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Abstract Applying the method of moments of Papapetrou, the equations of
a non-Abelian charged spinning test particle in an Einstein-Yang-Mills-
Higgs field are derived from covariant energy-momentum and charge con=
servation.

INTROOUCTION

Some time ago we derived' the equations of motion of a non-
Abelian spinning test particle in a Yang-Mills field by the method of
moments of Papapetrouz. In this paper we extend those results to
the case of the coupled Einstein-Yang-Mills-Higgs field. The case of
the Yang-Mills-Higgs field was treated by Drechsler, Havas and Rosemb 1um®
following the procedure first introduced by Mathisson®. W& generalize
that paper's results by superimposing a gravitational field. W shall
follow Papapetrou's method of moments of the energy-momertum tensor and
of the current, which has been used® in the analysis of a.pole-dipole
charged particle in an Einstein-Maxwell field.

The problem of the gravitational motion of a Yang-Mills particle
has been treated by Wospakrik®. However, subsidiary conditions for the
spin and for the non-Abelian dipole moment tensor were usad in thederi-
vation of the equations of motion and one is not sure if these equations
are independent of the side conditions. W generalize Wospakrik's paper
by superimposing a Higgs field and derive the equations with no subsidi-
ary conditions. We make use of the subsidiary conditions only to simplify
the resulting equations.

The method will also yive the volume integral of the energy-mo-
mentum tensor and of the current, and of their first moments.
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1 THE EQUATIONS OF MOTION

Our starting point is the space-time covariant generalizationof
the divergence relations given in ref.3 in flat space-time, for- the
energy-momentum tensor ™8 and the non-Abel ian Yang-Mills current :7!11 of
the system, 3 being its Higgs charge density. In terms of the densities
TQB = J~g FB, 3" = /=g J_V and B = /:é B, the divergence conditions be-

come

38T°‘8+r3\)1”\’=ﬁ°‘8 R A (1.1)
and
3 - b A, x*=b3x3 (1.2)
where
?dB - vaZB - vBZa - b Za x 718 (1.3)

is the Yang-Mills field tensor expressed in terms of its potentials, b
is a dimensionless constant, Va is the space-time covariant derivative

and _
*F=*-p x3 (1.4)

>
is the covariant derivative in SU(2) space. Notice that as ¢ isascalar
. . 7 -+
in space-time, Vol S

W consider an extended system with reference point }P(s) and

with velocity

&= dfrds (1.5)

where ds® = 98 cD(adXB, and we shall consider moments of :,ptB and of :7"0'
about x* up to first order. This is agood approximation for systems which
are small in comparison with the length scale variation ofthe external
field. By demanding that thedirnensions of the system tend to zero
around X* at the very end of the calculation, this point will give the
world line of our point~like charged spinning particle7.

Now we proceed as usual 2.

Integrating eq. (1.1) over the three-dimensional space volume of

our system, for ¢ = const, we have
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%%- Jq"“’dv + J rﬁvT‘“’ av =J (35“6-38 - B av . (1.6)

W now consider the space integral over our system of the di-
vergencies au(xBT"‘“) and au(xsx)‘ ") which can be calculated by means
of eq. (2). W obtain

(—% J Py = j v + J L1 MY LT D Far

Hv u
(1.7)
and
& J L1y = | S+ FrNar + J i (1% P
+ 7% - B 0% rav (1.8)
Next we write
Xa = Xa + axa , (I .9)

with X = t, that is6x° = 0, since all integrals refer to the hyper-

plane ¢ = constant.

We now substitute eq. {1.9) into eq. (1.7) for xB and make use
of eq. (1.6), then into eq. (1.8) first for & and make use of eq. (1.7);
afterwards, we do the same for x and make use of the previous one de-
rived from eq.(1.7) involving f8z° 7%°dv . In this way we obtain the

equation

éﬂti J gy + %{ J 58100y = J qv + J s (-1 T e 75 1) ay

(1.10)

and, to first order in &z%

af J s roqy + L J s P10y = J sz 1*8qv + j sy . ()

dat dt
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V¢ now expand TSV(.%'), 7*8(x) and D"3(x) around “,

Oy _ O Tn 1O
I‘u\)(x) = I‘W(X) + 8z aorw(x) + ... (1.12)

0B

where 30 =3/BXf’, with similar expressions for 7 and Dag.

