful to Prof. N. Amato for warm encourage-

ment during this work.
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Resumo

Calcula-se, no campo real, o fluxo de protons dos raios césmi-
cos. Discute-se a precisao do método do ponto de sela até a segunda de-
rivada inclusive aplicado a este problema.

Note Added

After submitting this work for publication, we learnt that N.
G.Boyadzhyan, AP. Garyaka and E.A. Mamidzhanyan had reported, in Sov.
J.Nucl.Phys. 34, 67 (1981), the energy spectrum of protons as

-1/2

_ o
n(E,E,t) = §(E-E e A Elo (-E%)/g Il[»z/—i In £ ][m %] (N.T)

for the case

1 E}a

W(E,E,) = (f; (N.2)
where W(E,E,) is the energy distribution of protons for each collision.
However, we found that this result was incorrect. The correct solution

for a > -1 should be written in the real dornain as

n(E ,E,t) - 8 (B-E,) ot

-1/2
-t/ 1 (B ' /t Eo’ E
+ e o {E—OJ 5 (o+1) I (2 T (a+1)1n T {ln EQ

(N.3)
(N.3) coincides with eq.{7) when we put a = 0.

The equivalence of (N.3) and eq. (1) under the condition of (N.2)
can be checked in a similar way as we did in the section 3. W are gra-
teful to Prof. H.M.Portella for having called our attentiontothe above

-mentioned reference.
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