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Abstract Through the example of the ¢3 equation it is shown that a dis-
sipative perturbation ad¢, may generate kink-like solutions even in the-
ories which do not have any such solutions when unperturbed. The gener-
ating mechanism is explained by energy considerations. Furthermore, a
relationship is conjectured between the results of a Painlevé analysis
of an ordinary differential equation and a possible representationof
its kink-like solutions in a closed form.

1 INTRODUCTION

The behaviour of kink solutions under the influence of a dis-
sipative force OL¢t and a constant external force F is a problem of cur-
rent interest, both in applied and mathematical physics. The former
since friction and constant forces frequently appear in nature, the
latter because of the difficulties to find exact solutions to such prob-
lems.

A well known example is the damped and driven sine-Gordon {sG)
equation, used as a mathematical model of physics in a Josephson junc-

tion!??

. Damped and driven 27 kinks were proved to exist® and studied
numerically, but their exact solution is unknown. Only unstable kinks
of height m + 2arcsinF and ™ - 2arcsinF and velocity v = 1 were found
for IFI < 1 and an array of kinks for |F[ > 1%, They all satisfy a re-
latively simple ordinary differential equation (ode) of first order.
Unstable kinks of height f3 = f2 and f2 - f1 (where fi < f2<f;
are thereal and differgnt roots of f3-Ff-F=0, 0 < F2<4/27 and
of velocity »'= 1 were given in implicit form for the damped anddriven
d)'* equations. Also stable kinks of height f3- f1 (genera}izing the kinks
known for a = F = 0) and unstable kinks of height f3~ f2 and 7, - f,
all of velocity le < i, were found®’®. The terms stable and unstable
are meant with respect to small perturbations in the far field (X + #w),

In this note the generation of kink-like solutions by a dissi-
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pative perturbation a@( is examined. For this purpose we choose a the-
ory which, in unperturbed form, does not have kink solutions at all: ¢
theory. In section 2, kink-like solutions to the dissipative ¢3 equation
are derived. The mechanism of this generation is explained in section 3
by an energy analysis. In the following section 4, a Painlevé analy-
sis’ of the damped and driven ¢® equation, reduced to an ordinary dif-
ferential equation (ode), is carried out, and the results are compared

with the sG and ¢" equations. Results and conclusions are summarized in

section 5.

2. KINK-LIKE SOLUTIONS

The ¢* field equation with a dissipative perturbation 0.4>* , >0,

and an external driving force F = const reads

¢xx-¢tt=¢2_¢+a¢t_F' (I)

Throughout the following we consider F > ~1/4 (cf.eq.{4b)) and look for
travelling wave solutions. With

O(z,t) = w(s), z=vy(zvt), y= (102) /2 (2a)
eq. (L) is reduced to

d*w/dz? = w* - w = Bdw/dz = F, B = ayv . (2b)

The ansatz

w(z) = F+ g( + exp(D(z - 20)))"° (3)

solves eq. (2b). The exponent -2 follows from a leading order analysis;
2y is a constant of integration, and f, g, B and D are constant par-
ameters to be determined. For kink-like solutions the asymptotic (*¥)

behavior of egs. (2b) and (3) leads one to guess that f is a solution

of the .quadratic equation
ff-Ff-F=0 . (ha)

For F > -1/k the solutions of eq. (4a)
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£, =12 +/FF /% (4b)

1,2
are real and different. Without loss of generality we consider
F=f1i<2<f

Inserting the ansatz (3) into eq. (2b) one obtains three equations for g
B and D:

gl2f+g -1y =0 , (5a)
g(-40* + 2DB + 2f - 1) = 0 , (5b)
g(-2D% ~ 2DB - 4Ff +2) =0 . (5¢)
The nontrivial solutions (g#0) are
g=l-2f=f2-fi=+/FF+1 , (6a)
D =+/TT=27176 = £((4F + 1)/36)% (6b)
B=5D= 5((ur +1)/36)"" . (6c)

D and B have the same sign and are real since 1 - 2f =1 - 2f; is not
only real (7 > -1/4), but positive. The solution (3) describes a kink
from f1 to f2 if D<@, and an antikink from f, to f, if D > 0. (For F =
= -1/h eqgs.(ba,b,c) yield g = D=B =0, and the ansatz (3) = by exp
(D(z - z4)) > -exp(D(z - z0)) i.e., 39 3 Zp = 29 -{In(-1)/D) - leads to
a rational solution w = 1/2 + 6(3 - zo)-z, v = 0, which is not Kkink-
-like and will not be discussed further.) From B = ayv and sign(B) =
= sign(D) it follows that the kink and antikink move with opposite vel-
ocities

vla,F) = + /BE/(aZ+B2Y, B® = 25/hF + 1/6 . (6d)

Here and in all following equations with two signs the upper sign is
valid for an antikink and the lower one for a kink.

