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Abstract Instead of the usual classical spherical model of the electron,
we develop a toroidal charge distribution model. 1t is shown that the
latter model of the electron is not subject to instabilities. The model
also applies tc magnetic charges, enabling us to consider magnetic mon-
opoles. Some possible connection¢g with other current topics in theoreti-
cal physics are pointed out.

1. INTRODUCTION

In"this paper we will be interested mainly in developing aclas-~
sical rnodel for the space distribution of charge and current of the elec~
tron, aiming to find stable configurations.First of all, using some tech-
niques of exterior algebra, we show that the spherical shape is not a
suitable model for the electron. Instead of the usual difficulties en-
countered in the Lorentz model, we have found some topological reasons to
discard the spherical model. The unusual feature of this work is that a
simple toroidal charge configuration ensures stability for a given dis-
tribution of charges and currents, avoiding the drawbacks of the spheri-
cal rnodel.

In section 2 we present the mathematical formalism whichisused
in this work. We start from the definition of domains in Minkowski space,
define forms and integration of forms and arrive at the first set of Max~
well equations in the context of exterior algebra.

In section 3, aiming to establish the second set of Maxwell
equations, we start from a symplectic symmetry argument. With the equa-
tions established, we apply them, choosing suitable boundary conditions.
Surface discontinuities are introduced.

Next, in section 4, we study the stability of surface discon-
tinuities in the fields and apply the results for a hypothetical charged
particle which may be the electron. No numerical comparison are made. [n

section 5 we particularize the above results for some special shapes. The

191



Revista Brasileira de Fisica, Vol. 18, n® 2, 1988

first example is the spherical one. A detailed discussion on the impos-
sibility of having well defined distributions of charge and current in
a spherical rnodel is given in terms of topological inconsistencies. The
spherical model is discarded and the toroidal model is introduced. With
this choice, the above difficulties disappear.

In section 6, a semi-quantitative result is developed. it is
shown that, from the point of view of rneasuring electric fields. the
spherical and toroidal models are alrnost equivalent. For some reasonable
distance, such as twice of the classical electron radius, the deviation
between the two fields is negligible. Also, thetotal energy ofa toroidal
electron is estimated and a compacted torus is constructed.

In section 7, we give some elernentary reasons supporting the
existence of magnetic monopoles. Basically, symmetry arguments of the
Maxwell equations are invoked. The physics of a toroidal magnetic mon-
opole becomes identical with that of the electron,

Finally, in section 8 we present a surnmary of results and of
possibilities of the toroidal model. A few exarnples of possible connec-
tions with other fields of theoretical physics are given. Among these,
perhaps the rnost interesting example consists in replacing a vortex
model like Olesen-Nielsen's by a closed charged torus. Other connections
with some related topics like Nambu strings and the irnplications on
elernentary particle physics are only rnentioned. They will bethesubject

of forthcorning papers.

2, INTEGRATION AND FORMS

Since in this paper we will bemainlyconcerned with integration
of forrns on Minkowski space Ml', let us define our terrninology.

A cornpact 3-dimensional subset  of the 4-dimensional manifold
M* can be deconiposed into two disjoined cornponents: int £ which has
dirn = 3 and is called interior domain and 32 which has dim = 2 and is
the boundary of R Both parts are regular domains. If int  is a sirnple
manifold, it can be covered by a single coordinate systern. In general,
int © rnust be covered by an atlas (4>i, Ui)i eI
ping coordinate systerns, where ¢7; are applications to R" and Uiare open

consisting of overlap-

subsets. The index | specifies the family of coordinate systernsl. Next
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we propose to construct the integral / F of an arbitrary differential
formF over Q.

Let us suppose that there exists a special coordinate sys-
tem (¢,,U,) so that the restriction of F to § vanishes outside ¢U(U0).

Then, of course, we define the integral

1

JF = f FG 2,2 ) d' d2dr’ (1)
U 2 3

Q 0

where the Zi are canonical basis vectors and the d\® represent the
parametrization.

I1f we choose an inertial frame S on M* with inertial coordi-
nates (Xo,xl,xz,xa), we define a 3-dimensional submanifold £ as a space

slice by
g=(xEM‘*]x°=ct°] (2)

Thus, & consists of all the spatial points at a specific time
9. ve say that (x!,22,2°%) are adapted to &. Now let § be contained in
a space slice relative to S. When integrating over R we must observe
that the restriction of dz° (considered as a form) to R vanishes and
the corresponding integrals involve only the space-ccmponents of the
integrands.

