Revista Brasileira de Fisica, Vol. 17, n? 4, 1987

On the Existence of Singularities in the Geometrization of

Lagrangian Dynamics

C. MARCIO DO AMARAL*and P. PITANGA
Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ,
Brasil

Recebido em 12 de maio de 1987

Abstract It is shown that the standard geometric picture ofan irnportant
class of nonrelativistic Lagrangian motions has the origin of the gen-
eralized velocity space as a singular point. This occurs when the mo-
tion's generating force has a less than quadratic dependence on the gen-
eralized velocities. The important cases of a gradient force-field and
that of a Rayleigh force-field are considered as examples. The corre-
sponding dynamical connections are constructed and present polos of or-
der two and one, respectively, at the origin of velocity space. This
implies that well-benaved Lagrangian dynamics may originate ill-behaved
gauge-fields in configuration space.

1. INTRODUCTION

Geometry enters the realm of mechanics in connection with the
inertial quality of rnass. The principles of analytical mechanics have
shown that the really fundamental quantity which characterizes the in-
ertia of mass is not momentum, but kinetic energy. Numerous attempts
have been made to link nonrelativistic Lagrangian motion to geometry.
What is common to all of them is that under the concept of geometriza-
tion of the motion when a field of forces is given, the idea is to find
such a mathematical structure to the configuration space that the path
defined by the time development of the system turns out to beageodesic
line. In this sense, the geometrization of conservative motion was
solved by Doug'iasl and Eisenhart® who showed that, for this case, the
geometrical structure of a Riemannian space is sufficient. After these
classical papers, there were many attempts to describe nonconservative
motion. 1t was shown, first by Lichnerowicz® and later by others*’S that

in this case one needs a more complex mathematical structure than the

*Work partially supported by CNPg (Brazilian Government Agency).
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Riemannian one more recently, Trumpers, in his construction of a geo-
metrized version of rheonomic motion, exploited the fact that the
Lagrangian mechanics of nonrelativistic rheonomic systems is contained
in the theory of a class of linear symmetric connections in configur-
ation spacetime. But Trumper's geometrization, in spite of being de-
fined in configuration spacetime, excludes all relativistic mechanics
and also all types of forces which depend on powers higher than quad-
ratic in the generalized velocities.

The main purpose of this paper is to show the existence of
singularities in the geometric picture of the Lagrangian motion when
generated by forces with a less than quadratic dependence on the gen-
eralized velocities. The particular cases of a gradient force-field and
that of a viscous force, 1linear in the generalized velocities
(Rayleigh's force), are considered. The coefficients of the corre-
sponding dynamical connections are constructed with the metric kinetic
energy tensor and the generalized force. These connections present poles
of order two and order one, respectively, at the origin of velocity
space. Meanwhile, contrarily to Trumper's configuration spacetime geo-
metric model, the motion's geometric picture in configuration space is
valid and without singularities for forces which depend on powershigher
than, or equal to, quadratic in the generalized velocities. 1t is con-
jectured that the singular behaviour of the geometric description will
disappear, if the configuration space of the Lagrangian description, is
considered a stochastic space“’, that is, a space in which the point~

-like events are not ascribed definite coordinates X.

2. THE DYNAMICAL LINEAR CONNECTION

Let us consider a holonomic scleronomic system with n degrees
of freedom whose configuration-velocity description is represented by
the generalized coordinates {qv} and the generalized velocities {&v =
= dq\)/dt ;v=1,...,n. Here t, the time, is the affine parameter. The

kinetic -energy

a (@3 0, (2.1)
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defines the scalar field 7(q,4) in terms of the covariant, symmetric,
metric tensor auv(q) and the contravariant generalized velocity 27“.
From the geometric rneaning of auv(q), we may write eq. (1.2) in  the

scalar product form

o7 @d) = 1= Wy . (1.2)

Then, 8 .B
UPlq,q) = 4— , "2
q,9 s ( )

is a contravariant vector of unit length.
Now, it is well known that the Lagrange equations of first

kind may be put in the covariant form

0 P = @)

where Qx(q,é) is the generalized force and the fu);} are the Christofell
symbols of second kind, constructed with the metric tensor a.ww). How-
ever, eg. (2.2) is not qualified as an acceptable way of geometrization
since the force Q" (g,q) is not included as part of the geometric struc-

ture. Then, instead of eq.(2.2) we consider the geodesic equation

wA A . SUY
¢+ L), a9 =0 23

The quantity Lx(q,c'z)uv is a generalized connection, which may
be velocity dependent and contains the Christoffel symbol as a velocity

independent term
e ey _ M Mo oo
q,a)y, = Lol + Y q,a)yy - (2.4)
Then, eq. (2.3) may be written in the form
WA A A o VLAV
q + Eu\)} +Y (q:q)u\,] qq = g, (2-5)
Now, comparing egs. {2.2) e (2.3) we have

Yk(q,&)uv # = -d@a . (2.6)
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To obtain the explicit form of the third order tensor Y)‘(q,c})uv,
we must recall that the relevant dynamical quantities at hand are the
force Q)‘(q,c.{) and the metric am)(q). Motivated by the general form of
the relativistic linear connection proposed in 1971 by Oliveira® (in his
geometrization of nondissipative long range interactions), we were able

to construct the general solution of the nonrelativistic eq. (2.6)

