Revista Brasileira de Fisica, Vol. 17, no 3, 1987

A Prospective View of Instability Control in Pinches and Tokamaks by
Plasma Current Shaping

A. TOMIMURA

Instituto de Fisica, Universidade Federal Flurninense, 24210, Niteréi, RJ, Brasil

Recebido em 14 de novembro de 1986

Abstract A computing code based onan implicitdifference scheme has been

employed to solve the set of partial differential equations (radial and
time dependent) for the perturbed variables which describetheresistive
magnetohydrodynamic (MHD) instability in pinches and tokamaks in order
to assess the conditions for the appearance of stability windows insome
of the input parameters used. It is shown that it is possibletoinhibit
or even suppress the m=2, n=l and m=3, n=2 tearing modes by shaping the
longitudinal plasma current density in the form of a small, localized
distortion on a previously chosen smooth profile for the equilibrium
configuration. The corresponding windows appear in the input parameter
space q,, the safety factor at the currentchannel position, for a
fixed position of the distortion as well as in the parameter space RR,,
the radial position of the distortion, for a fixed ¢,; in both cases,
the distortion is localized near and inside the singular surface.

1. INTRODUCTION

The method of instability control in tokamaks by plasma current
shaping has its main practical relevance in providing ways of delaying
or even suppressing the appearance of the most dangerous instability in
tokamak discharges known by the generic name of disruptive instability",
characterized in its initial phase by a slowly growing magnetic per-
turbation and terminating with a sudden loss of confinement with the
plasma current dropping very rapidly to zero {e.g., 20 ms in JET). Such
an instability has long been suspected of being caused by the resistive
magnetohydrodynamic {(MHD) tearing modes.

The method is based upon the fact that the growth of tearing
modes depends on the existence of a current density gradient along the
plasma radius so that if this gradient is locally reduced somewhere in-
side the current channel, the growth of a given mode can be reduced or
-even suppressed. Toi et al? give evidence that the resulting distri-

bution of current can be obtained experimentally and one of the promis-
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sing proposals is to locally control the temperature profile either by
electron cyclotron resonance heating or through localized current drive?

In this work we adopt the procedure established by Robinson,D.
C., et aZl', which differs from that of Glasser et aZ° who obtained a
tearing mode stable distribution of current density by minimizing A' for
each mode and for different values of (. Our investigation has been 1im-
ited to the analysis of the conditions for the control of the m=2, n=l
and m=3, n=2 tearing modes in diffuse pinches and {straight) tokamaks,
as these are the most probable candidates to explain the disruptive
nature of the instability.

For the equilibrium configuration we have employed the Culham
Model* because of its large current gradient near the edge of the cur-
rent channel and therefore strongly unstable relative to tearing modes.
A gaussian with a small width and amplitude is then superimposed on the
poloidal field distribution, distorting it locally with a similar ef-
fect on the current density profile (through Ampére's law). This new
equilibrium configuration in then established through some of the free
parameters of the input data of an existing, linear, one dimensional,
resistive MD instability code, which solves the set of partial differ-
ential equations for the perturbed variables. W then look at the ef-
fect that the small distortion on the current density profile has onthe
growth rate of a particular mode by either varying the input values of
qa or the values of the radial position of the distortion. {n both cases,
windows of stability have been found which reveal that tearing mode

stable configurations can be achieved by this method.

2. (a) — BASIC EQUATIONS AND ASSUMPTIONS

In this work, the plasma is described by the MD equations for

a single fluid, viz., the continuity equation,

24v.h =0 M
the equation of motion
> >
AR _JxB _
p{svt—'* V.VV] = -’-=0=” Vp 5 (2)
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Ohm's law,
E + PxBla = n} , (3)

and by Maxwell's equations and Ohm's law combined in the single equation

¥

%g = Vx @xg) - (E%) VX (n\7><§) ’ )

where p, \? P, 3 ?, E and n the density, flow velocity, scalar press-
ure, current density, magnetic and electric fields and resistivity re-
spectively.