At each point of M* we define a system of unitary vectors {_fo,
—I)ljz,—fa} corresporiding to the four coordinates. An infinitesimal dis-

placernent of a point P is given by

dF = w7, + W, + o, + ¥, = o ¥ (3)
withi = 0,1,2,3 and where (ul is the form defined by
W' =4t de’ + AT dn' o+ A7 di® 4 A (%)
In generalz, 4t = p7’ and A% are functions of xk and X0. For
brevity we put
Wb = ot~ pz d® (5)

corresponding to
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db = (@ + p7/ dz®) :T),L (6)

In a parametric description, 'When the Xk are constant, a point

(9) with displacement given by dZZ) = p’b dz’ —I)l describes a curve CiR+M"

The totality of these curves constitutes a congruence (C) 3, The con-

gruence is defined as having only one curve passing through each point.

The parameter x° (or to) fixes the position of the point on (C). On the

other hand, When. t% is constant, as assumed above, the displacement is

given by dﬁ =w I—l and this suffices to determine 5. 0f course, an

observer placed on & cannot directly measure the displacements on the
normal to £. _I>0 is normal to 5.

If we use Cartan's moving frame point of view!, we can take

the trajectories of the volume elements of R to which we ascribe a den-

sity p* as forming a congruence defined by the differential equations

M

where 7~ = Trup*. (a=1,2,3), the 7, p* being functions of 20,20, X2,

| |
2%, with w = w /dx®,

Ve define p* by imposing that on R,
m o* [61 w? 53] (8)
f

is an absolute invariant integral in the Poincaré sense®. The square
brackets correspond to the exterior product in Cartan's notation. An
elegant proof that p* can be taken as a Jacobi rnultiplier of system eq.
(7) and that there exists an invariant form depending on three integrals
of eq.(7) is developed in Loiseau®

An invariant form [FJ has the exterior derivative equal to zero,
[:F]' = 0. But [F]‘ being zero, by Poincaré's theorem, there is an in-
finity of two-forms § such that E'"_]‘ = [A] This is equivalent to

[[[er=]] o )

saying that
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One particular expression for D\] is®:
[A] - Bl[wzwﬂ + B2 [wawlj + Ba[wlwzj
+ g [widt] + B [wdd] + B? [widt] (10)

where (B,E) are the cornponents of the electromagnetic field tensor. The

.0
usual Maxwell equations are obtained by putting § =0 (a=1,2,3) and
> >
p* = 0. This corresponds to having the scalar product BE =0 and [A
an exact exterior derivative, i.e., [A] = [a]', with [oL], a linear form.

The next possibility is to consider J + 0 and p* = 0. In this case we
>
must also have Eg = 0. As we know, J results perpendicular to E, with

its direction given by the intersection of the two spatial hyperplanes
B3%? - B3+ E' =0 and B'z® - B¥Ml + E2 =0 (1)

The possibility of having 3 $# 0 and p* + 0 leads to the fol-

. . 7=
lowing set of Maxwell equation *

| 3B > 7

1l o5 = oA

08t+r°tE ’-HTC

div B + bm p* = 0 (12)
*

div3+%{p—=o

It is irnportant to note that, until now, no physical hypothesis
has been made on the nature of p*. In the sequel we will develop some
models for p* and will consider some physical consequences of p* + 0.

When the congruence defined by eq. (7) corresponds to trajec-

tories of p*, it is easy to show that this choice corresponds to 3p*/ot=0.

3. A SYMMETRY OF THE ELECTROMAGNETIC FIELD

We can give a syrnplectic interpretation to the form [F] defined
by -ﬁ and § corresponding to the density p* and to the currentdensity ;

First of all we write down the Maxwell equations. Next, we establish
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the well known property that there exist only the two invariants
(%/c)2 + 32 and (E/c.%)z (13)

Now, it can easily be shown that if we consider the antisym-
metric matrix F which corresponds to the form E’] as a rotation, only
two null straight lines remain fixed. These lines depend only on the
above field invariants. But these two invariants also remain unchanged

by the transformations
&, Bre) > (E/e | B) (14)

and
& , B/e) + (-E/e. B) (15)

The first transformation is a trivial one. !t corresponds to a
single axis exchange. The second transformation is very important. From

a symplectic point of view it can be written in a 6-dimensional space:
Sl- ;5 (16)

