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Hermitian Metric in Gravitation
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Abstract *A gravitational model, with an Hermitian metric, is proposed
here. This approach leads to Einstein-Cartan equations, for non sym-
metric fields. By means of a minimum limit, stated for the radius co-
ordinate, the singularity at the origin is eliminated. The redshift,
the bending of light and the shift of the perihelium of Mercury are
examined.

1. INTRODUCTION

The idea of considering a non symmetric metric in gravitationis
not new. Einstein! proposed and analized this subject before.Papapetrou2
dealed later with such a metric, for a statically and spherically sym-
metric case. Recently Moffat® developed a gravitational model, with a
Hermitian metric, and pointed out the existence of a minimum limit for
the radius, which helps to clear up singularity problems, at the origin.

Here we deal with an approach based on Moffat's idea; however
the geometrical aspects we take are established on fiber bundle tech-
niques. Einstein-Cartan equations, for non symmetric fields, appear nat-
urally, and the Poincaré group is taken as a symmetry group. The as-
sumption of an assymmetrical connection and solder form leads to cur~
vature and torsion. A total Lagrangian is proposed and, by means of
Euler-Lagrange equations, Einstein-Cartan equations are derived. An ad-
ditional condition is required: the signature of the metric cannot be
changed, and this points out the existence of a core centered at the
origin. This eliminates the singularity at r=0.

At the end, redshifts of electromagnetic radiation are calcu-
lated, and the results given agree with experimental data. A small cor-
rection term to the prediction of General Relativity (GR) arises. The
bending of light by the sun and the shift of the perihelium of Mercury

are also examined.

*: Work supported by CNPq, Brazilian Government Agency.
Work supported by CAPES, Brazilian Government Agency.
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The compact language of differential forms will be used when

necessary.

2. GEOMETRICAL ASPECTS

¢ consider initially a P bundle of linear frames, where
Minkowski space-time is the base manifold M, and the Poincaré group
G =50(3,1) # Ty is the symmetry group. Let {dx*}be a holonomic basis

on M, and

g=ga8dxa®dx6, (@,B=1,...,4) (2.1)

the metric tensor.
Now we assume that the components ga%may be decomposed into a
syrnrnetrical part a8’ and into a skew-symmetrical part aaB’ by means

of

g (2.2)

+ 1
aB T g

1 ;
%08 =7 Yag * ) * 7 Wop " ) =

To generalize the assumption of symmetric components gaB in GR,

we require that guB have Hermitian symnetry, i.e.

= g* 2.3)
9a8 = Ipa (
So, the matrix representation for the tensor g is
réfu 812 + Zaiz 813 + Zais Siy + Zayy
.| S12 = a1z S22 S23 + 2au3 82y + Zazy
(gocB) =
S13 = Za13 %23 — iass S33 S3u + Zasy
81y — Za1y  Sa2u — Tazy S3y ~ Zasy Sy
(2.4)
and the spur of (gaﬁ) is real,
4
trig ,) = I s . 2,
9ap o (2.5)

a=1
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The signature 8 of (gaB) may be negative, null or positive, depending
on the signs of S The components gOL6 are given by

oV _ Mo _ &0

9 Iy =9 95 =8 . (2.6)

where the order of the indexes must be taken into account.
A connection form ¥, on the P bundle, is a I-form valued on the

Lie algebra of G t. Considering W as a linear connection, it may be

1

W=T+5§. (2.7}

given by5

Here the connection T is valued on the algebra of the Lorentz group,
I A H
r- P at, (2.8)
and S is the solder form® valued on the algebra of the T,, group,
s=1 & a . 2,
L5 (2.9)

Both connections are written on the basis {dx"} mentioned before. In
. b

expressions (2.8) and (2.9) Ja and Ia are the generator¢ of the Lorentz

group and the group of translations, respectively. These generators

satisfy the commutation rules below7, which establish the Poincare group

algebra
[Jab’chJ = % (nadjcb_nacjbd + ncdjac_]z-nbd']ac) i
[Jab, Ic] = % (ncbIa - naclb) , - (2.10)
[Ia, Ib] =0 ,

where a, b, ... =1, ..., 4 and n is the Minkowski metric.