Taking these expansions into egs. (1.6) and (1.10) we obtain, to

first order in Gxa and taking the X dependence as implicitly understood,

d f %4y 4+ FﬁvJTuvdV + aor(:v Jé «OMVay = F¢ -J}de +

at 8
+ aoz?o‘s -IM"?B av - p%% . deV - 3000‘5 f sz%pav
(1.13)
and
d}(B 00 d 8,00 o B uv
aTt—Jl dV+ZZ;J6xTuCZV=JTaBdV—I‘uVJ6xT av
”?O‘u'j SMay - p%3 J s0dav . (1.14)
V¢ now introduce the notation (x°® = d#/ds)
W8 =0 s ™ gy 0 g s MRy (1.15)
P=usrav o L0 | s av (1.16)
and
f=u spadr , B% =y r6s™pdv (1.17)

where f> and * are the Higgs charge and dipole moment of the system

in its rest frame, respectively. Also

0 Fho
3=—ﬁ—=f3°dV, AL —fam>‘3°dv (1.18)
u? u?

are the Yang-Mills charge and electric-dipole moment of the system re-
spectively. Note that the two quantities in eq. (1.15) are symmetric in

a, B and that, as 8z° = 0, we have
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M - g -0 , B°=0. (1.19)

Using egs. (1-15) - (1.18) wecanwriteeqgs. (1.13), (i1.14) and
(1.11) as

0
M7 e v 0 oy e B o o8
dsuo [\Y uv B g B
- E% - B9 I8 (1.20)

and

uB e u>\ o - ( M)\OtB + Msa)\ Ju® (1.22)

—+

Before we go on with these equations,we derive those which fol-
low from eq. (1.2). From this equation we can calculate 3 (z*7") and
au(xaxs:ym). Integrating the resulting exprersions, and also eq. (1.2),

over our system we obtain

%;J?’" dv = b[ (Zax}“+3x?p) av , (1.23)
%; J 704V = J 74 av+ be"‘@’Bx}B + o) dav ,  (1.24)

and

s J Py - J P + PyNay + bJ F G FH-3dar (1.25)

We now proceed as before. We introduce egs. (1.9) into (1.24) and
make use of eq. (1.23), then into eq. (1.25), first for z* and afterwards
for xB. Next we expand Kll around Xa. Keeping only terms to first order in
Gxa we obtain, in the notation of egs. (1.16)-(l .18), the following set
of equations analogous to eqgs. (1.20)-(1.22):

>
iq_= > O -+  0f > > >0 >
o b AU+ bBaABXIV + bfx® + bF xaa@" (1.26)
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00
gua+§—N—=Nﬂ+bZXﬁaB+bl—{)ux7b , (1.27}
s 0 B
and
e ?\780 +u8 0= (ﬁBd+N-ZOLB) u® . (1.28)

2. THE CHARGE EQUATION

The second term on the right-hand side of eq. (1.26) can be

written as

>
dA racl)
d A x P = g A xTB BN (2.1)
B oB ds 0
u
where
o
B _qeB _u gRe (2.2)
MU
. . L. 208 .
By symmetrizing and antisymmetrizing ¥ and by making use of
eg. (1.28) we can see that 3043 is an antisymmetric quantity
Jo8 =% Gl S O AL A (2.3)

2°

From the second relation in egs. (1.16) and (1.18) we see that
0
P2 (6 - s Pav s  GBF - G