It is straightforward to write the new invariant form ]___l{] cor-

responding to (—f/c, §). The Mayc(well equations derived from [:H] corre-
=

spond to a new current density ¢ different from J and to a new charge

density p different from p*. Explicitly, these eqoations are

N
bre

°

(7)

o
<
o
1

eyl
3
(o]

Il
o

The solutions of the complete set of Maxwell equations are ob-
tained as usual, defining the potentials (Z,Z') and (V,7'). Defining
the dependence of 7 and 7 on the space coordinate and the boundary con-
ditions, the solutions are written in terms of retarded potentials 1o,

The symmetry exhibited in the derivation of the Maxwell equations for
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the fields and particles is very peculiar. It also applies to the two
quantities (p, p*), showing that at the classical level it is completely
impossible to distinguish between electric and magnetic charges. We will
make use of this property later,
. 10 + -+ > > . . L.
It is well known that when E, H or D, B have discontinuities
on passing through some two-dimensional rnoving manifold 0 in £, the Max-

well equations can be written:

>
Aj _ 1 - > * _ _ i > >
—E——ﬁ(nXSE) Ap* = m—f(n.éB)

(18)
&
A 1 > 1 -> >
*c——ET—T(nX(SB) Ap = H(n,GE’)
> > > > > > >
where N is the exterior normal, §E = Ee - Ei and § H = He - }I-i. withthe

suffixes e and i denoting exterior and interior regions of 0. Fromthese
equations we see that there will always be a magnetic density if GE? is
not tangent to 0. We also see that if we consider a continuous medium
like a conductor or a dielectric, supposing that its exterior surfaceis
a discontinuity surface, the discontinuity can be supressed at the ex-
pensesof adding some electric and magnetic currents to its surface. Of
course, the values of these currents are given by the above Maxwell
equations. In general, these currents A7 and A:; are not tangent to a.
In the following section we will apply this reasoning to the case of a

closed surface embedded in &: in particular, to the electron surface.

4. EQUILIBRIUMOF A LAYER OF CURREMTS: THE ELECTRON

In this section we follow the detailed calculation for the
charge distribution on the electron surface as given by Loiseau®.

In his first theory“, Lorentz proposed the charge of the elec-
tron as distrlbuted over a certain space, say over the whole volume oc-
cupied by the electron, and considered the volume density as a continu-
ous function of the coordinates, so that the charged particle has no
sharp boundary, Indeed, it is surrounded by a thin layer in which the
density gradually sinks from the value within the electron to zero, But
this hypothesis was not sufficient to eliminate the infinite electron

self-energy and the consequent electron dissociation.
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After the theory of relativity, several theories of the elec-
tron have been formulated. Dirac has amended the situation with his hy-
pothesis of the point electron. But the infinity has survived at the

classical level.

Here, we mean to show that the Maxwel} equations, supplemented
with the terms corresponding to magnetic densities of charge and cur-
rent, can supply a hint to solve at leasttheinfinite self-energy prob-
'em. These supplernentary terms could be responsible for the appearance
of Poincare's negative pressure, leading thus to an equilibrium con-
figuration.

Let us take 9 as the boundary surface of the electron, The ex-
tericr applied field is null. The only field values to be considered,
namely 3 . _};e’ Z and ge are to be74created by ihe electron itself. In
the external region to 3£, we have He = 0 and Ee # 0. We have also

> ->
Ee // n to 9% The Maxwell equations can be read as

i) externul region to 3R

E iv E H N 7 -0 (19)
rot £, =0, div e—O, He=0’ leg=0, J,= 9
ii) interior region (intR)
7 iv 7 g 1.=0, 3. = (20)
rot i~0, div _b.—O, .7,—0, 7,7:—0, 37:—0

. > - .
These equations mean that Ee and H7L are conservative.

> - - > >
On 32 we have Ee - 8 = 0 and Hi + 6H = 0. Of course, n.8H=0.
The charges and currents on 3§ are given by

- GxB), So=g- Gl E)

(21)
= Sp* = 0

o o

Since the electron is strictly electric we have
g do = (22)
e n.E do=e
and define the potential V:
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i oV
fe=m[§]on 0 (23)
The equilibriurn condition on all is ]_fel = |—I§L.|

-
The current density 62 and the field Hi are tangent to d§ and

6_7? _‘_—57, Applying a w/2 rotation around ﬁ, we get

> > >
6:1? Ee |H7,| !Eel 5]
R Tl T L B 28)

The most rernarkable fact about these equations 1is that the
speed corresponding to the currents on 32 is equal to c. Also, we con-
clude that 7 and B are orthogonal vectors lying on the envelopes ofthe
orthogonal congruence of curves C; and C, on 3Q.