Denoting by the subscripts (0) and (1) the equilibrium and per-
turbed quantities respectively, one gets, assuming a zero flow velocity
T/)o, the zeroth order equations

(@xBy) xB, - Wp =0, (5)
vx (,VxB) =0 , 6)
and the linearized equations for the first order variables
8—171 | > > >
Po 3% T &7 E@O'V)Bl - @I’V)BO - V(Bo'gx)j - Vpy %

a"él
3t

> > 2 >
vx (V, xB) - @) Vx(VxEB), ®

where we have assumed and unperturbed resistivity and constant pressure
throughout the plasma in order to avoid rippling and interchange modes.
The plasma is also considered incompressible, i.e., V.ﬁl =0 with a
constant density p = p, along the plasma radius, which extends up to a
conducting wall.

The sic equations implicit in egs.(7) and (8) for the components of
?1 and ?1 can be further reduced if one takes the curl of eq. (7)
in order to eliminate the perturbed pressure p, and then using V -ﬁ =
=V-?1 =0 to eliminate Vlz and Blz from the resulting set of equations.
Now, by considering only perturbations of the form f (r,t)exp(imGHikzz),
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these equations reduce to

|

2
en 9rB .
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R [r r o1 * w Brl]
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where F = mBy (»)/r + k B (r)and h = m?/r? + k%,
Qa 2720 J k4
For numerical computation these equations were conveniently

written in terms of the normalized independent variables for radial pos-
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ition and time, x =»r/a and T = t/TR respectively, and the following

dimensionless dependent variables,

$ =B, /B , ¢=1By/B , W=-ikikwl , U =KktRWOI’ (13)

where a is the current channel radius, Tp the resistive diffusion time,
k = (mz/R_i + kz)]/2 with R  standing for the radial position of the sin-
gular surface and B is the characteristic value of the magnetic field.

The boundary conditions suitable to resistive m22 modes which
are of' interest in this work are

Brl=Be]=Vrl=Ve]=0 at r =10 (14)

By= V. = 0 at r =Ry (the conducting wall) (15)
ZmR 9B
By, ¥ il (16)
‘ m*> + k2R? or
2 W r=R
W
’ 'mzRW BVr‘ (
Vo = 17)
m* + k°R% or
z W r=l?w

provided ZE # 0 at the wall and the pressure p > Oasr + RW'
In addition to the boundary conditions given, an initial pertur-
bation has to be specified for one of the variables, say Vv 0 in
order to begin the calculation. A specific form has been chosen for
Vr](r,D) but the results with other forms have shown to be quite in-
dependent of the initial perturbation (as it should be).
The set of equations (9)-(12), together with the boundary con-

6 . .
*18:7 in their more general forms,

ditions (14)-(17) can be seen elsewhere
where the equilibrium resistivity and pressure profiles, heatconduction
and viscosi'ty effects are included. 'n particular, the boundary con-
ditions are fully discussed in reference 4.

Finally, as one can see by inspection of equations (9)-(17), the
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calculation of the perturbed quantities requires the knowledge of the
equilibrium profiles of By &) and B, (r) which, in their turn, can be
either given as numerical data directly taken from some experiments ofr
by modelling the equilibrium by specifying the profiles of some relevant
parameter (usually functions based on experimental data) and constructing
the whole equilibrium functions from it. A number of equilibrium models

819210 45 study re-

have been constructed in the past by various authors
sistive instabilities and amongst them we chose the one which bestsuits
our studies, viz., the Culham Model. In it, the axial current density
whose form is based on the measured temperature profile on the T3-A

tokamak, is given by
[ J 0 - (r/a)M:lN r<a
J '=1 (18)

30 0

where N and M are usually taken to be 2 and 4 respectively, a isthe cur-
rent channel radius and J‘J is a normalization factor.
From ‘]zo given by eq. (18), we get B00 by integrating the z-

component of Ampere's law,

3(rB, )
| Qo _ hm
r  or ) Jzo ’ (19)

and using.B so obtained and Jzo' we combine the (force-free) pres-

0o

sure balance

J B J. B , (20)