The curvature F, of the connection T, is"
F=dl+T AT, (2.11)
and has the components
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a a e c
= - - 2'
Fabuv aurab BVF p * r cur bv I'acvr bu (2.12)
on the holonomic basis {dz"}.
These components may be written with space-time indexes, by
means of the four-legs hz 5
o 0

i RS L 4 (2.13)

o _ yob _ 0.
F - hahngu\) = 9T oy BV c\)rBu ’

- 1% 4+

Buv wBv v
which presupposes the connection I as already projected onto the base -
manifold. From expression (2.13) we can obtain the contracted components

of the curvature

\Y O 0

=9 5 -
T T

Ol o 0
Fe, uFBa -3 Tg, * FOU T . (z.14)

oo’ Bu
In GR theory the F%UV are the components of the Riemann tensor
and FBu the components of the Ricci tensor, because in that case I' is
. . . O .
a symmetrical connection. However, in our case, the vaare asymmetrical.

The curvature F satisfies Bianchi's identity

dF + [T,F] =0, (2.15)

where d is the exterior derivative operator. Interpreting I as a gauge
potential, then F is the corresponding gauge field, and the field
equations are Yang-Mills (YM) equations. in the sourceless case, YM

equations are the Bianchi identities, but written for the dual of F 6,

dxF+ [T,%F] =0 . (2.16)

When projected onto the base manifold, YM equations become®

F"‘Bw;“ =0 . (2.17)

Using Bianchi identity for F%uv’ and lowering indexes with gau’ eq.
(2.17) reduces to

F

C‘B’)\ -F . = 0 . (2.‘8)
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fn the particular case of a Levi-Civita connection, and for a
real and symmetrical metric, eq.{2.18) reduces to Yang's gravi-

tational equation

R ~R,. ,=0 , (2.19)

aBsA

for the Ricci tensor’. It has Einstein sourceless equation
R ,=0, (2.20)

as a very particular solution. So, eq. (2.18) is a generalization
of Yang's equation.

YM equations may be written in a equivalent way to eq.(2.16):

1

8+ " [T,*F} =0, 2.21)

where
n-s

) b —
pln-p) 2 sdx, (2.22)

8= &' de = (-1)

is the coderivative exterior operatora; p is the degree of the differen-

tial form to be used, »n is the dimension of the base manifold and s is

the signature of space-time metric. In the above case p=3 and n=k. The

signature may assume the values 0, *2 and %4. In order to be coherent
to GR theory, we will choose either the values +2 or -2.

The torsion T, of the connection I, is given by the covariant

derivative of the solder form, related to T itself’:

T=DTS=ds+I"AS+SAF+SAS (2.23)

and has the components

a a a
Tﬁ\) = 3,5 avsi + rcusf) rc\)sj , (2.24)

) . . u . . _ a
in the holonomic basir {dz"}. By choosing a basis where .5‘3 = 6\) and

supposing the connection T as already projected onto the base manifold
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M, the components of T are

T (2.25)

3. LAGRANGIAN FORMALISM

The Lagrangian density, which leads to the field equations, is
-~ Y .
L =4 ‘[Fw(r) + kEw]_ , (3.1)
where
=g, (3.2)

E v is the stress energy and K is a constant.

The action integral is

A=fdzL, (3.3)

and the external condition 84 = 0 gives Euler-Lagrange equations. To

make up for this variation we have to consider that??

~UV 1 v v
Ggu_ =/ (I - 7 Iy gu )59'u ,
(3.4)
o] o o (o RN}
GFW = (MW);\) - (6rw);c + (T, - rw)sruc
After a straighforward calculation we are led to the equations
] =
FLN 7 gu\) F = kEW ’ (3.5)
v + 0 UV, B+ o (3.6)
g Toiw 69 Tey 9 Tg)\'
Hooo
g .50 3.7)
W
g .0 (3.8)

The former is similar to Einstein's gravitational equation, and the se-
cond is Cartan's equation, for the torsion®" . Eqgs. (3.7) and (3.8)

state conditions for the paralel displacement, i.e. the covariantderiva-
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tive of the metric tensor, related to T, is identically null. In the
Riemannian case eqg. (3.5) reduces to Einstein equation of GR and eq.
(3.6) disappears naturally, because the Tgu are symmetrical. Even so,
egs. {3.7) and (3.8) are still valid.

4. CONSIDERATIONS ABOUT THE METRIC

VW will start with the metric proposed by Papapetrouz, for the

static case, with spherical symmetry and imposing signature -2.

