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Abstract Through a time-dependent linear transformation and the time
substitution, we can evaluate exactly the propagator for a charged par-
ticle in a time-dependent electromagnetic field subjected to a time-
-dependent quadratic potential.

1. INTRODUCTION

It is well known that for a quadratic Lagrangian, the propa-
gator is related to the classical action through the Van Uleck-Pauli
formula'’?. However, the evaluation of the classical action is not
always simple. The time-dependent linear coordinate transformations
with new-time have been used by Junker and inomata®, and by Cheng' to
transform the original quadratic action into a new quadratic action
whose classical action can be evaluated exactly. Later several
authors3’® derived such transformations in a broader sense by applying
a non-linear superposition law of Ray and Reid?. In this paper we are
able to deduce them from a Feynman path integral by considering the mid
-point expansions_ ' for each short-time action, and to obtain the pro-
pagator for a time-dependent harmonically bound charged particle in a
time-dependent electromagnetic field.

For a time-dependent harmonically boundcharged particle of
charge g and massmsubject to a time-dependent electrornagnetic field

2 > . . .
E(t) and B(t) (along the z direction), the Lagrangian has the form

LGr,t) = L(z,2,8) + L,(#,,7,,t) (n

with

Dulz,z.t) = 2 (5202 (9574 g8, () (2)
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Bt =0 - B ¢ 007 + 0l ) ¢ dBF )

where w(¢) = gB(¢)/me is the cyclotron frequency, ?, and E {t) denote the
components of z and E(¢) perpendicular to B(¢). Here wm(t), wy(t) and
wz(t) are, respectively, the oscillator frequencies anr;g X,y and 2z di-
rections. Since the z coordinate is separated from the I, {x and y) co-

ordinates in eq. (1), the propagator is of the form
> >
K(r'” t'r ! ,t! ) = K (z",t"a" ) K, (2, 2" r ), t ") (4)

with

K, (2,652 ,¢Y) = (m/2ninf(2')) % expl(-im/2nf (1) "2 (£1) + 25'2"

_ tll t’l
- 225 (] exp{(i/nf(t-))lg-j £ (6)F(t)dt + 2" J B, (£)g (¢)dt
tl N tl
t|| t
- (1/m) J( J E, (£) £ (£)E, (8)g (6)dtde] } (5)
t! ¢!

11

being the propagator ® of a tirne-dependent harmonic oscillator. In eq.{5)

the functions f (t) and g(t) satisfy the following differential equations

Fle) + WX(e)f(e) =0 f£(&") =0 and FlE) = -1 - (6)

i
o
]
(=}

g(t) + w2 (¥)g(2) g(t") and  g(t') = 1. (7)
Nowweareonly left to evaluate the propagator of the
Lagrangian (3), which will be carried out by using time-dependent linear

coordinate transformation with new-time for a special case.

2. SPACE TRANSFORMATION AND TIME SUBSTITUTION

For the Lagrangian {3), the propagator can be expressed as the

path .integral

> > Ll
K, (pu,t'sri, ')y = [/ exp{(i/h)( L,(r,,r,,t)dt } Dx(t)Dy(t)
Jti
(8)
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where Dx(t)Dy(t) is the usual two-dimensional Feynman differential

measure. Using Feynman's polygonal paths, the propagator (8) becomes

N N-1
E:J.—>0 J J J=1
with (9)

> . - ~ 2 _ _
S(Pjyrj_] ’Ej) (m/ng){(mJ xj-]) +(yj yJ_]) (i-: (1) /2) [{E +(L'J -I) yJ yj"‘)

" ) e ) EJ(wameyJ Y+ (B AL (10)

For later convenience we set g€ .=t .—t7._1
= (tj+tj—1)/2) for any function F(¢).

and F.=F{¢t.) and 7. =F(£.)(¢. =

Tty i 3 (%
Introducing the time-dependent linear transfarmations of space
x(t) = s (£)x(1) , y(t) = (£)¥(1) (11)

and the time substitution

dt = u(t)dt (12)

we obtain the following relations

2.-x. . =s .AX.+€,5 X, o~y = v 3 ¥, ,

31 T Sy Y ey e Ui T Syt gy 0 ()
by expanding eq.({11) about the rnid-point %J, in the time interval
t., ,,t.| tot f d . H h 1 , = L) . s
Eﬂ_] 3] o terms of order E3 ere we have et“AXJ X(TS) X(TJ“])
X3. = (X(T?;)+X(TJ._]))/2 and similar for AY. and Yj- Substituting eq.(13)

3
into eq. (10}, we have

S@E.F. se.) = AG. . . o+ (m/2e Me? (Ax )% + 8% (AY )2
(# |ie BG5Sy (m/‘J){st( J) Syg( J)

§ra-1%;
+ .8 .6 (FTAY.~YAX,) +e6.X.7 5 -5 )-82._.:.
R 2y i ,7> JJJJ(xJ vi Cxityi J[Sxa(sxa
v w2s )F: v (6 Al 5 T4 B 7)) (14)
wi®xg’ 5 " Syd Pyg yJ ®yg 7850858 s AL
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with
5 22 5 22 s . 1x2 s ., .y2 )
AG = M|xdTd o, Tud%d xg=177-1 , “yg=174-1]
7,1 - - A - ( (5)
¢ 2s 2s . 2s 2s )
{{ g yJ x| yj- 1

after sirnplifications.