From eq. (2.2) and the relation in (1.18) for P and ineq.(1.19)

for ﬁoa. it follows that

SEL A A (2.5)
+70 . . . 2> J
Therefore J is the Yang-Mills. electric dipole moment and -/

is the usual nonrelativistic magnetic dipole moment of the system in

its rest frame. Taking eq. (2.5) into eq. (2.2} we obtain

o
i S A Ll (2.6)
0
u
-0f . . . . .
As J is antisymmetric,and recalling eq. (1.3) we can write eq.
(2.1) as
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N
dA >Bo
-> >0 R _ B N l» -0.B b -~ > 0B
8 Ay X I = xu0+2FquJ +—2—(Aa><AB)><J (2.7)
From egs. (1.27), (2.5) and (2.6) we obtain
20,0
i A Y MER I TR (2.8)
ds u® o
where
b-g-b % « B (2.9)
x B

is the generalized Yang-Mi1ls charge.
Now we substitute eqgs. (2.7) and (2.8) into eq. (1.26). Making
. . T 7 208 703 ;_:S
use of the Jacobi identity for 4 , 4g and J, and for Aa’ and , and
of the antisymmetric character of :/ZOLB we obtain the following equation

>
for the charge Q:

%:b(—;—fuex_ja8+—éx$+§axDa3) (2.10)
where
5=?-bZa><7e°° (2.11)
is the generalized Higgs charge and
Dé O % o > A
e=uDd=u (3 -DAxQ (2.12)

is the covariant derivative of the charge 5
Egs. (2.8) and (2.6) give, respectively, the space integral of

the current g and of its first moment in terms of the dipole moment

tensors 30'6 andﬁ)a.

3 THE SPIN EOUATION

The definition of rnomenturn arises in a natural way if we look
first for the spin equation. For that purpose we interchange a and 8 in
eq. (1.21) and subtract the resulting equation from eq.(1.21). Recalling
that ﬁ/ﬁa = MOIB and using eq.(2.6), we obtain
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£ AR L LN L -iﬂu-j“") it

u® H u® ds
=-Fiv MBU\)+-E*9LU,";BU - 0“3.28- (@ < B) , (3.1)
where
. Lo MR - 1P = s (2P - 5Py (3.2)
u

is the spin tensor of our system. Notice that

= L s sa®r®? gy (3.3)
u°
Now use express I‘ﬁu\) in terms of the velocity and spin by
the following procedure?. Add to eq. (1.22) the equation obtained from
it by exchanging o and B and substract the one obtained by exchanging a

and A. One obtains, using eq. (3.2),

A
P8 = 2By Bre B oty (3.4)
u°
To obtain the latter sum in terms of the spin we put ¢ = 0 in
eq. (1.22) and use eq. (3.3). We obtain
w80 4 BA o B ABY (3.5)

With this result eq. (3.4) becomes
A
P8 = 008 4 B u aBe B0y (3.6)
0
u

Substituting this relation into eq.(3.1) we obtain for the spin

tensor the equation

o s B S AR Ry B S RS L
Ds (3.7)
where
a_ 1 0 O HVO JIHo
p uo(M" + T, uS F ) (3.8)
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. ol . . . .
is the momentum of the system and IS B/Ds is the covariantderivativeof

8,

o 0B
Ls™ _ ds U0 VB U8 av
s ds Y 1111\) ST u 1111\) s (3.9)

4. THE MOMENTUM EQUATION

Let us consider first eq.(1.21). For the second termon its left-!

hand side we need eq. (3.6) with 8 = 0, that is,
7 ALY LY L Ll (4.1)

Substituting eqs. {2.6), (3.6) and (4.1) into eq.{1.21) andusing
eg. (3.8) we obtain

B 00
o8 aB d oR ua5‘6°+us O U BV
=pu +——2ds (S +——-——————u° +FWuS

"
<
hos)
+
L]
[
o
=y

8, (h.2)

We now introduce eqs. {(2.6), (2.8), (3.6) and (4.2)
into eq. (1.20). We obtain, for the momentum, the equation

o
Dp a o A u.ov _ x 208 >0 a U
T +(a(7 FW+1‘OA rw)us = QF Tup 4 (80F8+I‘UOF8

_ 37 20y 308 _ 20 o S0 2y % oar 20 20
bAGXFB).J R.(acpmroup@) FDU0 +EL(F x0).

