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Dispersion Interaction Between Two Hydrogen Molecules

IRINEU LUIZ DE CARVALHO
Departamento de Fisica e Quimica, Universidade Federal do Espfrito Santo, 29000, Vitéria, ES, Brasil

Recebido em 1 de junho de 1987; versdo revista em 23 de novembro de 1987

Abstract  \\¢ have adapted the theory of Boehm-Yaris P .Chem,Phys, 55,2620
(1971)] and Jacobi-Csanak [Chem.Phys,lLett.30, 367 (1975)] to the calcu-
lation of the dispersion energy of a system of two linear molecules.The
angle-dependent parts of the Born amplitudes are represented by real
spherical harmonics. Our results are analytical for any intermolecular
distance and their asymptotic behavior reproduces the corresponding

usual dispersion energy. in the intermediary region (3.0 a;sR<8.0 a,)
our curves decrease much more slowly than the corresponding curves of
the usual dispersion energy.

1. INTRODUCTION

A good understanding of the macroscopic characteristics of a
given substance may be obtained by the knowledge of the inter-molecular

5

potential energy, , of the system made up by two of its molecules.

This energy is given by the expression’

(1) (n) )

(1)

separated by a finite distance R, and 2F

is the system's total energy when the molecules centers are
(r)

where FE
is the system's binding
energy when its molecules are infinitely separated.

For the Hz—stystem the interaction energy consist¢ in three

parts?
p 0 el @, g (2)
(val) . .
where ¥ is the valence (or chernical) energy due to the superpo-
sition of the wave functions of thetwo molecules, V'’ the electro-

static interaction energy between the two quadrupoles formed by themol-
ecular charges and ¥ the dispersion energy (due to the correlation be-
tween the electrons of distinct molecules).
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The techniques most often used in the calculation of inter-mol-
ecular potentials frequently involve a perturbation theory. In particu-
lar, for Hy=~H, system the calculation methods have been continuously

improved. Déboer?®

used the perturbation method, neglecting some mul-
tiple center integrals and was followed by Margenau and Evett® with an
approximation including all integrals. Later, Mason and Hirschfelder!®
published more efficient rnethods for multi-center-integral calculations
and made new developments related to H,-H, interaction. Kochanski and
Gouyet® improved the integral calculation still more, including bi-or-
thogonal orbital treatments.

The valence and electrostatic energies may be obtained together
by first order calculations, while the dispersion energy is due to sec-
ond order contributions?.

For two linear molecules with non-overlapping charge distribu-
tions, the perturbation theory, by a multipolar expansion, supplies the

following result for the dipole-dipole term of the dispersion energy?’®

1

= - — C -C -C + r -
Wd,d R® B 10,10 10,11 11,10 C“’”)[_sen@lsenGZ cos(¢2 ¢1)
- 2cos © ;cos 0,]% + 3(C -C )cos? ©
10,11 11,11 1
¢ - 20
+ 3 11,10 011,11)C°$ 2 ¥ (010,11+Cu,1o+h011,11)} ’ (3)
where Oi and ¢7/. (7=1,2) are the angles assigned in fig. 1 and Czlml,lzmz
dispersion coefficients defined in terms of the dynamicpolarizabilities
NOI
Q. m as
Kk
=1 (1) 3o (2)
C’leplz% e fdu allml (W)alzmz (2u) . (4)

Using a spherical tensor formalism, Piecuch’ recently studied
long range intermolecular interactions in all perturbation orders. Stone
and Tougha, also, published general expressions for the several contri-
butions to the dispersion energy for a pair of molecules is terms of

spherical tensor components. These authors expressed the dependence of
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Fig.1 - The centres of molecules 1 and 2 are taken as th
coordinate origin of two frames (1,91,
is a fixed laboratory frarne
by the Euler angles (¢1,61,0) and (¢2,62,0)

(xyz)

e
and {(x2,y2,22).

Two rotations described

align these

molecule-attached frames to the fixed one.
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the interaction with the niolecular orientation in terms of scalar ex-
pansion functions, denoted by S{;iﬁ; For the principal dispersion en=
ergy terrn, of a system formed by two linear molecules, the Stone-Tough
formalism furnishes a result equivalent to eq. (3).

In eq.(3) V+-« when E-» 0. Then, that potential cannot be ap-
plied for interacting molecules separated by small distances. This un-
desirable behaviour can be avoided by introduction a damping factorsuch
that the potential becomes negligible for small R 1'% There is, also,a
possibly more rational alternative, that will be adapted to the case in

our work: the analytical technique of Jacobi-Csanak''.