It should be emphasized that the product B = qyv depends only
on F, but not on a, and that,B # 0 for F = 0. Therefore the solution (3)
in the case ¢ + 0 and F = 0 has nothing to do with travellingwave sol-

utions .to eq.(1) for a = F = 0. In this context it is instructive to
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rewrite solution (3) in the form
w(z) = (1 = g)/2 + g(tanh(D(z - 2)/2) - 1)*/h . (7a)
On the other hand, for a = F = 0 eq. (2b) has the particular solution
wo(z) = (-1 + 3tanh 2((z - 29)/2))/2 (7b)

which satisfies w (=) = wo(oo) =1 and has arbitrary velocity =1<v<1.
Another solution (kink-like for F > -1/4) is obtained when eq.

(1) is reduced with y = x = vt, v = %I, to the first order ode
w -w - awdw/dy - F=0. (8a)

Eq. (8a) has the solution (with the constant of integration yg)
wly) = (fa + FHLWVO + 7)), Y =exp(F(f1 =~ f2)y - yo)/a) . (8b)

3. ENERGY ANALYSIS OF KINK GENERATION

The velocities of the solutions (3) and (8b) can be obtained
and explained by the following energy analysis. Eq. (1) can (up to the
factor exp(ot)) be derived from a lagrangian density

L= (¢§/2 - ¢;/2 - v{¢))exp(at) (9a)

where
v(p) = 0%/3 - ¢2/2 - Fp + v , Vo = const. (9b)
0

is the potential energy density (including the part due to the external
force F). v has a maximum for ¢ = £; < 1/2 and a minimum for ¢ = F2>1/2
(F > -1/k4). The total potential energy is given by*

E —

The integral (9¢) and therefore the total energy E are infinite or of
form (o) for the solutions (3) and {8b). The differences AE_ and dE =
= E(t+dt) - E(t) in egs. (9d,e} and (10a), however, are finite.

83



Revista Brasileira de F(sica, Vol. 18, n¢ 1, 1988

E, = IW Vdx {9¢c)

-0
The kinks (v < 0) and the antikinks (v > 0) lose, when moving the dis-

tance Ax <> 0 in time At, the potential energy

Ag
p

T -3 - (- D2 - Ffe - £))ie

£ WF+ 1) nge < 0, (9d)

or per unit time

BELAL = F (4F + 1) %06 < 0 (9e)
Their kinetic energy is conserved since their velocity is constant., The=

refore the loss (92) is equal to the frictional loss of the total energy

dB/dt = - j a g, dx . (10a)

-—00

For the solution (3) one gets(replacing t by s and z by 2 = exp(D(z-zo)))
dE/dt = ~ayw? (bF + 1)57%/(5/8) | (10b)

and for the solution (8b) (admitting an arbitrary velocity v and re-

placing t by y and y by Y}

dEfdt = 0% (f2 - £1)3/6 = 02 (4F + 1) %76 . (16¢)

Equating expressions (9e) and (10b) one obtains the result (6g¢) with
ayv = B for the solution (3) while expressions {9e) and (10c¢)yield p=%]
as the velocity of solution (8b).

This analysis explains particularly why the kinks and antikinks
can move, for F = 0, with a constant velocity v # 0 in spite ofthe dis-
sipative force. There is an infinite amount of potential energy (9c)
available since the potential energy density (9b) takes on a maximum at

¢ = f1 (or more generally since V(¢=f1) # V(¢=F2)). Such an analysis was
already indicated for ¢* theorya, and now results have been extended to
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F # 0 and to the solution with v = #1, Since for V = const # 0 the kin-
etic energy is constant, but the potential energy is not, it becomes
also clear that the solutions (3) and (8b) cannot exist for a = 0. Of
course, due to the maximum of V for ¢ = f; the solutions (3) and (8b)

are unstable against small perturbations of the far field.

4. PAINLEVE ANALYSIS

Now we will examine eq. (2b) for the Painlevé property. Inserting

the ansatz

n=oco

w(z) = Zn=pan(z - z2)" {(11a)

into eq. (2b) one finds (besides the trivial case p = 0 with arbitrary

ag and ai) the resonances for n = -3 i.e., p = -2 corresponding to the

arbitrariness of 3,,and for n = 4. The coefficients a_,, A_ys-++,23 aArE

a,=6, a_ =-6B/5, a, = 1/2 - B*/50, a, = -B*/250 ,

-2

a, = ~78*/5000 + F/10 + 1/40, a,= 11Ba,/15 - B®/37500 . (11b)

a, is arbitrary provided the resonance condition

B®/6250 - 4B%a, = 0 (12a)

is satisfied. The solutions of eq.(IZa) are

B =0 for arbitrary F (12b)
and
B* = 625(4F + 1)/36 ., (12¢)
In the simple case (12b) a first integral to eq. (2b) is
(dw/dz)?/2 = w3 - w?/2 - Fu + C
and can be integrated once more in terms of elliptic integrals. The
solution is free of movable singularities other than poles. In case
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(12¢) eq. (2b) can be brought into the canonical form’

d?u/ds® = 6u® (13a)

by the transformation
W = exp(-2Bz/5)u + 1/2 - 3B%/25 , (13b)
s = - 5 exp(-Bz/5)/¢® B) . (13¢)

Eq. (13a) has the Painlevé property. Condition (12c) includes thevalues
(6c) of B for which the kink-like solution (3) exists. The latter oneis
found from eq. (13a) when, in the first integral (du/ds)2/2 =243 +C, the
constant of integrations C is chosen equal to zero. Only the solutions
(6c) of eq.(12¢) yield real values of v if F> -1/k. For F < -1/4 no
real values for vV arise from eq. (12¢) at all.