9B
50 _ _ Ar
it~ Joe (21)
to get
8820 o
3 -2 (_CT Jzo BOo ’ (22)

which, by integration, gives B__(r)
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Now, by choosing the characteristic value of the normalization

factor B, for the magnetic fields Bg, and B, to be
B, = h—ﬂ-Jo a , (23)
¢ ¢
the normalized forms of Jzo’ B(_)n, BZ0 and o read
a-=H oz
7 @) = (24)
0 . x 21
N (_)K Ki+1
w! - = x <
k=0 (N-K)'K! (KkM+2)
Ee(x) = (25)
{ EO(I)/x , X321
N LK (L+K)M+2
[§§(I)+z(1v:)2 ) )70 -g ] ‘ <]
L=0 X=0 (§-1)'L! (N-x )\ K!(kp+2) [{K+L)M+2]
B _(x)= T (26)
z
B2 (1) ,y x oz |
z
Tola) =7, (x) By()/B, (3) ", (27)
where x = r/a is the normalized radius. These expressions still leave
Bz(l) undetermined, which could be used as a free parameter. W use

instead the value of the safety factor a, = pBZ(r)/RO B(_)(r) at r = a,
that is,
(28)

m

U

where E’o is the normalized (to

Therefore, given N, M,

a) major radius of the torus.

q, and }?0, the equilibrium profiles of
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»

J, B8, 5 and J are defined, as well as the (normalized) function F
0

given by
~ 1 m o .
F=oa ‘270 + KzBz) , (29)
2,2 2y1/2 . . . .
where o = (m /xs + K?) » &g being the normalired radial position of

the singular surface and Kz = kZ a.

2. {b} = COMPUTATIONAL PROCEWRE

In order to solve the set of egs. (9)-(12) with the boundary
conditions given by egs. (14)-(17) and the equilibrium model described
before, we have used an existing code(a) which treats them as aninitial
boundary value problem and uses an implicit finite-difference scheme
where the four (normalized) equations for B, Bgy, V,, and Vg, are
solved simultaneously at integral time steps using a single vector dif-~
ference equation (see details in refs. 6 and 8). Given the input data
and the initial perturbation, the code then computes the solution ofthe
equations and evaluates the growth of the perturbation at each time step
using P = (3¢ (x,t)/3t) /Y, where ¥ can be any of the four relevant par-
ameters {we have chosen Br] and VGI); after a number of time steps the
unstable mode is found when P settles down to a positive constant in-
dicating an exponential growth.

To run the code, it is necessary to specify the equilibrium pro-
files for EO and EZ as well the quantities p,/<p> and n /<n>, - where
the brackets stand for characteristic values. The first two are given by
the equilibrium model (the Culham Model} built in rhe code as a sub-rou-
tine and the third one is assigned the value unit, meaning that the
(constant) value of g is identical to its characteristic value. In
or MKk, (==n/F;) and

the magnetic Reynolds number S, defined as the ratio between the res-

addition, we must also specify the values of &

istive diffusion time and the Alfven transit time, Ty = 4% fe?<n>  and
Ty = L(lm<p>)l/2/B respectively, that is
s = /1y : (30)

(a) at Culham Laboratory, named RIPPLELA - see also ref.6.
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where L is a characteristic length (which in our case, we identified it
with the current channel radius a) and B is a characteristic value for
the magnetic field.

Now, the normalized growth rate P is related to the original

growth rate y by the relation P = TpY, SO that one can also write

el
]

S(YTH) . (31)

This formula provides a straightfoiward conversion from P to ¥
and vice-versa whenever comparisons with analytical results are needed.
For example, Shafranov's free-boundary problem'! has the growth of

kink modes given by

B2 m = nq
v = 2 (m-nqa)[l-————————a} ' (32)
2npa !\ 1- (a/b)sz
in the interval m - 1 + (a/b)zm <q, [ m with a maximum growth given by
, By ;
Vo =2 [ - am?] (332)
max‘ 8,ﬂ,pa2

where a is the plasma radius (= current channel radius) and b is the
conducting wall radius. Choosing for convenience, B = ZBOa and <p> = p

(constant) (b) then

_ S - 2mq1/2
Py = STgY o = v 0 - (asp)™] (33b)

where one can see that the growth rate of the ideal kink mode varies

linearly with S.

3. NUMERICAL RESULTS
(a). Numerical results for the standard Culham Model

We begin this section by exhibiting a series of results from the
usual Culham Model in order to set up a standard upon which one can make
(b) To comply with the normalization factors chosen in the code.
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comparisons and draw some conclusions from results presented by a modi-
fied Culham Model in part (b). We also take this opportunity to recall
some of the characteristics of the unstable modes presented by the
standard model.

