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Abstract In general relativity, a new lagrangian functional for uncharged
Weyssenhoff fluids is proposed, satisfying two simple requirements: (1)
all properties of the field variables occurring in the lagrangian should
be derivable from the set of Euler-Lagrange equations alone; and (I1) for
every field variabie occurring in the lagrangian, the corresponding
variational equation should be valid. Einstein's equations and the equa-
tions of motion for the spin are derived. Comparison with recent related
papers in general relativity and Einstein-Cartan theory is made, and
topics for further research are suggested.

1. INTRODUCTION

The lagrangian formalism for spinning fluids in gravitational
theories has received considerable attention is recent yearsl_lz. Dif-
ferent energy-momentum tensors for the spinning matter havebeen obtained,
all approaching the usual energy-momentum tensor for the perfect fluid
in general relativity when the spin of the material tends to zero.

It is the aim of the lagrangian method to infuse into a scalar
functional, L, all elements necessary to obtain the equations of motion
of a given physical system. The lagrangian is expressed in terms offield

variables Qz(x), and satisfies a set of variational equations
5L/6Qi = BL/BQi - Ba(BL/BQi,a) + 3a9b(3L/3Q~;,ab) =0, (1)

where both the 3 and the subscripted comma symbols denote partial deriva-
tive. The variables Qz(x) are independent in the process of partial de-
rivation. In order to have an intelligent game, the following two simple
rules seem essential: (1) all properties of the quantities Ql.(x)
present in L can be derived from the set of egs. (1) alone; ) for
every field variable Qi(x) which appears in L, the correspondingequation

5L/5Qi = 0 must be valid. As far as we are aware, every report already
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presented on spinning fluids in curved spacetimes has missed either con-
dition (1), or (i1}, or both.

In this paper we propose a general relativistic lagrangian for
spinning fluids which is extended, in the sense that it satisfies both
requirements (1) and (I1). We also derive the equation of motion for the
gravitational field (Einstein's equation) and the equation for the spin,
and show that both are physically plausible.

Further on in our presentation we shall need two simple thermo-

. . 11-13
dynamical relations s

(3e/3p0) , = F/o* , (@ e/38) = T , (2)

where €{p,8) is the specific internal rest energy (energy per unit of
mass), P is the rest matter density (mass per volume), S is thespecific
rest entropy, P is pressure and T is temperature. Throughout the paper
we assume 871G = ¢ =1,

To describe the spin of the material, we shall also need an or-
thonorrnal tetrad of vectors h“a(x), where w = 0,1,2,3 labels the vector
hoa

and a = 0,1,2,3 labels components“. The tiinelike vector is the

eulerian fourvelocity uaof the fluid, while e = aa, n%a = g% p3a =y2
are spacelike vectors. The specific spin tensor Sabof the fluid is re-
lated to o2 and €% via
o - k%P - g%l (3)
where K{(x) is the specific spin magnitude in the rest system (intrinsic
angular momentum per unit mass). Alternatively, we could define  the

specific spin vector according to

4 = Kyd = K(—g)_l/zeadeuaabBc , (&)
b (-g)_l/zEabcducsd , (5)
abed 0123 _ 41, From the ortho-

where £ is totally antisymmetric with &
gonality of the tetrad vectors it is clear that the fluid satisfies the

auxiliary condition
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=0 . (6)

2. THE LAGRANGIAN DENSITY FUNCTIONAL

We separate the total L into geometric and material components

L=L_ .+ 1L

G u with

Ly = (/) B°, , o= (-det g,) 77, (7)

~ 93 a and
Rbc 2 [_arb]c + de[an]c ’ (8)
where the I's are the Christoffel symbols and the square brackets denote
antisymmetrization. The extended material component of L is

as a, 2 2 (a,b]
L, = e{-F(p,s) + Kp(d Ba - g8 ua) - 2nK%p [aBb]a g

a . a a
+ A (ou );a 0B+ A um1) 4 A (o)

a a a a
+ Azz(B Ba+l) + >\33(Y Ya+l) + 2>\01u aa + zxozu ga

a a a a
+ 2)\03u Ya + ZAIZOL Ba + zklau Ya + 2}\233 Ya} , (9)

where the subscripted semicolon means covariant derivative, 9 means an'
for Q an arbitrary scalar, vector or tensor quantity, and where the func-
tions Xp, >\s and Au\) are lagrangian multipliers.