(4.3)

As 360 is antisyrnmetric we can subtract from the second term of
U 5e
Bc+mu

way the covariant derivative of # 8 appears in this second term.

Then we add and subtract the quantity bﬁo. (ZOXDO'&;) to the third term.

the right-hand side the termT .380. which is equal to zero. Inthis

The covariant derivative of Da:f will appear in this term and the

fourth one become -E.Daff, where
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G=F+ph xR° (4.4)
is the generalized Higgs charge. For the last term of eq. (4.3) we use
the identity

(0%°- 098 = -7 x B (4.5)

Then eq. (4.3} becomes

o
Ip”_1 L« TN 8. . zo =280 2 or 2O o
22 =5 B v s + P ug = LgF g.d = G.D%%-F .0006

(4.6)
where
o o o LA o o LA

R + T . I -3 - T T (4.7)

= r
uvo o v OA Tuv Vv Uuo VA " uo

is the Riemann curvature tensor.

Egqs. (4.2) and (3.6) give, respectively, the space integral
of the energy-momentum tensor and of its first moment in terms of dy-
namical quantities of our problem.

Notice now that the Yang-Mills field tensor satisfies the

equation
> > g
7 = 4.8
DaFBO * Do‘aB * DBFou 0 (4.8)
>R0 . . . .
As J is antisymmetric the momentum equations (4.6) can also be
written
Q , ) > +B0 > > Eas] o >
Do 1 o HgVo L 7B O ~¢.0%e- F .o% @
Ts ZRU\)O“S +Q.F uB+2E‘BO'J G.D D o
(4.9)

Egs.{(2.10), (3.7) and (4.6) are the generalizations ta curved
space-time of the corresponding ones derived in ref.3, and generalize
also those derived in ref.6 in the absence of the Higgs field and using
subsidiary conditions for the spin and the dipole tensors (see egs. (4.
10) and (4.11) beiow). Egs. (2.10), (3.7) and (4.6) reduceto those
derived in ref.l in flat space-time without the Higgs field, and eqs .(3.7)
and (4.6) reduce to those of ref.5 for the usual Einstein-Maxwell field

which were derived by the same method.
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Considering that gﬁa and 30‘8 are given we have seventeen

- . > o o SaB . a,
gquantities to be determined: &, p , ¥ and . Together with uuu=l,
egs. (2.10), (3.7) and (4.6) add to fourteen equations and therefore we
need three more equations to solve for the unknown quantities. These
extra subsidiary conditions are related to the particular choice ofthe

reference point x* of the extended system. One possibility is to choose
us - =10 (4.10)

This is the condition chosen by Mathisson® in the case of the
motion of a neutral spinning particle®. As contraction with uBgives an
identity, eq. (4.10) gives only three additional equations which infact
we need to determine our problem. This relation was adopted in ref. 3
and 6 and we shall do the same. We shall also adopt a relation between

>0 o . . . .
7 8 and S 8 which is analogous to the electromagnetic case, that is

JoB -7 5B (4.11)

With eq. (4.10) we have

8
uoc:])a =0 . (4.12)

5. DISCUSSION AND SIMPLIFICATION OF THE EQUATIONS OF MOTION

W now analyse the motion of a non-Abelian charged particle
>
which is characterized by a single vector in isospace, the isospin T of

constant magnitude. That is, we adopt the following relations

¢ =q1 (5.1)
¢ =061 (5.2)
Fo= R 7 (5.3)
S O L (5.4)

> .
where T is a vector of constant magnitude equal to one,

>
T.
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In this situation eq. (2.10) takes the form

-.> 1 o8 - > o > ->
Q=D KS Fyg -Gé- R D 8 x 1, (5.6)
where, as will be used from now on, a dot designates covariant deriva~
tive.
. . =z A2 _n2.2
Contracting eq.{5.6) with eq. (5.1), wesee that @.4=0 or g°=@*1*=
= constant. As we have chosen T2 a constant we conclude that the Yang-

Mills charge has a constant magnitude,

Q = constant . (5.7)

Conversely, if one choses eq. (5.7) then 1% is a constant which can

be normalized to one, that is, eq. (5.5) follows.