In order to study the variation of the growth rates of the res-
istive modes as a function of the safety factor g¢,, a number of cases
with the same entry data but q, have been computed. Fig. | shows the
normalized growth rate and the normalized singular surface radius g
(for which %.E(rs)=o), plotted against q,» of the unstable modes m=2,
n=1 and m=3, n=2 found with the values of a5 taken from the intervai
0 < g, <45 The relevant entry data were as follows: kz = -0.25, S =
= 1000, ﬁW: Rw/a =14, B =4, (3,8 = (2,4) (see eq. (24) for the
current profile), JMAX = 301 (the No. of mesh points), NMAX = 300 (the

No. of time steps), for the m=2, n=| modes and the same data as before

for the m=3, N=2 modes, except kz = -0,50.
4r1
+
L
o+ .8
20.% T
~L.st
4 + )
! s
P +.4
10. ¢ v-L
4.2
4-
0. + +
0 ’ 1. 4.

Fig.] - The normalized growth rate P and the singular sur-
face.radius x_, as a function of Oy for the m=2, n=| and
m=3, n=2 tearing modes.
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The normalized resistivity i = n/<n> has been made constant
(=1.) throughout the plasma radius and will remain so unless otherwise
stated.

The plots in fig. 1 reveal, for the particular set of par-
arneters above, that (i) for both modes, the singular surface radii Xq

are well below the plasma radius B (=1.5) and therefore the restriction

w
imposed on the boundary conditions is being fulfilied (i.e., %.B # 0 at
r:w. In addition, most of the unstable modes have been found with the
singular surfaces inside the current channel radius (x=1};  (ii) the
maximum growth rates attainable are 28.97 at qa = 2.4 for the m=2, n=|
mode and 7.36 at q, = 1.8 for the m=3, »n=2 mode, the former existing
in the interval 1.77 < q, < 3.60 and the latter appearing in the inter=-
val 1.514 < q, £ 2.70; (iii) the overlapping of these intervals, viz.,
1.77 L q, L 2.70 indicates the region of ay where both modes occur with
their respective maximum growth; (iv) the region on the parameter space
qa for the existence of the m=2 mode is about twice larger than the m=3
mode, with a growth rate for the maximum about four times higger.

The results above comply with existing analytical theory on the
relative values of growth rates for ideal and resistive modes!?, viz.,
1 << Poox (resistive) << Pmax(ideal), where Pmax stands for the maxi-
mm normal ized growth rate, the lower timit (=1) stands for the rate of
field diffusion and the upper one is the rate at which the ideal kink
mode grows in an infinite conductivity plasma. As compared to the re-
sults of Shafranov's step model!! where the kink modes have a maximum
growth of Pmax = 304.07 (from formula 33b), existing fin the interval
1.26 < q, < 2, one can see that the growth rates of tearing modes (the
tearing character will be shown next) represented in fig. 1 show a much
lower value (~ 10 times smaller) and a wider interval of Uy for their
existence.

'The next series of figures show plots for a typical case run by
the code with 9 chosen from the curve m=2 in fig. 1, viz., q, = 2.4,
Fig.2(a) shows the equilibria profiles yielded by the Culham Model for
this value of a (and therefore a fixed value of Ezo(l) according to eq.

(28)). These graphs exhibit the radial profiles for the normalized J ,
grap p 2

o

. By, the safety factor q = r5,(r) /R By(r) = sz(x)/RoB@(x) and the
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function F given by formula (29). The point where F crosses the axis
define the (normalized) position z of the singular surface. % note
that there would have been no rernarkable differences in the functional
forms of the various parameters if we had chosen any other value of the
input parameter qa, apart from F which would cross the axis at points xg
(1isted as the value of Rs at the bottom of fig.2(a)) in decreasing suc-
cession corresponding to an increasing succession of q, values.

Fig.2(b) illustrates how the correct modes are picked up by the
code in a random fashion until the growth rates settle down to a posi-
tive value. The plots of P(¢) = (3¢/3x) /¥, where ¥ has been set to both
B, and Vy,, are labelled P(BP) and P(Vt) in the figures and shown
superimposed. In general, when there are no unstable modes, thetwoplots
converge to different values or oscillate independently andindefinitely
in time, but whenever a mode with exponential growth is picked up by the
code, they always converge coincidently to the same positive value.