All terms in eq. (9) are already known in the literature, except
perhaps the third one (which we discuss later). The functional F{p,s) is

related to the specific internal energy €(p,s) according to
Flp,s) = o[l + e(o,8)] (10)

. Q. as . . . . .
while the term Xp (¢ ga-B Ota) is the spin kinetic energy density of the
fluid®*'%. The terms containing the various A's express geornetrical, kin-
ematical and dynamical constraints imposed on the system: those con-
o . a a ,a . a a_,
taining }‘uv imply that v , @, B, Y form an orthonormal tetrad (4 time-

like, the others spacelike), while that with AP reflects the matter con-
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2513515

servation , and that with }‘s prohibits heat exchange between dif-

b]

ferent parts of the fluid.

Finally, the terrn anzpzoc[aBb]ot[aB' seems to be novel in the
literature, and is interpreted as the potential energy density of spin
of the fluid. The value of the number n is to be eventually fixed by
experirnentalists. For sirnplicity, a term corresponding to the particle

16

identi ty is omitted in our presentation.

3. EULER-LAGRANGE EQUATIONS
The independent quantities Qi(x) in L are taken as the twelve
A's, the three scalars K, 0, s, the contravariant vector components ua,
Ota, Ba, Ya of the tetrad and the covariant components gab of the metric.
We start by considering the variational eq. (1) as applied to the
lagrangian multipliers. For Q = Ap and XS they clearly give

(pua)_a=0 , (11)

s =0, (12)
' a

where the subscripted comma means partial derivative, while for Q = Au\)
they give

ua,vb _ _uv
gabh A =n (13)

v
or equivalently nu\)huah b = gab’ where both nu\) and nuv are the constant
Minkowski metric diag(+1, -1, -1, -1). A few simple relations derived

from eq. (13) are largely used, such as
(ab] _ [ab] e] _ _1,be bye
a@%ﬁ B =1/2 , o-B u@B = - gla’a” + 8787) ,

a a , . _ gy _
z(XBa— B6 , wu =o't =8B =0

The equations 6L/6Ya =0 is also trivial, giving )\Pahua = 0;
since the vectors % are linearly independent, it follows that the
four coefficients APs are null.

The equation 8Z/8K = 0 brings a relation between kineticandpo-

tential energy density of spin,
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Kpocaf%a = nk?p? (15)

(hence only »n>0 gives positive kinetic energy), while the variational

equation for the specific entropy s gives the evolution of the thermasy®

(") =T (16)

To obtain eq. (16), use is made of egs. (10), (2} and (8).

The equation corresponding to o is a good deal more laborious,

and gives
MU (Xll + nkzpz)aa + (klz + % kp)Ba + Kpéa =0; a7
from the independence of U, O Ba’ it then follows that
A= nk®p? + J(oocaé{7 =0, 2>\12 =- KXo, (18)

and eq.(17) simplifies to
2,52 B = 9
)\OIua + nk*p a, + KpBa 0 . (19)
Iristead of working out the equation dL/éﬁa = 0by brute force
a
(as was done for 6a’), we note that the lagrangian (9) is invariant

under the simultaneous interchanges a +> 8, 1 < 2, K=+ -K ; from egs.
(18)-(19) we then have

A=A =k=0, (20)
2 20 _ —
xozua + nk%p Ca Kpb, = 0 . (21)
The calculations concerning 6L/c§ua = 0 are again long, and give

b
2Kpo Bb;a - p)\p,a + }\Ss,a + Z(Aooua + )\Olua + }\OZBa) =0, (22)

while the equation 8L/8p = 0 is trivial and gives

= -F . 2
A o (23)
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if we now take the inner product of eq.(22) with u? and use egs. (23)

and (15) we find the expression of A |
00

24 = -pF - mK%p? .
Aoo p’p 2nK*p (24)

4. EINSTEIN'S EQUATION; SPIN EQUATION

The calculation involving the equation <5L/5gab=Oare consider-
ably long, so a compromise conciseness/clarity must be set inour pres-

entation. W transcribe below only the final expression of 6/5gab, as
applied separately to each relevant term in eq. (9). One result is widely

known, and gives the Einstein tensor

21 b
8L/ 8q, = 7 0 . (25)
The other partial results are

(8/8g ;) [er(p,s)] = —; egab[v’(p,s) , , (26)