With eq. (5.7}, eq. (5.6) becomes an equation for T,

>
Dt _ b dysB7

> o >
550G g - G -R Dac'f) x T . (5.8)

with egs. {(5.1) - (5.4) the spin and momentum equations (3.7) and
(4.9) become,

gs = %P - PR s T (sz""")\s}‘B -KHBASAa'l- % - 5 pBo )
(5.9)
and
o
Dp” 1 .0 Wvo > 801, BOon 07 B2
b =g B 80 + T @F "+ 5 k8D F, - 60 BeD" §)

(5.10)

We shall also assume that the magnitude of the spin, Higgscharge
and dipole moment and of the Yang-Mills electric-magnetic dipole moment

are constants

oB

S S . = constant , (5.11)

al
G = constant , (5.12)

R* Rou = constant , (5.13)
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and

_’UB >
J = constant
Jo«B

or, with eqgs. (5.4) and (5.5),
K = constant (5.14)

As we show below, the assurnptions that we have made will
lead to a system with a constant mass, mechanical plus Yang-Mills and
Higgs energies of interaction.

N
First of all we note that as R® = 0 we have

B =0, (5.15)

since this is valid in the particle rest frame. From here we have

o
As
dk®/ds = 0
we have
u dP_.)OL/ds =0

and, with eq. {(5.15),

Therefore

u, B2 0 and w, F*:=0. (5.16)

Recailing eq. {5.3) and noting that

o 3 T+ r%7

eqs. (5.15) and (5.16) give

u, B =0, (5.17)
and
s .o
uaﬁ =90 and » R =0 (5.18)
From eq. {4.10) we have
0B
u, 5% 40, s =0 (5.19)

Contracting eq. (5.9) with u, and using eqgs. (4.10), (5.17) and

(5.19) we have for the momentum
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£ = mbf o+ 3 (Kuul?aASAB + B3« &as"“g (5.20)
where
_ g
m=u,p (5.21)
We now look for an equation for m
Contracting eq.(5.20) with &B and using &BuB = 0 we have, using
eq.(5.18) and eq. (5.20) for SMB 7;8 afterwards, we obtain
e B xoau A 2oy A % o3\
ug P = u KF ™8 ug = U KF >\( p" + O R") , (5.22)
where Z=X7and in the last step we have made use of the fact that
> o JAp 2B . . .
kP~ \8"KF o s antisymmetric in a and B.
From eq. (5.9) we obtain, using eq. (4.11),
> > ’OLB_ > o o B o 2B .
K‘FOLBS = 2K otB(p u” + D O.R") (5.23)
Taking this result into eq. {5.22) we get
. 3_1—»—» 'OLB._"’* ax 2B -»—_;g—;) )
ugp” =3 KF 48 KE D O + u K. &R (5.254)

We now contract eq. (5.9) with SOLB' Using eq. (4.10) and eq. (511)

we obtain
SOLBRB-_ 0. (5.25)
From here we have
«aB aB = _
g RB t 5T Ry =0 (5.26)
. caB
ozRBb =0 (5.27)

Using eq. (5.9) we obtain, recalling eqgs.(5.13), (5.17), (5.18)

and (5.25),
£, BB(-}{’J?BASXO‘ +D¥8.28) = o (5.28)
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AQL

Using here eq. (5.26) foré(yS and eq. (5.9) afterwardr we ob-

tain, recalling eq.(5.17),

LA 28 kA A A
LR N }%Ra]{ﬁs)\ % - %7 %) (5.29)

From egs. (5.20), (5.17) and (5.25) we get
B =18 RS (5.30)

Taking this result into the first term of the right-hand sideof

eq. (5.29) we obtain

$+£Bi<’.ﬁﬁﬁ.pxa? . (5.31)

SRR T LR
X

Using this result in the last term of eq. (5.22) we obtain

- 6 _ -'|_ -> 008 (Xl -
g P = (g kB 3% - 0, ®.7 . (5.32)

Now from eg. (5.10) we have

. ]—.r —; ->
4y 2B - 3P0 kP9 -3 - R° L 03).7. (5.33)