In order to get rid of the }_(jyj term in eq. (14), we must let

s .8 .-8 .8 .= 0 . (16)
xJ Yd xJ YJ

We now choose

= 2 3 = = . 2 3 . =
Sy + u)xjsxj =0 and Syg * WygBys 0 . (7)

In order to satisfy both eq. (16) and eq. (17), we have to consider the

following special case hereafter:

§.=3 .=5 . , 02 =uw? =uw? (18)
J XJ Yyd xJ YJ
Using the time substitution eq.(12) or Oj =T Ty TupE;, we obtain

from eqgs. (14) and (17)

> > - - . - -
Slr.,r. ;0.) =06, . | + (mu.s%/20 ){(AX )2 + (0¥ )% + 0.0.(X.AY.
3731 Gog-1 *lmee/20 ) HBK )T (r ) PR g
- YM)/u.t +g5.0(E X, +E YV /u, . 1
JJ)/J qJJ(QCJJ yJJ)/J (19)
Choosing
-2 —2=
su.=1 , ssz; = W (20)
J J J J 0
with w being a constant, eq. (19) becornes
> > - =
S(r.,r. ;0.) =AG. ., + 20. AX )2 AY.)? w (X .AY .- AX,
(J Y- J) Jd-1 (m/ J) t J) + J) +0on( J YJ YJ }{7)}
3 - - - -
+qgs. 0. (FE X.+FE . 21
qJJ(v’CJJ YdJ J) (21)
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Using egs. {11}, (12) and {(18), the Feynman path differentiai

measure is given

y N - g Wl
(m/2nine )" [ de.dy. = (s's") = (m/2miho. Wort ax dY (22)
J =1 Jd 7d J g=1 J

by symmetrizing about the end points in the time interval [ti-l’tjj'

Combining eq. (19) with eq.(22), we obtain our principal result

> >

K (7L eel,tt) = (s'e) T ie LA REL TSR (B, = (1Y) (23)

with

G (@1, 7y) = expl-(im/2n) [(5"/s") (2" 24y"%) - (5'/5') (x'24y' )]} (24)
where X(RY,T"";R},T') is the propagator of a charged particle in a con-
stant magnetic field with the cyclotron frequency w, and in a time-
-dependent electric field g(r) = E( (1))s3(t(1)), which has been
evaluated by us'?

Without loss of generality we now consider the case of Ex(t)=0

or g(1) = Ey(’[) hereafter. We then have!® (7 = 1" - 1!)
k@RY,e"sRl,t") = (m/2ndhT) (on/Z sinfw 7/2))
[}

x exp{ (imo/Zh)([cot(on/Z)/Zj Cam-x1)2+(r"-y")2Z] + (xryv-xvy"))}

(25)

x exp{{Zq/7 sin(on))[(Y“eb + Y'sa) - (q/mwo)ﬁoj}
x exp{ ('Lqmw /b tan(w T/2))e -2[ X'-X"VH+(Y'+Y") tan (w T/Z_]
with

T” [
£, =Tf' 'ey("()sin@o(r""r)]dr &y = ,TflT ey‘("r)sin@o (t-1')]dr

T“ . N T .
€, = {. ey(T)SlnEuo(T -t dx jT" ey(G)Sln[wo(e'T')]de , (26)
€ = (Ea+eb)/m sin(wOT) and H=1-2 tan(on/Z)/on .
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Combining eq. (5) with eq. (23) we have the propagator eq. (4) as our fi-
nal result. As a final remark we should mention that since (%) =Sx(t)

= sY(t) and Q(t) = wx(t) = WY(t) , we have in the continuum case
s (tw(t) = W, s2(t)u(t) =1 and E(t) + Q*(¢is(t) = 0 (27)

as we expect®’®. Unfortunately, the present method can not be applied

to the case of w (1) # Wy(t), which will be studied in the near future.

We would like to thank Dr. AB. Nassar for introducing wus to

his interesting papers and for sharing some of his unpublished results.
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Resumo

Achando a transformacédo linear da coordenada dependente dotem-

po e a sybstituigao do tempo, podemos calcular exatamente o propagador
para uma particular carregada, no campo eletromagnético dependente do
tempo, e com un potencial quadratico também dependente do tempo.
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