Finally, fig.2(c) shows the radial profiles of the four per-
turbed pararneters Brl’ B@l’ Vrl and VO]’ each one normalized to their
maximum values in the interval 0 - RW’ at any time in the exponential
growth regime. To check the real nature of this mode, one has to look
with increasing value

at the modification of the profiles of Br and Vr

of S ™. If, with an increase in S, the pr]ofile o:‘ Brl near the wall
depresses towards the axis (eventually crossing it) and the point where
Vrl crosses the axis is displaced towards the wall (or alternatively
maintains the same sign), then we have a typical case of a kink- domi-~

nated mode; otherwise, if the form of Br does not change significantly

i

and the point where Vr crosses the axis moves towards the singular sur-

face, then we have a t;aring—dominated mode. This is done for various
values of 95 (representative of the whole interval of q, for unstable
modes) where S was raised to 5000. The corresponding plots for the typi-
cal value qa = 2.4 are shown in fig. 3, where one can see that the func=-

tional form of Br . has not been altered whereas the point where ro

i
‘crosses the axis has been displaced towards the singular surface (mar-
ked with an arrow in this figure), indicating therefore that for a typi-
cal value of g where an unstable mode is present, this is essentially

a tearing-dominated one.
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EQUILIBRIA PROFILES
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Fig.2 - (a) Equilibrium profiles for g, = 2.4; (b) The nor-
(c) Profiles

malized growth rate P versus normalized time;
of the normalized perturbed variables for the mode m=2, n=I

and S$=1000 along the normalized radius.

The same procedure has been followed with respect to the analy-
and the

sis of the nature of the unstable modes for the m=3, n=2 mode
the modes represented in fig

same conclusion has been reached, viz., all
1 (curve m=3) are tearing modes. For this mode we present just represen-
5000,

= 1.8 and S = 1000, = 1.8 and S =

tative case, viz., a, = and 9, =

shown in figs.4(a) and 4(b) respectively, where one
crosses the axis has been displaced towards the resonant

can see that the

point where Vrl
surface when S was raised to 5000. The remaining entry data are the same
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Fig.3 - As for fig.(c), except S = 5000.

as the ones used to run the cases in fiq. 1, One property of the m =3
modes is that the perturbed profiles are more concentrated within the
resistive layerascomparedwith thoce from the m = 2 modes. This is
because for. small I, Brl - rm-] and for larg'e r, Brl ~ 1 /rm+1.

To close this section, we have plotted the growth rate Pagainst
S for the m = 2 and m = 3 modes with qa = 2.4 and a, = 1.8 respectively
(values of (]a for the maximum growth of the modes at $ = 1000), and
exhibited in fig. 5. As one can see from the figure the curves present
a linear behaviour above S - 3000. |f one describes this sbehaviour by
the formula P a SK, the value of K in the linear region (in the tog x
X Log space) is 0.76 for the m = 2 and 0.756 for the m= 3 mode, wel |
above the value of 0.4 presented by the sheet pinch!® where the growth
rate was found to obey the law P a 52/5, but only a fraction greater

than the one found with the peaked model®, viz., K = 0.74.
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i

0.0

-0.4

S

Fig.4 - (a), (b) Profiles of the perturbed variables
for the m=3, n=2 mode with qa=].8 and (a) S = 1000
and (b) S
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Fig. 5 - Growth r-ates P
versus S for the modes m=2,

»

ol n=l with q;=2.4 andm=3,
L n=2 with g, =1.8. \
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{b). Numerical results with the modified Culharn Model

We now investigate how the growth rates of the unstable rmodes
found previously are modified when a flat dip is imposed on the {(other-
wise smooth) current density profile. A provision for such a distorted
current profile is already built in the code and consists of superim=
posing a gaussian function on a given smooth poloidal rnagnetic field
profile Boo(r), viz., B@o(r) + 5, exp[-S, (»-BR,)*], and the Jzo(r) cur-
rent density is now adjusted according to formula (19). From BOo andJZo
the code calculates Bzo using formula (22), and subsequentiy Jeo using
formula (27). The parameters S;(<0), S,(>0) and RRy control the height,
the width and the position of the dip respectively. Fig. 6 shows a plot
of the growth rate profile in qa space in this new equilibrium {(con-
tinuous line) and the corresponding old equilibrium case (see §(a))
(dashed lines) for comparison as well as a plot of the singular surface
position x . The entry data for these new cases were as listed: N = 2,