Adding these two relations and recalling egs. (5.12) and (5.14)
weobtainfor m in eq. {(5.21),

. + D 1 =g
=T .5y G KE,, %P 43 - RO‘Dug) ) (5.34)

>
From the T eq. (5.8) we have

>

(% KF g 8 -6 - % )T =0 . (5.35)

From egs. (5.34) and (5.35) we get the relation
gg lin+ (-—;-K?GB B, Gg+£’QDa 3)—1}] = 0, {(5.36)

From here we conclude that the quantity

-> 1 > SO(B

Mem+ (-5 KE + 63 + 7*p 3 (5.37)
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is a constant of motion, which we identify with the rnass of our system.
It contains the mechanical mass m the Yang-Mills electric-magnetic di-
pole interaction energy and the Higgs charge and dipole interaction
energy.

With eqs. {(5.37), (5.20) becomes, with the help of eq. (5.19)

— > 1 > o g o_ 71 B > o0 AB 2 Ba
P= LM+T~(‘2‘KFOL>\S -u@—RDOLfb__]u +T.(Kuaf 35 +BB®)+SBuOL.

(5.38)
With this relation the translation eq. (5.10) becomes

D > 1 oA I SH
5—5{[1\4+T(7KFOMS Go - F I %Ju

- S)\OL

+ T, (KuBF N + Ro%) - u)\éka} =

T o uyve oo 81 g _a
7 B g S +T.(QL‘BH +2KSBDbBO

- @*% - RBDO‘ 3 . (5.39)

Taking eq. (5.38) into eq. (5.9), the spin equation becomes
§B Py PRy, 0 .
p p
=TARG L PP - J?B(g u* - % 3)

3 (5.40)

A +0 B =+ B }\->p o e
+ KSR ugu —Fy ) - kENF Nt T Fy

Egs.(5.8), (5.39) and (5.40) are the generalizations to curved
space-time of the corresponding equations obtained in ref.3.

We can go a step forward in the rotational equation by noting
that because of egs.(4.10) and (5.25) we can write the following relation

between the spin and the Higgs dipole moment,

o _ oBAv
ST =L ¢ wy R (5.41)
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Contracting this equation with itself and using eq.(5.17} we obtain

of Car2 V
§* 8,=2U" B R, (5.42)

This shows, with eqgs. (5.11) and (5.13), thatL is a constant.

Then
58 =1 Wy Rr oty B (5.43)
Taking this result into eq. {(5.40) and making use of the ident-
ity
uaeBAvpuxz}va - usew‘\) uA&va‘-‘ eOBAvRA 72\)
aB A

the left-hand side of eq. {5.40) reduces to Le \)uxf% and we obfain

Leo‘e)‘vu B = 1T.08*@ B - 083) - RB(sua- %)

ATV
ahyo Fp B _ By BAyo 20 o >0
KLe uyRO(fA uo Fy ) - KLe uyRG(FA U Fy ).
(5.44)
This equation is the generalization to curved space-time, in-

cluding the Yang-Mills field, of the corresponding equation obtained in
the case of a usual nucleon interacting with ascalar mesonfield, which
was obtained before® using the momentum method of Papapetrou,
consisting in an alternative derivation of the one derived previously
by Harish-Chandra'?,

With egs. (5.41), (5.8) and (5.39) together with eq. (5.44) are
three equations for ua, R% and T totalizing eleven unknowns, in termsof
the constants M, Q, G, K and L. As contraction of eq. (5.44)  with u,
gives three identities, eq. (5.44) gives not six but only three indepen-
dent equations. These three together with uau” = 1 and the seven re-
lations coming from egs. (5.8) and (5.391, give the eleven equations one

needs to determined the eleven unknown quantities.
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Resumo

Usando-se o método dos momentos de Papapetrou, as equagdes do
movimento para uma particula teste nao Abeliana carregada na presenca
de un campo de Einstein-Yang-Mills-Higgs sdo obtidas a partir de con-
servagdo de carga e de energia-momento.
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