To solve the problern completely, we must calculatethedensity
p on 32, It is clear that when passing through 99 the potential V is

continuous with discontinuous normal derivative. At a point M on 9 we

have

3V cos ¢

{5:} = - bmoM) =2/0,o olp) ——— dop (25)

nje r
PM

thus

olM) - == S1. plp) S22¥ 45 - (26)

27 39 rz r
PvV

where # is the interior normal to 32, ¥ is the angle between Z'and T

PM
which is the distance vector PM

Expression (26) is a homogeneous Fredholm equation which has
a unique solution!? apart from a multiplicative constant factor. The

solution is obtained if the total charge is given:

e=[ff_ 6p(P) dcp (27)

N

The boundary 3§ can be parametrized by two families of ortho-

gonal curves (; and (, tangent to the unitary vectors _fl and }2- —fa

is parallel to Z Thus, the infinitesimal displacements of the point ¥
are

M = w! I, on (28)

199



Revista Brasileira de F(sica, Vol. 18, n® 2, 1988

M= w? fz on (> (29)

But w! }1 and w? _fz are intcgrable? w! = v! de! and w? = v? dz?, with
(v', v?) functions of (x!, x?). Along C, the current is constant =c3p.
Consequently, the current is orthogonal to the lines of equidensity of
the electric charge of C2 on 92 and is tangent to their orthogonal

trajectories C1.C2 are electric equipotential lines. Thus

Wy, = H, = hnsp() (30)
and
dw, = lkm 8p w? (31)
Integrating, we get
W, = Yt fc v? Spdx? = 4w &p(M) + constant (32)

2

with x! = constant, this results in

So) = 1 v? 8p dx? + constant/hm (33)
G,

Finally,

(W), = constant + I1yq (S;L(P—) cos ¢ dog, =

7 PQ

constant + UBQ dl/r) G(P)dgp =

an
constant - fng ali/r) 8p(P)do

&

i

(34)

P

>
where n is the exterior normal, Q is a point on 32 and ¢ is the angle
between the normal and the vector PQ For charges of opposite sign, the

normals are reversed, giving rise to positive or negative charges on9Q.

5. THE ELECTRON SHAPE: SPHERE OR TORUS?

The classical picture of an electron is a negatively charged
small sphere. The charge is uniformly distributed throughout the sphere
The current function is easily calculated by assuming a polar coordi-

nate system and selecting an arbitrary system of orthogonal curves (,
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and Cz' As stated in section 2, our 3-dimensional subset € is a regular
domain. When the domain int £ is a simple manifold, it can be covered
by a single coordinate system. Also, by Cartan's lemma, 3R is a regular
2-dimensional domain without boundary: 332 = 0. But this is not thecase
for a spherical electron. The sphere is a compact topological space,
since it is a bounded closed subset of B> It is impossible to cover
the sphere with a single coordinate system since 57 Mis not a sim-
ple manifold.

In terms of the curves C; and €,, this topological condition
implies in a serious drawback. 01 and ', are defined so that at all
points on 30 the fields EZ/ and }1:“ are uniform. We can not have any sin-
gularity. If, for instance, we take as current lines the orthogonal
circles to a diameter PP, the field —1;1 which is tangent to therneridian
through ¥ will not be determined at the poles PP’'. This fact shows the
impossibility of having a layer of spherical currents in equilibrium.

The spherical distribution is subject to a second difficulty.
Taking a closed curve Y on 3%, Y will divide 3R into two distinct do-
mains Dy and D, If Y is taken as a line of magnetic field C,, the cur-
rent flowing from D, to D, can not return to D . If Y is not closed,
giving thus a uniform.field ;’:;' it must have two limit points. The
orthogonal trajectories must be closed: this implies that the limit
points are points of indeterminacy of the current.

W conclude that it is impossible to have a uniform spherical
layer of electric currents in equilibriurn, with a stationary motion on
it. Our spherical model of the electron, although differing drastically
from the Lorentz model in two aspects: existence of a layer of discon-
tinuity and moving charges, also is unstable.