T-a o 0 w
0 - 0 0

(gw) “lo 0 -r?sen? 0 (4.1
-w 0 0 Y

Here a, y and w arbitrary functions of the coordinate r. For this case
V-g = r* sen®8 voy-w?® , (4.2)

and so, the only components g[}n)] different from zero are

g[u] i _gEu] - wr® send . (4.3)
oY -w
From eq. (3.8) we conclude that all equations gl-w-l_ =p are

v
satisfied for W = 1,2,3, except for the case u = 4, which is

alﬂ(unr'2 sen 8/vay-w?) = 0 , (4.4)

The solution of eq. (4.4) is

W2 =Y (4.5)
c+2r"*
where C is a constant. The components of the connection T, in the

holonomic basis {dc"} are
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1 o' 1 __r .1 _ rsen’d vo_ ', hw? 2 -2 o 1
11 20 ,Tzz a’ I‘as o i Fqu 20 T 3% ! 1‘12 21 »

2
2 3 3 | 3 oo ope 2 Y, 207

= - = = — = = tand T = = ot

r . senfcost , 1"13 I’31 5 1"23 F32 tand , T 1"“1 yaa I
2 _ _p2 _ 73 _ _p3 W 1ol oW 4.6
Fuz - rzu rua qu or ’ T“ ]"“ or (4.6)

where the prime means d/dr. The remainning components of T are null.
With the components given in eq. (4.6) and using expression (2.13),

we find the components FaB which are not null:

S 0 G AR S S 1 w? ), 200yt ot 207
Fu_ZY +W(Y Ob) ar+2(ocw)+otry (Y 20L+0trY)

_ ] _r o'y l-o 20? 4
Fzz sen?p 33 20 (Y a)+ o +—y'&7 (4.7)
oy Lyt ot et by he? w? o 3yt 200 Bw? 14
P Z(a)""lﬁ(y a r) o’y EF(Y o ory r)

wy'  hw
Fry=- Py =205 -om

For the sourceless case, eq.(3.5) becomes

Fy= 0, (4.8)

and assuming that
a=exp[f»)]] and y=explg)] , (4.9)

with ¥ and g arbitrary functions of r, we find, after solving the dif-
ferential equations obtained
=t ¢ - 2m

r ’ 2 r’ 2

r (k.10)

oc=(l‘-
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where € is the same constant considered in the solution (4.5) and m

is another constant.
Since we want a Hermitian metric, we impose that c? = 1522, where

% is a constant with the dimension of length. With solutions (4.10) the

metric (4.1) is

o - 0 @ i
0 -r? 0 0
(gm)) i 0 0 - r%sen § 0
+02 t
] :;.i_ 0 a-Zya-L

(&.11)

From the matrix (%.11) we conclude that the only possibility to
have signature -2 is for r»>% and r > 2m, The other possibility 8< 71 <2m

is meaningless, for the weak fields considered here.

5. EXPERIMENTAL TESTS

5.1 - Redshift

The redshift of electromagnetic radiation is derived here with
the same procedure as in GR. However, we have to take into account the
correction term, which rnodifies the metric. The shift in frequency Av

related to the original frequency v, is now given by

2M [
N ; (1 '7?—)(]“1—?7;) o (5.1)
v a-Ha-Ly 7 '
! 7 Pq
where R is the radius of the celestial body (earth, sun, etc), M its

mass and I the distance between the receiver and the center of the body.
Let r = R+ h, where h is the distance between the receiver and the
nearest point of the surface of the body.

Earth experiments give'?

395



Revisa Braslerade Fisica, Vol. 17, n? 3, 1987

Av _ -15 _
S = (2.4500 £ 0.019) x 10 M=0.4438 cm (5.2)
ho=2.2600 X 10° cm R =6.3710 % 10° cm

Expanding the expression (5.1) in a power series up to #A2/R?,

we find for R

B N N N R N e
. Z-®-S*EG-rtm

o : (5.3)
(2 - 25
R R
which gives, with the values of eq. (5.2)
9,0 = 6.1599 km.
For the sun the expression for R is
AL 2y '
— + ] ] - T ] - BT
8 . R
L = R@ (5.4)
- 2w
R@
and with the data
Mg = 1.4766 x 10° cm Ry = 6.9605 x 10'° cp
-AV"=-2>< 108 By = 6,37103 x 10° cm

we find for R
% = 15,438.1153 km .