8
M=4 m=2, k)g = -0.25, S = 1000, EW = 1.4, FEO = 4., (S, 82, RRy) =
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h.
T
T 4.8
. 20.4
{.8
m=2 }
{ *s
P t.4
101 1
! $.2
0. + _— -+ .0
.0 1 4.

Fig.6 - As for fig.l (m=2) with the addition of (Si, Sa2,
RR;) = (-0.013, 75., 0.7). The curve in broken lines rep-
resents the standard curve for the m=2 mode shown in fig.l.

= (-0.013, 75, 0.7)(parameters for the plateau-like distortion), with
0 < q, < 4.0.

One can see from this figure that the same comment as in §(a)
applies for xg and most of the unstable modes appear in the same in~
terval of a9, as in the old equilibrium but now a significant change
takes place in the mid-interval: a small interval in- ay (a stability
window) appears where no unstable modes exist. This window encompasses
the interval 2.83 < a4y < 2.92. The split of the standard curve P vs q,
of the old model into two branches however does not alter the maximum
growth significantly nor its position in q, space, this being 28.4 at
qa, = 2.2 for one of the branches. The lower maximum on the othfer branch
presents a value of 14.9 at q, = 3.15, and its corresponding equilibrium
perturbed profiles are shown in figs. 7(a), (b). These profiles look very

much the same as those found in the standard case, presenting the same
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EQUILIBRIA PROFILES
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Fig.7 - (a) Equilibrium and (b) perturbed profiles for the m=2
mode with ay = 2.2.
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tearing mode characteristics. The split of the curve P vs q, into two
branches therefore has not affected the nature of the modes.

Fig. 8 presents a very similar result for the m = 3, n = 2 mode,
except that the split branch on the left has its maximum significantly
higher than the standard curve, raising to a value 12.7 atqa: 1.7, and
the stability window between the branches has broadened to 2.06Sqa$2.31;
the second branch has a maximum 4.58 atqy= 2.43, the smallest and the
biggest value of a, for instability having not been altered signifi-
cantly from the standard curve, and now being qaminzl'lﬂ and qamax=2.68.

Figs. 9(a) and (b) exhibit the equilibrium and perturbed pro-
files for the case qa = 2.43.

An inspection of the plots depicted in figs. 6 and 8 shows that
it is possible to inhibit and partially suppress a given mode (either
m =2 or m = 3). For the cases under study there is no overlapping of
the stability windows in the parametric space qa, as one can see by

inspection of the two figures, but if one plays with the three par-

XSJ 4+1.

]

12.1[ 1{.8
{ ls
8.4 4- 3(
]

t 4.4

P m=3 T
4.¢ L2
0. + + 0

0 1. 3.

Fig.8 - As for fig. 6 except m = 3, n = 2.
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Fig.9 - (a) Equilibrium and (b) perturbation profiles for the

mode m = 3, n = 2 with q, = 2.43.
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ameters which control the shape and the position of the dip on the cur-
rent profile the overlapping can be made to occur, henceforth avoiding-
the occurrence of both modes simultaneously by operating with 4, inthis
common window. Now, although the stability window in q, for the m=2 mode
encompasses values of a, for which no m=3, n=2 mode is present (compare
results which led to figs. 6 and 8) it would be of more interest to
know whether such windows can be found in an other parametric space for
any fixed value of 4, and whether such windows present overlapping. To
verify whether this is feasible we have fixed the value of q, at 2.2 for
the m=2f n=1 mode and q, = 1.7 for the m=3, n=2 mode (the values which
correspond to the maximum growth for each mode), and varied the par-
ameter RR, which controls the position of the dip. Note that each one
of these values of q, falls (incidentally) on the other ones stability
window. Note also that by choosing these particular values of 9, e
would actually be looking for windows in RR, parameter space which
might be valid for any other values of a, (in particular, a value of
q,, common to bath modes) .