Let us now dwell on another model which is not subject to such
instabilities. Our surface of revolution will be taken as that of the
torus S' x S'. In this case, the instabilities noted above disappear.Our
torus will have axis 0z and equator plane (0x, Oy). A point o on the
torus has semi-polar coordinates: o = azimuth of the plane ¢ 0z, dis-
tance from Q to 0z, z = elevation.

By symmetry, the equicharge lines are paralleil on the ortho-

gorial planes to 0z. The current lines are the meridians. This current
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distribution, although in a quite distinct context, resembles thevortex
description of a type !l superconductor”. Returning to our forms de-~
fined in section 2, the infinitesimal displacement of a point Q can be

written as

B =dy X +0daX +dzk =w'Z +w? X +w’ X (35)
1 2 3 1 2 3
> > > . . .
where (Kl’Kz’Ks) are orthogonal unit vectors. With these notations, the
Poisson equation for the potential becomes

2 2 2
AW:?.E.*..‘.M-}.J.M.{.M:O (36)

522 2932 2% 3a? 322

with ¥{(®) = 0 and ¥ = constant in the external region. On the torus, if
>
we take do in the positive sense of K,, we get for the currentuflowing

through an element w?> = Rdaof a paraliel of radius R (length = 27 R)

w2 = pda = dim (37)
278 2L

with M taken on the parallel. W see that

_ 4
= 5= a, + constant (38)

Py 0

On the other hand, the gradient of W is

(39)

>
K +
2

gl
HE
-

1
)

S

grad ¥ = —]21 +

Cornbining this result with the corresponding value of 0, Wwe

get the following value for the field strength Hi on the boundary 23%:

H _n %y o

i % do 2

Wi:2ua+constant (k0)
W, =0

e

Obviously, at a point Q belonging to int &, H7; will be ortho-
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gonal to the meridian plane €0z. On 3%

| 8]
(AR N -GV S S 'S
e T " Im [anil T Ly o 2me (41)

S§p =

For the charge distribution on 3Q when the exterior field is

null, we get

Py = ~ Ly 4
T T, 2
M Zr 3, (42)
For the electric field
>
3y o 2
The total electric charge is L
il doy,
e = IIBQWI;;— (“‘)

To calculate dGM we change the coordinate system. On 9§l we use as co-
ordinate lines the meridians and the parallels. With this procedure,
care must be taken to avoid having the inner radius of the torus greater
than the outer radius. This possibility, although interesting, could
lead to serious teopological difficulties for our purposes. The meridian
equations £ = f(s) and 2 = z(s), with s taken as an arc element on the

closed meridian. The surface element on R is £dads. Thus:
Ll %
e = o ffBQ dods = S, [u] (45)

with S equal to the perimeter of the rneridian.

From the charge density

- e
— +
Oy = 77 5 a * constant (46)
we deduce
2e e %3 lﬁl
Borge o P cmmams 1= te IElyg -5y (1)
and
_ 2
W.7, =5 a + constant (48)

At the exterior of the torus we get:
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do dSP
L1y r

W o= =% Jf

e 2w,

(49)

pé

With this equation our problem is completely solved with sev-
eral interesting physical properties to be uncovered in the model. Thus,
a surface of revolution 32 of closed meridian section can provide a
simple example of a layer with electric (or magnetic) currents in equi-
librium. At the external region there is an electric field. This layer

can represent an electron.

6. THE EXTERNAL ELECTRIC FIELD: COMPARISON BETWEEN THE TOROIDAL ELECTRON
AND THE POINT ELECTRON
Unlike the early theories involving spherical symmetry, here
we calculate the external electric field of a toroidal electron. The

electric potential at a point & external to 3Q is

27 [S ds
e
- =__J sl 22 (50)
Q Zﬂsg 0 Jo I’PQ

If we take Q on the circular meridian with center A

2m 2™

e do_ d¢
VQ = - e P P (51)
4?1y 0 Tpg

with ¢ being the angle (4y,4P).
Let us call R=0¢, R = OP and v the angle (0P, 0g). Withthis

notation R
Lad ks )] (52)
rpQ R R RJ) |

We also assume R > R:], with Ro being the greatest possible

value of R'. Oeveloping Y/rPQ = 1/r, we get

1 1 R (R")* 1 2
— = = 4 =— COS Y + (3 cos“y~-1) + ..
r R p2 53 7
] 1y 2
=%E+-‘%—X1(cosY) +-(R )3 X, (cosy) + _I