2. THE METHOD

The Jacobi-Csanak technique deals with the dispersion interac-
tion between two closed-shell atoms and was used by its authors in ana-
lysing the principal term of the dispersion potential of two identical
atoms (He-He). Through an immediate generalization of this technique, we
recently studied the dispersion interaction between two differentclosed

12

-shell atorns (He-Ne) and between an atom and a linear molecule

(He-Hy ) '3,
The purpose of this paper is to extend the Jacobi-Csanak tech-
nique to the dispersion energy study in the system made up by two linear

rnolecules. That energy will be obtained through the equation“’“

79 S Al
1 T

-
V='——5'qudql 72 q'2 Z Z l_

2 J
" 71701 12402
g. _FX(-F_ (@F* (QF _ (-E;")J (5)
n1,n2 M) ni ) na
with
o W— W~
ny 7,
g- - =f du 2 2" 2 (6)
n,n, Wosut W+
’ "y ",
(Wﬁ = Ey - g are excitation energies), WhereF;l (2;) and F?z (5) are
J J 1 2

Born amplitudes, referring respectively to the axis-systems (xi,y1, 21}
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and (xz,yz,zz) of fig.1. Here n = (n,%,m).
Since it is convenient to make the calculation in the labora-
tory frame (where %is a fixed vector) it is necessary to transform the
> >
coordenates of F= (g) and F~ (q) of references frames (x_,y ,2 ) and (x,
nq Mg 1 1 1 2
Y:,3,) to (XYZ) by suitable rotation operations.
On the other hand, since in linear molecules the electrical
charge distribution is not spherically symmetric, we must conveniently

change the factorization *’!!

Fo(@) =F 4(a) ¥, (@ , (7

which is applicable only to spherical symmetric systems. Here Yﬂm(@ is
an usual spherical harmonic. The radial part of the Born amplitude

o 15
Fn’l(Q) is given by

g o ox " N
SUEEES) [ V@i @i )r, Eu@a . @®)

in eq. (8) wr_z and y; are, respectively, the wave functions of the ex-
cited and ground states of a molecule with ¥ electrons and jJL is a sphe-
rical Bessel function of order R

Since real spherical harmonics form an adequate basis for sym-
metrical operation groups in molecules with only one principal axis !¢,
we introduce those functions to represent the angular part of the Born
amplitudes in linear molecules™ . In terms of usual spherical harmonics

they are defined as

1O @ ey @] 25,@

ym(é) = for m>0 (9a)

[ - L oM@ -y @] 23, @

V& =

and

by, (@ = 1,,@ . (9b)

So, choosing coordinates in accordance with the geometry in-

dicated in fig.1 adusing,for the Born amplitudes, the factorization!¥?’
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P @ =F 4@y, @ , (10)
n

it follows frorn eq. (5) that

[aee]
I~

R T 3
5 > Jtq.R _Iq'.R r( 2,42,
L

MMy

<Q
Q
|
'S
<)
3
W
ol

x Fy oo (@F) ) (@F, o (@')F

@D @D @D @) @)

ni1%, nafo

(11)

where the upper indices 1 and 2 are used to denote that, referring to the
coordinate system (XYZ) , it is necessary to express the angular parts of
the Born amplitudes for the rnolecules @ and @) (affected as they are
by the rotation operations) in terrns of angles rneasured in this reference
frame. This can be accomplished by the following rotations!®

(1) .
YQIml - gﬂ Dm'lml(q)l’el’o)yllm{
and 1oy (12}
(2) 2
b4 = D ¢,,0 ,0)Y
Lomy ’% m'zmz( 2?72 lzmz'

with the angles of Yy () and ¥, ,(g) measured in the (XYZ) reference
1M PUC

frame. In this equation Dy are elements of the Wigner finite rotation
matrices. In this paper the Euler angles ¢: and @1 (¢, and 9,) establish
the direction of the axis o; 2z, (o, 22) with respect to the vector I-?*(see
fig.1).

On the other hand, taking

- E 2 P
Vo= V‘lel,,zzm2 (m 20, m 0) (13)

22 9m2
m
21’ 1

and considering that in the (XYZ) reference frame

oo o " =
SR VR oy I Gy T T i @By (@R @Y, @)
L,L'
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we have

HL’L'(R)J d&‘, (1) y(Z) yojd“ y(l) y(l) -YL,O

4 =- y q
Ly my,Lomy yatigs LoD n, ny Sllml szz L llml Rzmz
(14)
where
2 +2 (z,z "
14 B 7 »
2l (R =—'——{(-) P, () YTV L) T ®)
ot 2m° CRSRL e 7181750
(15)
with
e ) ) ) (GRIF* , (@F* (@)
I (R) = j dq' §.(q'R}F (g')F (q' quj gRF*  (q)F* (q
n1%0,M5%, L 3! nake L' ny&y naf,
(16)

In the present paper, we will calculate only the principal term
of the dispersion interaction, However, egs. (13-(16) can also beapplied
to other contributions.