A, e __ 1 e A A
YHa.a) =gy (@ a, g 0, -4 ] (2.7)

B

. A
with a v = 6 v
The form of connection (2.7) is coincident with that used by
Vujanovic9 in 1967, in his geometrization of classical nonconservative
dynamics. Onlyﬁ'the symmetric part of (2.7) contributes to eq. (2.7). Now

it is convenient to define
by .
) Ao o
2la24) - P g, (2.8)

- h . .
and to splity v into the form

Y)\ = (-<I>>‘a ) + (-¢ 6X

A A A
- 2.
v v W0 YW =T ) Y Y ) 209

which will be useful later.

3. THE GEOMETRY GEMERATED BY 7)\“{1})

In this case, the general dynamical connection (2.4) isrestric-
ted to having the symmetric form
!

u 1 My M
" o) =Tupd # ¥ () =t - ¥, (3.1)

vo =% )

The symmetric conaition (3.1) defines a torsionless geometry.
it is well known that in this case it is possible to construct, at an
arbitrarily chosen point, (qvo), of the configuration manifold, a local
coordinate system in which Lu(vp) = 0. More generally, given an arbi-
trary curve in such space, we can always introduce (geodesic) coordi -

nates such that Lu(\)p) vanishes at all points of the curvel’. Then, at
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(qvo) we have

1 .
{3, @) = (a0, (e (3.2)
pe 27,

Eq.(3.2) is a restriction on the velocity (;{V) at (qo).

It is important to remark that owing to the presence of the
kinetic energy in the denominator of Qu in eq. (3.2), and because of the
general nature of the forces Qu, the connection (2.4) is defined only
along real trajectories. This means that the geometry is defined on a
space of paths. Then, on the trajectory in configuration space, we can
define the covariant derivative of a tensor of any valence. In particu-
lar, the covariant derivative of the metric tensor a, .. belonging to

i\
the symmetric connection (3.1) is

Vu(a)\'r)'= ZaMu@T) = aMQT + a}‘_rd)u . (3.3)

If the more general, non-symnetric connection (2.7) is used in
the construction of the covariant derivative, we obtain instead of eq.

(3.3)
Vu(a)\'r) =20 a . (3.3%)

HAT
Equations of type (3.3') define a semi-metric geometryu,which

is not a Weyl geometry because the connection (2.4) is not Symmetric”.

4. THE SPACE OF PATHS AND ITS CURVATURE

Quantitiessuchasauv, QA T, neednotbegloballydefinedas
functions of position but only along trajectories. Nevertheless, by
considering a continuous family of trajectories simply covering a neigh-
borhood of the original path qA(t), we can extend the domain of defi-
nition of such quantities in order to make their partial derivatives
meaningful. The continuous famity of trajectories may be constructed,
for example, with trajectories starting from a fixed configuration point,
towards different directions with the same kinetic energy, but we could

also take the trajectories starting with equal kinetic energies from the
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points of a configuration hypersurface towards the directions normal to
that surface. Now, possessing a manifold of trajectories, we may define

its curvature tensor by the standard form!®

T

AT T T o
RVHA = av L'uA - 3 L wt L Vo L

c _.,t L (4.1)
A L' s VA
From the symmetric connection eq.(3.1) and with eq.(4.1) we.ob~
tain . - T
g Taop Tta Ve -a Ve,

VU VHA A v (L.2)

T . . .
where }%\)19\ is the curvature tensor, belonging to the Christoffel con-
nection, constructed with aw. The tensor VV<I>T is the covariant deri-~

vative constructed with the symmetric connection (3.1).
T _ T T c _ T
V2 =3+ { Fo -0 . (4.3)

Now, two second-order curvature tensors may be obtained from

eq.(4.1). By contracting R\m T with respect to the indices v, T we ob~-

T
tain the Ricci tensor

0 T T
an = RW\ = Rm‘ + aMVTCD - a)\Tqu) (4.4)

The other curvature tensor may be constructed by contracting
the indices A, T and we obtain

- T _ T . N
R aTqué aTvvu¢ avéu auév . {4.5)

5. THE DYNAMICAL CONNECTION GENERATED BY A GRADIENT FORCE-FIELD

In this simple case, the manifold of paths is constituted by
trajectories with the same total energy. Here, owing to the presence of
the potential field, the curvature tensor, eq.(4.5), vanishes identi-
cally. As is well known, the potential and kinetic energies are restric-
ted by the total energy conservation relation E = T + V(g). Then, from

eq. (2.8), we have
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& _0 ! !