R (53)
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where the Xm are Legendre polynomials. Substituting into the integral,

we get
2m 2m 1 14y 2
Vo= - [ j do do (1 +R_C05Y+L}?‘_)~l (3 cos?y - 1) + ...)=
Q 42 I, 0 R R R? 2
- ” S0 du | (54)
o T
Performing the integration
d ] dt
Vo - 'U Sp @'R—(b - — ” R'(P) < 8P cosy-
an R a0
[
-—LJJ 8p (3 cos® - 1) (R")? do + ... (55)
R Y]
Since the origin A is at the centre of gravity
“ R cosy do =0
a2
Then

V_ = - e _ -l_. [J (Sp{% cos? Y - l] (RY)?do+ ... (56)
¢ g B w

The corresponding field is

E =_e.._+_3_JJ Sp [—g-coszy—]] (B2 do + ... (57)
¢ g rilx

By choosing a meridian symmetric relative to the plane 0z = 0 and cal-

ling
{ 2 2 [f
A=,( Sp)(z2 + y%)do , C=1|| &p2% do (58)
Ilsn s
we get
_e _c4A|3 2 1 1
EQ —;?; —“R'* [2— cos“ T 7) +R6 (...) (59)

where T is the corresponding value of v (I = 0z, 0Q). For a circular

meridian (circular torus) we have

A={-(2a2+3b-2) , c=-§-(2a2+b2)
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and

yo-2,¢ (2a2 - p°)(3 cos® T - )]

R B’ Ra o
(60)
2 _ 12 2 _
E=_g__%e(2a b%) (3 cos® T ])+.”
R? R"

where a and b are the outsr and the inner radii, respectively.

>

The field E is on the meridian plane. Its component norma? to
R=0qQ is easily calculated by taking the derivative with respect to [
of the potential V

2 _ y2 .
E'N=-g-e-z-a—h—b-sin2 r (61)
R

-
The tangent of the angle between the field E and 04 is

a (2a% - b?%) sin' T
tan E = - » { (62)
2 2 -
R {1 2 (3 cos“ T -1)

Taking into account all calculated terns, the external electric

field of a toroidal electron can be written as

=<1 %-‘2- (2a% - b?) sin 20 (63)
R R

It is easily seen that for 1/R << an arbitrary small number
which can be, for instance, the inverse of the classical radius of the
electron, it becornes hard to distinguish experimentally (only measuring
the field) the toroidal electron froni a point electron located at the

origin, The greatest deviation for the field is found when T = w/&

=21 -3 L (2 -2 (64)
R? 16 R?

Ifa="0, this equation results

e 3 p?
E=;~2— ]-RF] (65)
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For b = RO/Z, where R is the classical electron radius!'?, the

field measured at a distance, say R = 2}?0, the deviation of theobserved
field from that of the point electron amounts to less than 1%.
The centre of gravity can be taken at rest. W note that choos-

ing this particular reference frame, the electron energy m.c> can be

0
written
mee? = g - (B + B?) dr (66)

In the internal region Ei/ =0

mocz = -B%T- ”J' H® dt (67)
Q

But the electron surface is a circular torus. We assume its
section as having radius r at a distance a from the origin. Thus, since
|Z,| = 2¢/5,2

m02=€-2— ]'/]"Z’/a (68)
0 2a I’Z/az

According to electrodynamics, the electron would have to have
an infinite self-energy since the potential ®=e/Rof its field becomes
infinite at the point R= 0. But the occurrence of the physically mean-
ingless infinite self-energy of the elementary particle is related to
the fact that such a particle must be considered as pointlike. Thus,
when we go to sufficiently small distances we get internal contradic-
tions. Formula (68) shows that, at least formally, the electromagnetic
self-energy of the toroidal particle can be equated to the rest energy
moc2 without any serious divergence

If, on the other hand, we consider a spherical electron aspos-
sessing a certain radius R,, then its self-potential energy would be

of order e?/R . Thus, from

o
ez/Ro -me?
we get

R, ~ e%/m o*
[}

This ratio determines the limit of applicability of electrodynamics to
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the classical electron!?,

Now, eq. (68) can be written as

2

2 R

0

where ¢ = »/a, Let us find the two parameters of the torus, r and a,

with the obvious condition R, = a + r. This amounts to say that a =1r =
= Ry/2.