Our calculations are performed in atomic units: a.u. of length

(bohr) = a, = lmeo‘hz/(meez) = 5.2917x10" 'm; a.u. of energy (hartree)

E, = %/ (ma?) = 4.35981 x107"° 4,

h €%

3 CALCULATION
The principal term (dipole-dipole) is obtained by taking in eq.
= ,Q, =

(13) 2, =2, =1

14 =V +V +V +V F))

d,d 10,10 10,11 11510 11511

A) Calculation of V
10510

From egs. (14), (9b) and (15) we obtain

T
1 t
- - -L iL+LI I(L;L ) (lll')’Llo) (‘8)
10510 275 .0 gsll,szl sll,szl ’
$182
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where

ALYy »’(zm)(zL':Wfdc‘z' ¥ YEE) YdeZIYf:) 7y a9

10,10 10

On the other hand, from eq. (12) we have
% /7 -9 )
r [_ £ sen 6, ¢ k] F1(@) + (cos 0,) ¥, (@)
i¢
+ {%2_ sen @k e kIYx,-l(a) (20)

where k = 1, 2 and g represent the angles that specify the direction of
the vector _q> in the XYZ axis system. Moreover, using egs.(20) and (19)
and the relation (4.34) of reference 19, we conclude that fflo;:ll';) £ 00
only for L =0, 2 and L' = 0, 2. Then, weobtain the results (B2), (B3)
and (B4) (see appendix B).

Moreover, from eq.(18) it follows that

v 1§ ) lr'(U,U) (o0,0) ¢ (o,2)
T = — T . - I
10,10 2’]’1’5 5 o gSII)SZ‘L$1|$82] f10910 ‘31],32]
1'%9
(2,0) 3 (0,2) (2,2) (2’2)
I to,e T T ® 5 (21)
s,1,8,1/ *77°° s,1,8,1 10,10

Now, we will make use of the approxirnation where the radial part

of the Born amplitude [eq.(8)] is replaced (for &=1) by the principal

term of the corresponding series of Csanak—Taylor15

F (g =af D — L (22)
g1 s @ + qz)s ’
where (in a.u.)
o = V2T + VZ{I-W) (23)

(I being the ionization energy of the molecule and W one of its exci=
tation energies) and DS is the transition dipolar coefficient, directly

related to the corresponding oscillator strengthf % (for %=1 and m=0)
sim
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byl?

fS

10
- . (24)
s

1

2 . 20
IDSI "3

I ntroducing eq.(22) in eq.(16) (with L =L =0, L =0and L'=
=2and L=2and ' =Q L =L" =2 and substituting the results into
eg.(21) we have

. oA (KT ] (0) (0,0)
R DR A b I:(K ®)2r0
§,:8,
wher e
T ® 2
K@ <2 e —L——  @=0,2. (9

, ((12 + q2)6

Oh the other hand, using egs. (6) and (24), defining the fre-

quency-dependent pol ar i zabi ties as?°
g
a, = ) —A— (27)
m n Wz - w2
nl

and introducing the dispersion coefficients by eq.{4), we have

812

2 2 -

;\‘gsl"szl IDS1I lezl 9 019 10 (28)
1’72

Then, eq.(25) takes the finai form (Bi1).

B) Calculation of V,,,,
In this case, we take in eq.(14) m, =O0and R =2, =m, = 1.

Then, using the procedures and definitions of the preceding sub- section
and the relations™"
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;1(7;) _ {_ -’/2_7- cos O, e—iq)k]yn(?z) + (-sen Gk) Ylo(a)
[ Zeos o, ei"’k] v, L@ (29)
and
0 {1 2 e-wk] v @)+ [7, 2z f‘pk] v, @ (30)
we obtain eq. (B5).
Calculation of vV~ ‘and V

Starting from eq. (14) and working in the same way as we did in
the previous cases, egs. (B9)-(B16) result.
It is worth noting that the coefficients C,Q in egs. (B}
119 922
(B5), (B9) and (813) are obtained from eq. (4) and that the functions

K(L) (R) (L = 0,2) are given by egs. (Al) and (A2).
D) Application to the H,-H, system

For sufficiently large values of R, it results from egs.{Al) and
(A2) that

R >0 and ¥ (R) »3/(a? Y

Introducing these limits into eqgs. (B1), (B5), (B9) and (B13) and substi-

tuting the results thus obtained into eq. (17) we have

v, o=-L ¢ (2,2) |, (2,2) | (2,2) | ¢ (2,2)
d,d RS 10,107 10,10 10511710511 11,10 11,10 11,117 11,11
(31)

where we have used the letter W to indicate the form of our energy in the
asymptotic region.