(8/8g,;,) [exo(a®B -8° )] = elnk®o’q b, ulagble,

e
+ ["pu(asb)c]. + npzsacsbc} ) (27)

(8/8g b) [2nek?p%a [B Ot[chJ] = nel(= 5 szzgab + Dzsacsbc), (28)

(8/8,) r (o) 1= § o o™, (29)

. c c C
(5/5gab)e[?\“(u u) w24 wlo v 28 u sc]

) %(DF + 20202 %P - Zepu(asb)cil . (30)

'p
Collecting terms, Einstein's equation for the spinning

Weyssenhoff fluid finally emerges:

P - [o(14e) + P + anzozjuaub - P+ nKZOZ)gab
- 2(6:+umun) [__ou(asb)n] o (31)
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It is instructive to compare eq. (31) with similar gravitational
field equations encountered in the literature. In studying spinning
fluids in the general relativity, Ray and Smalley'? found a result simi-
lar to our eq. (31), but in their paper the terms with K*p? are lacking;
this is not surprising, since their lagrangian also lacks terms in K22,

In the Einstein-Cartan theory (an alternative theory of gravi-
tation with nonsymmetric connection)!?, the spinning fluid studied in
the majority of works is that of the Weyssenhoff type. In those works,
a canonical energy-momentum tensor for the fluid is developed, instead
of the metrical energy-momentum as is done in this paper. Interestingly
enough, the gravitational field equations obtained in those spacetimes
with torsion closely resemble our eq. (31) obtained in theriemannian
spacetime; the equations would coincide if n were equal to =i, which
however would imply a negative kinetic energy of spin according to eq.
(15).

Another coincidence deserves mention, now concerning theequation
of motion for the specific spin sab. To obtain it, we initially takethe
dot derivative of eq. (3) and use X = 0 (eq.(20)): we next use egs. (19)

and (21) rewritten in the form (for Xp # 0)

¢ - koo - 8%, &% = koe” - %t (32)
and finally obtain
aab ZuEaSbJCZZC (33)

This general relativistic equation of rnotion is identical toits counter-
parts encountered in Riemann-Cartan-Weyssenhoff formulations®? > ° %19,

Since eq.(33) does not depend on n, measurements of the time
development of Sab are useless to fix the value of n. However, the mo-
tion of a particle is sensitive to the energy-momentum ’7’ab (source of
gravitation), which is seen from eq. {31) to depend on n; an appropriate
investigation of geodesic motions can then determine the value of n, an
interesting topic which nevertheless lies beyond the scope of the pre-

sent article.
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5. WHAT 1S LEFT OPEN

The purpose of this paper has been accomplished, in that an ex-
tended general relativistic lagrangian treatment for a Weyssenhoff fluid
was presented. The paper permits further extension in various directions:

First, since spinning fluids of non-Weyssenhoff types are also
considered in the literature'’ (sometimes electrically charged and mag-
netized4_6), they arealsoawaiting for an extended lagrangian treatment.

Second, gravitational theories other than general relativity
have been alternative nests for spinning fluids, so they also deserve a
completely metrical lagrangian approach (as opposite to a composite met-
ric-canonical lagrangian a_pproach”).

Finally, the outcome k=0 of the present paper (eq. (20)) implies
that every element of fluid maintains unaltered the magnitude of the
specific spin along its worldline, which is a rather restrictive kind of
motion for the fluid. As a matter of fact, the constraint K = 0 seems to
be a commonplace in the literature, e.g. in refs.4-6, 8,9, 12.Lagrangians

predicting motions with K not necessarily null are thus highly desirable.

Thanks are due to the referees, for a number of suggestions

which helped to generalize the original typescript
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Resumo

Propomos uma nova funcional lagrangeana para fluidos de Weys-
senhoff com spin, en relatividade geral, satisfazendo duas exigéncias
simples: (1) a de que todas as propriedades das variaveis de campo que
ocorram na lagrangeana possam ser obtidas exclusivamente a partir das e-
quacdes de Euler-Lagrange, e (I!} a de que seja valida a equagdo varia-
cional correspondente a cada variavel de campo que ocorra na lagrangeana.
As equacdes de Einstein e equacdes de movimento para o spin sdo obtidas.
Comparamos nossos resultados com similares enrelatividade geral e em
Einstein-Cartan, e sugerimos topicos merecedores de pesquisas adicionais.
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