In all meridian planes. each circular meridian of radius R /2

has the origin as a common point with the opposite meridian. W can say

that we have compacted the torus to have it contained in a sphere of

radius Ro'

7. A POSSIBLE CLASSICAL MAGNETIC MONOPOLE

in section 3 we have shown that it is possible to pass from one
set of Maxwell equations to the other, only by applying the transform-
ation (-E),i;) > (-;1*,—E’). In our toroidal model this is equivalent to study-
ing a current layer W_r:ere Ee = 0 in the external region and ﬁt =0 in
the internal region. E, gets tangent to a2 and He is orthogonal to 3%,

Taking into account these restrictions, we arrive at

5p'=1‘__'._§§=0 , =0 (69)
by

The layer becomes of pure magnetic origin. For the potentials,

Maxwell's equations are reduced to
E= grad V  and H = grad W (70)

with corresponding expressions at the external region

&y =0 and AW =10,

> > > > . i
On 32 we have SF = - E, and 8H = He. With these conventions,
> -+
we see that (H,E,j) can be taken as an orthogocal inverse frame of ref-
erence. W pass from the direction of 272 to that of 3 by a negative ro-

tation.
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It is easy to see that on 32 the equilibrium condition results
|7 1% = |E.|? and |7 | = |Z.| (71)

The ‘global set of equations to be fulfilled on the boundary

will be
Ei |ﬁel 1 dWe
6-1>=-cm? ,60*=-Im='ﬁ Y (72)
and, finally
- dWe
E. = , 18] = e 8p* (73)
7 4 1
dan
We will define the potential corresponding to a single layerof
density Sp* by
1 f d We
ex = - L “ AE (74)
b dn

Q
To be more specific, we say that the lines of the electric field
are lines of equidensity p* = constant and the current lines are their
orthogonal trajectories.
The other results are identical with the electric case, with
the conditions of exchanging W and V and changing the signofthecharge.
These are the conditions to be satisfied by the charge distri-
butions to arrive at the Kottler-Loiseau classical model for the elec-

tron (or magnetic monopole).

8. CONCLUSIONS

Throughout this work we have assurned classical physics, i.e.,
electromagnetism. W have attempted to give a somewhat qualitative pic-
ture of work in which people have been engaged, concerning the implica-
tions of describing the classical distributions in terms of some geo-
metrical symmetries. W have been encouraged in this work by the pos-
sibility that such a set of models give a natural explanation of the
stability of some elementary systems, such as the electron.

Our work has been entirely based on the interchangeability of
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the fields F and H with the corresponding passage from the electric den-
sity p to the magnetic density o*, In section 2 we have preferred to use
some symplectic geometrical arguments instead of the usual Riemann in=
terpretation of a function of complex variables. Our intention was to
show clearly the role played by the Maxwell invariants. Besides this,
the exterior calculus employed in rnatrix notation strongly suggests the
symplectic interpretation.

The question as to whether the spherical electron or the to-
roidal electron is the more fundamental model can be fermulated in a
different way. From the point of view of stability the spherical elec-
tron must be rejected, Our spherical electron differs from the Lorentz
electron essentially by having electric currents on the surface, moving
at the speed of light. Thus, it could be argued that a surface dis-
continuity replacing a massive distribution must overcome the problern
of self-energy divergence. Roughly speaking, this occurs. But another
drawback, of a pure geornetrical-topological origin arises: it becomes
impossible to specify the charges and currents at all pointsonthe sur-
face. This latter difficulty has led us to adopt the toroidal electron
of Loiseau, This model has very interesting properties: topologically,
the domain int (8* x S') is homeornorphic with the point group SL(2,R).
This group is singly connected, causing thus the connectedness of the
torus. A single coordinate system covers the domain R. With the current
flow lines lying in planes containing the axis Oz of the torus, the
torus becomes equivalent to an infinite solenoid wrapped round Oz with
the ends joined together. Consequently, we have a trapped flux in the
interior of the torus. In the exterior region, no rnagnetic effectcanbe
detected, Nevertheless, a large magnetic energy can be stored withinthe
toroidal electron. This can also be seen when the inner radius of the
torus becomes zerd,

There is a divergence in the total energy of the electron whose
source is not of Coulomb origin, but it comes from the fact that all
lines of the trapped flux are compressed within a vanishing area. This
very peculiar highly energetic closed circular string can serve as a
starting point for many theoretical speculations,

One possibility is to relate this configuration with the Nambu
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string assuming that in space-time the surface of discéntinuity can be
represented by Mercator's projection as a rubber band. If there is a
meaning to this analogy, the string should not be thought of as a math-
ematical line but as an object having some thickness. A specially short
string, corresponding to the compacted torus, should have about thesame
length and thickness.