We note that the usual form of the dispersion energy of a sys-
tem of two linear molecules can be reproduced by substituting in eq. (31)
the results contained in eqgs. {B4), (B8), (812) and (B16).
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in figures 2, 3, 4 and 5 we show a summary of our re-
sults for four different relative orientations from two hydrogen mol-
ecules. We have selected two different values for the a parameter:
1.370 a.u. (corresponding with the X D transition) and 1.549 a.u. (re-

ferring to the average excitation energy, calculated by Victor and Dal-

21y, As dispersion coefficients we use those of Meyer”: C10 10 -
b

= 2972 a.u., C =C = 2.189 a.u. and C = 1.620 a.u..lIn
10511 11,10 11911

the same figures we also show the corresponding values of the usual dis-

garno

persion energy [eq.(3)].

4. ANALYSIS OF THE RESULTS
From figures 2, 3, 4 and 5 we deduce that:

a) In the asymptotic region (R 2 8.0 ao) the dependence of our results
relative to the parameter a is negligible.

b) In the intermediate region (3.0 ao £R < 8.0 ao) our curves decrease
in value far more slowly than the corresponding graphs for the usual
dispersion energy and the dependence of our results on the parameter
a is no longer negligible. This dependence grows continuously with
decreasing values of R.

c) The dependence of our results on the angles (€1,¢1) and (82,42) which
establish the relative orientation of the two molecules is fairly ac-
centuated. For example, from the comparison of the figures 2 and 5
for a = 1.370 a.u. and £ = 6.0 a  we have

v (fig.2)
d T .2

Vd,d (fig.5)

On the other hand, it is easy to verify that egs. (17}, (Bl),
(B5), (B9) and (B13) are analytical for all R-values and that they re-
duce to the usual values in the asymptotic region. In this way, our re-
sults may be useful in the study of problems such as molecule- rnolecule

scattering and equations of state of compressed solid hydrogen

The author is grateful to Professors Karel Frans Van den Bergen
and Manoelito Martins de Souza for helpful assistance in the writing of

this work.
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Fig.2 = (a) Values of Vd r7(1?)
[eq. (17)] for a=1.370a.v. and
61=6,=0%" (b) The same as item
(a) a =1,549 a.u.. (c) Values
of W, ,® [eq.(3)] for 610,
= 0°.’Cgc’) The same as item
(c) butwith thosecoefficients
calculated in ref.6.

>

Fig.3 - (d) values ofVy 4(R)
[eq. (17)] for a = 1.370’a.u.,
61=0°, 6,=90° and ¢2-¢; =0°.
(e) The same as item {(d) for
a = 1549 a.u.. (f) Values of
W3 g®) [eq. (3)] for 61 = 0°,
822 90° and ¢2-¢1=0° . (f') The
same as item' (f) but with those
coefficients calculated in ref.
6.
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9= 6,=
e o and
®© R 4 -8

) R (°o)

(IO'wcrq)

ENERGY

DISPERSION

DISPERSION ENERGY (10 "rg)

g.4 - (g) Vvalues ofV, ;& R)
kq {17)] for a=1. 37océdu,
91 62—900 and (bz ¢1 . (h)
The same as item (g) for a =
= 1. 549 T:u ( (i) Values of

eq.(3)] for 61 =02 =
dff and ¢~ ¢1-;]0° (i) The
same as item (i) but with
those coefficients calculated
in ref.6.

Fig.5 - (j) values of V ¥
Eon (17\—] for o — 1 Q7ndd

§7-6,=90° and $2-6,=90°. (kI
The same as item (j) for a =
= 1.549 a (L) values of

W d(R [eq (3_\ for 81= 62 =
=80° and ¢2-¢; =90°. (L) The
same as item (L) butW|th those
coefficients calculates in ref.
6.
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APPENDIX A = Integrals K'LM(R)

From thecalculation of integrals defined in eq.{26), the fol-

lowing expressions result!!*!?