Comparing the results of a Painlevé analysis for the damped and
driven sG, ¢* and ¢3 equations (all reduced to ode's by the transform-
ation (2a)) one observes an hierarchy in the sense that the s6 equation
(after the transformation u = exp(Zw)) does not possess the Painlevé
property for any set (oY»,F) # (0,0) as follows from the resonance con-
ditions’ *{F = 2(oyw) 2. {Note that in order to get both conditions one
has to investigate solutions of leading order (2 - Zo)-z as well as
(z - zo)z). The ¢" equation is of Painlevé type only if either F = 0 and
7h10, Only the ¢3 equation (2b)

preserves the Painlevé property for simultaneously nonvahishing values

ayv =+3/v2 or ayv = 0 and F arbitrary

of ayp and F, provided that the velocity satisfies condition (12c).
This hierarchy can be intuitively explained by the fact that the non-
linearity is less complex in the ¢% equation and most complex in the s6
equation.

Although the ¢* equation is not of Painlevé type for any simul-
taneously nonvanishing oyv and F, it is interesting that for all sets
of ayp and F which lead to kink solutions, one of the two resonance con-

d®’1% {n sG theory neither of thetwoconditions

ditions can be satisfie
2(oyw)? = *4F can be solved for real, nontrivial, %y» and F, and kink

solutions to the damped and driven sG equation (reduced by eq.(2a)) are
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unknown in closed form.

Finally, the analysis of the ode (2b), without the need to per-
form a generalized Painlevé analysis'! of the partial differential g
(1), indicates that for a # 0 eq. (1) is not completely integiable. This
result is, of course, expected and can be obtained since, for given a
and F, the reduction (2a) leads to ode's which do not have the Painlevé

property for all values of » which do not satisfy eqs. (12b) or (12¢c).

5. DISCUSSION

in unperturbed dissipationless systems a kink ¢ {x,¢t) from
¢(-=,t) = ¢1 to ¢(=,t) = ¢, with ¢1 # ¢, can only exist if the theory
has degenerate vacua V(¢,) = V(¢,). Such a solution would become
stationary in the presence of dissipation. In a theory with V(¢,)# V(¢,)
and dissipation a¢t, a kink when moving loses potential energy which is
consumed by friction. This compensation determines sign and absolute
value of the kink's velocity. (The velocity cannot be arbitrary already
because the term °‘¢+, destroys the relativistic invariance of the equa-
tion). The potential energy eq.{9c) of such solutions is infinite, i.e.
the kink can move with constant velocity for an infinite time. Thus in
the presence of friction, kink-like solutions can be expected if the
potential V{$) has at least two extremum values. In particular, the sol-
utions exist also for F = 0, and it seems convenient to include the
constant external force as F¢ in the potential V{¢).

Physical realizations of such kinks will be only approximate (as
any kink when realized) because of the then finite spatial extension of
the system. The energy of the trumcated kinks is finite, and they can
propagate with approxirnately constant velocity for a finite time. Kink-
-like solutions with one or both asymptotic values ¢; and ¢, correspond-
ing to a maximum of V(¢), as in damped ¢® theory, meet with a further
problem of physical realization due to their asymptotic instability.
However, such solutions may be stable against small perturbationsofthe
near field®.

Another question is whether and under what conditions kink sol-
utions can be given in a closed form, i.e. in terms of known mathemat-

ical functions. We feel that an answer is suggested by the Painleve
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analysis and that it is likely to be yes, if the Painlevé test is posi-
tive at least for one branch (possibie |eading order behavior) of the
sol ution.

tn concl usion, we think that the generating rnechanism of kink-
~tike solutions by friction a¢, has been clarified. This may throw new
light on certain nodel s of physical interest, as e.g. ¢* + ¢* theory,
whi ch = without dissipation - do not have any kink sol utions.
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Resumo

Mostra-se,através da equagdo ¢* conp exenplo, que una perturba-
¢do dissipativa ap, pode gerar sol ugbes de tipo kink mesmo em teorias
que sem perturbacdo ndo tem sol ucdes de tal tipo. O mecani sno gerador &
expl i cado através de consi deracgdes energéticas. Sugere-se, tanbém una
conexdo entre os resultados de uma anilise Painleve de uma equacdo di-
ferencia? ordinaria e uma possivel representacdo de suas sol ucoes de ti-
po kink numa forma analitica.
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