In recent years, with the resurrection of the farnous early 1931
paper of Dirac’*, the idea of a magnetic monopole reappered. The issue
can be raised as to whether the existence of a perfectly localized mag-
netic monopole can lead to an effect which has passed unnoticed until
now'®, There is no basic objection to the existence of magnetic mono-
poles; their fields as considered here were deduced from legitimate Max-
well equations. Nevertheless, we have not used quantum mechanics and it
has been shown quantum mechanically that if magnetic monopoles exist,the
magnitude of the elernentary unit pole would have to be related to the
inverse of the elementary charge by a constant factor. In the GUT
model'® the monopole charge is 70 times larger than the electric charge
and this fact should alter our estimates made in the electron case™".

To close this discussion we would like to point out some fea-
tures of the toroidal configuration which could serve as a motivation
for future investigations.

Consider our toroidal electron as a closed string with flux fbo
passing through the meridians. For the currents in dynamical equilib-
rium, a constant magnetic field H will be created inside the string.

Each circular meridian has radius h as above. The flux & will be given
by
_ 2
¢ =H mbh (75)

The magnetic energy stored per unit length is

1

J=-2'

Himb? = ¢2/2mp? (76)
0
For the entire torus we get

J = qd2/b? (77)

total
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Using the results of section 6 we can make an estirnate of the

magnetic energy and of the rnagnetic field flux contained in the compac—-

ted torus
2
2 . o
Ip ~me” = > (78)
But ¢ = b = RO/2. Then
Jp ~ 202/R (79)
00
Thus, frorn eq. (79) we deduce
2 1 2 1 2
<I>0 ~2R0moe ~ze

This flux corresponds to the most stable energy within the
limits of classical electromagnetism, Correspondingly, the maximum pos-

sible magnetic field for a toroidal electron is

Obviously,the resulting egs. (79) and (80)are significantlyaltered
in the quantum framework.

From eq. (77) we see that we can diminish the energy of a mag-
netic toroidal string with a constant flux by spreading out the string.
If our ecompacted torus is the most stable configuration for the elec-
tron, we can not alter b without altering a and the condition Ro = a+b.
Probably, the spreading does not occur.

In a type Il superconductor it is the Meissner effect which
prevents the magnetic flux from spreading out. Of course, the magnetic
theory of type Il superconductors has nothing to do with our model.
Nevertheless, some topological ideas extracted from that theory could be
useful for suggesting some possibilities in our theory.

Here, we only sketch some ideas on type Il superconductors.
When we pass a critical applied field strength B, superconductivity will
not be cornpletely destroyed but rather, the magnetic field will pen-
etrate into the metal in form of thin magnetic strings, or vortices.

The flux being quantized, it is shown that a vortex string with a mul-
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tiple flux has
(81)

It is unstable, neaning that there can be no exact ground
state. But, as in the sine-Gordon nodel one can construct approxinative
ground states consi sting of n widel y separated Nel sen-Olesen vortices ®.
Neverthel ess, a string-1ike excitation such as the N el sen-d esen vor-
tex cannot itself represent a physical particle since it has infinite
energy due to its infinite length. So, if the NOvortex is going to be
physically relevant we must find a way to terninate it. NO includes a
nonopol e at an endpoint of the string and an anti-monopol e at the ot her
endpoi nt. Qur nodel could offer an alternative to this approach: we sug-
gest the hypot hesis of considering an infinite sol enoid as equival entto
a toroidal configuration. This configuration can be el ectron-Ilike or
monopole-1ike, The boundary conditions at infinity are replaced by cyc-
Tic conditions.

G course, relativistic effects would be taken into account,

The chal l enge of the toroidal nodel for elenentary particlesin
the future would be to find new techniques for relating the above prob-
lens to sone interesting questions like the conf ining potential for
quarks and the interaction between closed strings®?,
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Resumo

Ac invés do nodel o esférico classico usual do el étron, nos de-

senvol venos um nodel o com di stribui ¢do toroidal de carga. Mstranos que
este dltimo nodel o ndo fica sujeito a instabilidades. O nodel 0 também se

apli

ca a cargas nmagnéticas, o que nos permte a consi deracdo de nodel os

de monopolos magnéticos. Al gumas possiveis conexdes com outros topicos
recentes de fisica teorica sdo tanbém nenci onadas.
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