But, from eq. :(3.1) and eq. (5.1) we obtain

M@a) = (P @ & 7@ -
L (q,q)\)p {\)p} + avp(q) 3 V(q) -I-c:;lz . (5.2)
The connection eq. (5.2) has a simple pole of second degree lo-
cated at the origin of velocity space. This means that the geometric
picture of dynamics remains highly singular in some neighborhood of that
point. It is interesting to remark that from the restriction E= cte,we

may write eq.(5.2) in the convenient form

M v(g) =

H H 1
L(q)\)p = {\)p} + avp(q) m

= {\:‘p} - % a0 M Oog1-v/E)] =

u u .
= {5} = - ay,? flog /T-V/E ] . (5.2")

Now it is easy to see that the singular behaviour has a logar-
ithmic derivative form and occurs exactly when V = E,(ata turning point,
for example) in configuration space. From egs. (5.1) and (4.5), we have
in the gradient force-field case

1
T _ 5= (3 V3V - aVvay) =0 . (5.3)
Rvu'r 2T ‘v 'y E\A v

Then, only one curvature tensor is left, namely that one de-

fined by eq. (4.4). The scalar curvature constructed with Ricci's ten~

sor, (4.4) “in this case is
]
R=R+2 vuq>“ , (5.4)
0
where 8" is defined by eq.(5.1') and R is the scalar curvature belonging

to the Christoffel connections constructed with auv. If we represeni

eq. {5.3) in the form
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7 (R=R) = (5.5)

ve see that the @ field has (R-R) as a source field.
For the sake of completeness and after some tedious calcula-

tions, it is possible to obtain the following relevant equations

T
Bagogr =0
T
R,V]J)\, =90
(5.6)
R =7 R4 0%
&

VT (R\)]J)\T) = 2V [\)Ru] by

6. THE DYNAMICAL CONNECTION GENERATED BY FORCES LINEARLY DEPENDENT ON
THE GENERALIZED VELOCITY

In this case, we will consider the very interesting and well
known’ Rayleigh dissipative force-field, Q)\(q,c}) which is defined by

8, (@.d) = -0, @ & . (6.1)

Of course, the dissipative character of any dissipative force

is contained in the restriction
A
Q)\ qg <0, (6.2)

for arbitrary c?‘.
In eq. (6.1), the real, symmetric, tensor field, nw(q), is the
assumed mathematical entity which represents the viscosity of the con-

figuration manifold and it must be such that

sA+H
nela) g >0 (6.3)
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A trivial consequence of eq.(6.1) and eq.(6.3) is

o @& = -, & < 0. (6.4)

Now, with eq. (6.4) and eq. (3.1), we have for the Rayleigh case

nﬁ q
(@) —— =
lq

3+ ay @ M@ (6.5)

M, e M T uwed_u
L@,q)y, = Lo} + ay0(q) g mga = {5} +a

]

where Ue(q,c'[) is the unit generalized velocity defined by eq. (2.1").

The formal structure of the dynamical connection (6.5), shows
that in the regime of high velocities, the geometric picture of motion
is basically Riemannian, but in the low velocity regime, the geometry
presents a singular behavior due to the presence of the first order pole,

located at the origin of velocity space.

7. CONCLUSIONS AND CONJECTURES

The geometry of configuration space does not in itself exist,
since it is determined by the interaction of dynamical systems, Each
form of interaction creates its own geometry. in this paper we have
shown that well-behaved force-fields may create ill-behaved geometries.
The geometrization results as a consequence of the transformation ofthe
Lagrangian equation of motion into geodesic equations. In order to do
this, as we have shown, it is necessary to construct a dynamical connec-
tion field in terms of the generalized force field. Now, this dynamical
connection, in Utiyama's!® sense, is a gauge field. But if this gauge
field proceeds from a force-field with less than quadratic dependenceon
the velocities, it is singular at the origin of velocity space. This
implies that well-behaved Lagrangian dynamics may originate an ill-be-
haved gauge field. For the class of force-fields considered in this
paper, the geometric i1l behavior is a direct consequence in the a
priori hypothesis of sharp localizability in the manifold. Naturally,
if a small neighborhood of the velocity space's origin is subtracted
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from the manifold, the ill-behavior will disappear. Then, if the concept
of well defined localization is relaxed, the singular behavior is over=-
come and the geometry stays well behaved. This suggests that if we in-
tend to construct a well-behaved geometry picture of the Lagrangian no-
tion in configuration space we must employ a stochastic geometry'®,
because in a stochastic configuration space, the particle coordinates
qV are determined only up to a certain accuracy AqV, while the average
value of the coordinate is sharply defined. Then, stochastic geometries
generalize conventional geometries in the sense that these arerecovered
if the space consists exclusively of sharp values. In particular, Blo-
khintsev's!® stochastic geometric mode! appears, to us, very interesting
for the geometrization of the type of force-fields considered in this

paper. This is a task for another paper.
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Resumo

Demonstra-se (ue a geometrizagao usual de uma inportante clas-
se de nmovimentos ndo relativistas, Lagrangianos, €& singular na origem
do espa¢o das vel oci dades generalizadas. Exenplifica-se como0s importan-
tes particulares casos de uma forca dependente de um potencial e de uma
forca dissipativa do tipo Rayleigh. As correspondentes afinidades dina-
micas s80 construidas e elas tém polos de segunda e prineira, or dens,
respectivanente. Isto é uma evidéncia de que dinam cas bem conportadas
podem gerar canpos de gauge, mal conportados, no espaco das configura-
coes.
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