( ) ~oF

(R) =% p, (@R} , (A1)
C1'9
where _
P, (aR) =-2-;-6- 77 (@R) + 3 (@R)? + % (@r)® + 11—5 (w)ﬂ ,
and ) _
(2 __3 _ _-QaR
KR = o _1 e p,(aR)J (A2)
with
P,(aB) = 1+ (&) +5 (@F)? + & (@R)* 45 (aR)* +z3ps (0R)°
+ 111532'0 (ap)® + w],'zo ()’

APPENDIX B — Summary of our results

V¢ obtain the following results for the Vom0 M, terms indi-
1"
cated in eq. (17). W have

- 10 190 [(o (0 °) (ZK(U)(R)K(Z)(R))f(O’Z)
10510 lu 10 10,10
. @ (e £ (61)
10,10
where
f‘(°’°) = (cos 0, cos @,+ sen Oy sen 85cos(¢2-¢1)) %, (82)
10510
fl(::jz = fl(izji = - [(cos 6, cos O, + sen O sen G, cos($p2-¢1)
x (-2 cos 6, cos O, 1 sen ©; sen 0 cos ($2 ¢1))] (B3)
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and
f(z’z) = (-2 cos 0; cos O + sen O, sen 0zcos{b2-01))*. (84)
10,10
Also,
c .
= oc“’:(K(o)(R))z ff:;? - (ZK(O)(R)K(z)(R))fx(::ji
’ (2) 2 (2,2)
+ (k" (R)) flo,“J ’ )
with
f(0,0) . Ir_'(sen el cos 92 COS(¢Z'¢1) - cos Ol sen 02)2"' (senel sen(¢2-¢1))%],
10'11

(86)

(0,2) _ j.‘(zlo) -

- B-cos 0, sen 0, + sen O cos Oz cos ($2-91)) (2cosB1send2
10911 10511 )

+ sen 0, cos®, cos(d,-9,)) + (sen O, sen(¢z-¢1));J (87)

and
f(z’z) = - (sen 0, sen O cos(9,-9,) = 2 cos 0, cos 6,)® + 3 cos?0, + 1,
10,11 (88)
W also have

AT zuBK(o)(R» f-(o ) _ (ax(0) (™) ) plo02)
11,10 9 11,10

e @ A0 (89)

11,190

where
f(o’:) = (cos O1 sen 0 cos{bo=01) - sen O cos 02) 2 + (sen 82 sen($.-¢1))? ,
119210

(810)
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1(:::3) = - [(cos 01 sen O, cos {(p2-¢1) - sen O, cos O0,)
x (cos 01 sen 0, cos (¢,-¢1) + 2 sen O cos 0,) (B11)
+ (sen 02 sen(qbz-d)l)){

and

(2,2)

e =T (sen ©; sen 0, cos(9,-9;) -2cos 0, cos 9,)% + 3 cos?0, + 1,
Finally we have (B12)
- - Cll,ll QZ#BK(O) R))Z f(O’O) - (ZK(O) RK(Z) R (0’2)

11,11 9 (s 11511 (8) ( ))fu,u,
{2) 2 .(2,2)
+ (K7(R) f“,“ s (813)
f‘f:::)l = (cos 91 cos o2 cos(¢2-¢1) + sen Olsen 0.2+ (cos o sen(d)z-tj)l))2
+ (cos O, sen(¢2-¢1))2 + cosz(d)z-d)l) R (B14)
f(O,Z) _ ( 0 0
11,11 = |{eos O cos Zcos((bz-dbl) + sen 01 sen 02)
X (cos O, cos 0 ,cos(d,-0,) - 2 sen© sen0,) (815)

+ (cos 0 sen(¢,-0,))% + (cos O, sen(d,- $,))2 + cosz(¢2-¢1)]

= (sen® sen®, cos(s,-0 ) - 2cos 0 cos 0, )2

-3 cos® 8, -3 cos?0,+ 4. (816)
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Resumo

A teoria de Boehm-Yaris [J.Chem.Phys. 55, 2620 (1971)] e Jaco-~
bi-Csanak LChem.Phys.Lett. 30, 367 (1975)] € adaptada ao céalculo da e-
nergia de dispersdo am um sistema contendo duas moléculas lineares. AS
partes angulares das amplitudes de Born sio representadas por fungoes de-
nominadas harménicos esféricos reais. Os resultados obtidos sdo anal iti-
cos para todas as distdncias e, na regido assintotica, reproduzem a
energia de.dispersdo usual. Na regido intermediaria (3.0a, < R < 80 a),
nossas curvas decrescem bem mais lentamente que as correspondentes cur-
vas da energia de dispersédo usual.
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