The parameter RR; was made to assume values in the interval

0 < RR, < 1.4. The other relevant parameters are listed as follows:
For the m = 2 mode, k, = -0.25 {or n = 1), § = 1000, ﬁW = 1.4,
(8, 82) = (-0.013, 75) (controls the form of the dip), By = 4.; and
the same as above for the m = 3 mode except kz = -0.50 (or n = 2). The
results are illustrated in fig. {10) with plots of growth rates versus
for both modes, where it is shown that the second maximums have
raised aSove the first maximums (corresponding to the first maximums
in fig. 6 and 8 for m = 2 and 3 respectively, where RR, was fixed at
0.7) with values 36.8 and 21.0 for the m = 2 and 3 modes respectively,

both at q, = 1.0. The growth rate for the m = 2 mode reaches the first
minimum at q = 0.84 with the value 11.3. Now, only the mode m = 3 has
presented a stability window in RR, space, viz., 0.80 <BR < 0.91,

although we have taken the most favourable value of q, to find an m=2
mode (at the maximum in fig. 6). It could be that by broadening the dip
on thg current profile and choosing other values for q, such a window
would also have appeared for the m = 2 mode. This result suggests that

one should look for a two-dimensional stability window in (qa, RRy)
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Fig.10 - Growth rate P versus Rr,, the position
of the dip on the longitudinal current density
profile for them =2, n=1, tearing mode with
Qq = 2.2 and m = 3, n = 2 tearing mde with qa =
= 1.7. The position of the singular surfaces “g
for both modes are also plotted against ER,, S

space or even a three-dimensional one if Sz, which controls the width
of the dip, were included.

Figures 11(a) - 13(b) illustrates three typical cases found
with qa taken from three distinct regions of the upper curve in fig.10
for the m =2 mde and RR, = 0.74, 0.94 and 1.2. Fig. 1l1(a) shows a
plateau-like distortion on the J profile produced with RR; = 0.74 and
fig. 11(b) the corresponding perturbed parameters profiles, where one
can see that their general forms are similar to those found on the left
branch of fig. 6. This type of distortion is the one whichmstinhibits
the growth of instabilities and frequently sought in practice. W note
that the distortions on J shown in fig. 11(a) were such as to leave
the original current channel radius unaltered (at X = 1). By further
displacing the dip towards the right in 'fig. 10 it will come to a point
where the growth rate begins to increase as a result of a broader cur-

rent channel; this is exemplified with the case presented in figs.12(a)
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Fig.11 - (a) Equilibrium and (b) perturbed parameters profiles

for the m = 2, n = | mode with RR; = 0.74.
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and 12(b) which is alsoa representative of cases where the dip falls
just below the original current channel radius, the second maximum in

fig. 10. Further to the right, the current profiles begin to develop a
dip below the axis (representing an inverse current) and a lump above
it. On the descending part of the curve in fig. 10, the dip is bigger
than the lump and their contribution to the total current is negative,
i.e., the effective current channel has been contracted thereby pro-
ducing modes with lower growth. An example of this case is illustrated
in figs. 13(a) and 13(b). Still on the descending part from some pos-
ition of the dip to the next, however, its size decreases and the size
of the lump increases until both contributions to the total current sum
up to nil; this is what happens for the part of the curve on the ex-
treme right in fig. 10. In the second and third cases presented above,
the perturbed profiles look much the same as those found on the right
of fig. 6.

The whole analysis for the m = 2 mode, presented before would
follow similar lines for the m = 3 modes except that the lower plot in
fig. 10 is interrupted by tke stability window, a small interval in the
RR; axis, as mentioned before, and that the tearing mode character is
still stronyer for the m = 3, N = 2 modes where one can see that the
profiles are more concentrated within the resistive layer. Just  one
m=3 n=2case is illustrated in figs. 14{a) and 14(b) corresponding
to the value RRy = 0.74, showing that, apart from the slightly wave-like
structure which develops inside the current channel radius, the per-
turbed profiles look very similar to the ones obtained with a smooth

current density profile (see fiy. (3)).