The above results show the existence of a core, with a radius R
stating a minimum limit for r and eliminating the singularity atr = 0.
There is no singularity at the pointr = R, because in this case
detg= -R* sen?9. Moreover, the cases r = 2mand r < 2n refer to strong
fields, and we are dealing with weak fields only. The case r<% suggests
a metric with signature different from +2, which is not in accordance

with GR.
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5.2 - Light Bending

The procedure used here to derive the tight bending by the sun,
is the same developed in GR theory. W will follow, for instance, -the
technique of A.B.S.%. For photons ds? = 0, so we assume the eéxtremal
condition

a deb
8 T =0 5.4
J g(!B dq aq dq ’ ( )
where ¢ is a parameter. For the metric given in eq.(4.11), in spherical

coordinates r, 6, ¢, we have

2% _ lo’. = ./
0=k and (1 - —’ﬁ][l - f“—]t ¢ (5.5)
r r"
where dot ''.*' denotes differentiation with respect to ¢,and hand C are con-

stants. For 6 = m/2 and assuming r = 1/u, the condition

gas dxoc d:rB -0, (5.6)

becomes
h? = (1-2%*)R2u'? - p2u2 (1-24u*) (1-2mu) = 0 . (5.7)
If we differentiate this expression with respect to ¢ and assume
that h #0, we are led to

4..3,12 Solt 6ol
28wyt ? + 20t bpnaBy . (5.8)
]_g‘tu‘& "ll’ 4 ‘-lhuh

@+ u=3mu? 4
This last equation is analogous to equation 6.125 given in AB.S.:
u" 4+ u= 3md L . (5.9)

except for the correction terms. In the case of the sun
m= 147666 x 10% an _ r = 6.96050 x 10'° am , g = 1,543,811,527cm
Expanding (l;sl"u")_1 in a power series, eq. (5.8) becomes

W v u = 3 t 20ttt 4+ 208 Tu 2,4 L., (5.10)
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V¢ notice that eq. (5.9) of GR is taken up to order » °, and we
see that the first correction term ineq.(5.10) is proportional to r ',
which gives a correction of the order of 10'39. So, this term and the
next are negligible. Then eq. (5.10) reduces to eq. (5.9) and theresult
for the light bending by the sun in is the same predicted by GR theory,

i.e. 1.75%,

5.3 - Shift of the Perihelium

By the same procedure of ABS !* we obtain the differential

equation

2_ 4 4
u'2=0 1+ +_2__i7m__u2+2mu3’ (5.11)
R2(1-2tut)  Rm?
where the dash denotes d/d¢, u = 1/» and C is given in expression (55).
Expanding (1-2*%*) ™" in a power series up to the order of u*

we get

2_ 2,4, 4
u'2=£—]-+-g-”£-u2+2m2+g—&—1-‘— . (5.12)

n? A n?
Now, differentiating eq. (5.12) with respect to ¢ and eliminating the
particular solution #' = 0 (circular orbits), we find

204, 3
02 U (5.13)

W'+ u = L+ 3md o+
A n?

and by means of expressions (5.5) the constant.C may be determined:
) 2 .
c® = (1-2m) 2 (1-2%u*)? (%) $2 = (1-2m)2(1-2%%")% n2u*t? . (5.14)

This constant inserted in eq. (5.13) gives, at least, a correction term

of order »~7, which is negligible. So, eq. (5.13) reduces to

Wt u =4 3m? (5.15)
K h2 .

leading to the same result predicted by GR theory: the shift of the

perihelium of Mercury is 42.6" per century.
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6. CONCLUSION

The approach developed here exhibits the Einstein-Cartan model,
in a bundle of linear frames and considering the Poincaré group. With
the assumption of a Hermitian metric for space-time, we have pointed
out the existence of a core, embedding the origin, which avoids the
singularity at r = 0. The redshift has a small correction, compared to
GR theory, while the bending of light and the shift of the perihelium

of Mercury have no significant corrections.
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Resumo

Un modelo gravitacional com uma métrica hermitiana €& proposto
aqui. Este modelo leva as equagdes de Einstein-Cartan, para campos nao
simétricos. Por meio de um limite minimo, estabelecido para a coordena-
da radial, a sinqularidade na origem € eliminada. O redshift, o desvio
do raio de luz e o do perihelio do Merclrio sdo examinados.
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