4. DISCUSSION OF RESULTS AND CONCLUSION

An inspection of fiy. 10 indicates that the lowest vaiues of
the growth rate are found when the position of the dip is close to and
inside the singular surface. It is this fact that is commonly exploited
at present in the experiments set up to inhibit instabilities by pro-
file control in tokamaks, and whose main purpose is to delay or even

suppress the disruptive process. The dip in the plasma current density
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Fig.12 - (a), {(b) -As for fig.11, except BRR; = 0.94.
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profile can be préduced by using electron cyclotron waves for (locally)
heating the plasma or driving a current in opposite direction at some
position inside the singular surface.

In this work, we have shown that although an overlapping of
stability windows in q, space could not be found for the resistive
tearingm =2, N=1 and m = 3, n = 2 modes, one can operate With q,
in the window for the m = 2, n = | mode with no occurrence of the m = 3
n = 2 modes, as one can see by noting that the window in the mid-interval

of a, for stability of them =2, n = | mode (fig. 6) falls on the right

of the interval of qa for the existence of the m = 3, n = 2 mode (fig.
8). The necessity of operating with léwer values of qa in the various
experimental conditions, however, makes it desirable to find windows of
stability in another parameter space, viz., the position RR; of the dip
of the distorted current profile. The corresponding search however |ed
to the finding of a stability window in the parameter space RR; only
for them = 3, N = 2 mode although the growth of them =2, n =1 mode
has been greatly inhibited (but not suppressed) in that interval of RR;
(fig. 10).

D.C. Robinson et al* succeeded in finding the equilibrium con-
figuration which led to the complete stabilization of both modes sim-
ultaneously, but the so-called Tearing Mode Stable Model used presents
two dips on the current density profile, conveniently positioned inside
the q = 2 and q = 3/2 singular surfaces. In our search for stability
windows in KR, space we were more interested in current profiles pre-
senting just one dip because, for obvious reasons, the corresponding
equjlibrium configuration would be easier to analyse theoretically and
to achieve experimentally. Now, the minirnum at the trough of the m = 2
curve in fig. 10 is not low erough, perhaps due to the particular values
of Q, which were chosen amongst the most favourable to findboth modes
(each of these values leads to the respective maximums depicted in figs.
6 and 8). With some adjustement of these values, one might possibly re-
duce the growth of the unstable m = 2 mode to acceptable Tevels, g5y
below or of the order of the field diffusion rate (Y=']/TR and therefore

P =1). This it at present under consideration by the author together
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with the case which uses a common qa (a common total current) for dif-
ferent positions (RR,) of the dip.
The results presented here are of course not complete nor rig-

orous for establishing stability windows, for we have not controlled

the shape of the dip (through S, and S,) nor tried other values of a,

in looking at windows in RR; space. A more rigorous treatment of this
problem would involve the use of a non-linear resistive code where the
saturation of the modes could also be examined as well. It nevertheless
reasserts the method of instability control by plasma current shaping
and paves the way for establishing the set of parameters needed in ex-
perimental set ups to realize a discharge with control of the most dan-

gerous instabilities in pinches and tokamaks.
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Resumo

Un cédigo computacional baseado num esquema implicito de di-
ferencas finitas foi empregado para resolver un conjunto de equacoes
diferenciais parciais (dependentes radial e temporalmente) para as va-
riaveis perturbadas que descrevem a instabilidade magnetohidrodinamica
(MHD) resistiva em pinches e tokamaks, a fim de estabelecer as condi-
cbes para o aparecimento de janelas de estabilidade en alguns dos es-
pacos paramétricos (pardmetros livres) usados. Mostrou-se que € possi-
vel inibir ou mesmo suprimir os modos tearing m=2, n=l e m=3, n=2 por
deformacao do perfil da densidade de corrente longitudinal do plasma
na forma de uma pequena e localizada distorgdo sobre um perfil liso
previamente escolhido para a configurag&do de equilibrio. As janelas
correspondentes aparecem no espago paramétrico dos q_, o fator de se-
guranca na posicdo do canal de corrente, para uma posi¢ao fixa da dis-
torgao, assim como no espago paramétrico das RR; , a posigdo radial dq
distor¢do, para un valor fixo de g _; em ambos os casos, a distor¢gdo e
localizada préxima e dentro da supérficie singular.
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