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Abstract We present a new technique for deriving the short-time appro-
ximation of Agrawal and Mehta. The technique is applied to the nonlinear
problem of generation of higher order Stokes radiation. W start by ap-
plying the time-translation operator to the boson operators that create
the photons involved. This generates a power series in the evolution-
-time variable t which, when truncated at t2, yields the short-time ap-
proxirnation. We show how one can obtain higher-order approximations.
Furthermre we show how to calculate the joint norrnally-ordered quantum
characteristic function and how to derive the covariance and variance
functions.

I. INTRODUCTION

Raman scattering processes occur when incident 1ight photons are
inelastically scattered. A photon of frequency w,, incident on a Raman
active mediurn, is annihilated giving rise to a photon of frequency ©p
and a Stokes photon with frequency Wg = Wy = Wp. Alternatively, an in-
cident laser photon may be annihilated together with a phonon while an
anti-Stokes photon at the sum frequency wy =W + Wy is created. Under
conditions of high Raman gain, the Stokes beam of frequency wsl may
reach a sufficiently high intensity to undergo Stokes scattering itself
producing an Stokes radiation with frequency wg = Wg T Wp The in-
tensity of the an Stokes mode could also build fjp to ;erve as the pump

! Stokes

of 3rd Stokes lines and so forth. In single mode optical fibers
lines up to the lOth order are observed whereas, due to phase mismatch,
no anti-Stokes mode was observed.

In the present paper we discuss a mathematical approach that
renders the study of correlations between the laser and the Stokes modes
amenable. We show that it contains the short-time approximation, and we
derive general equations for the two mode correlation functions which

yield, as a particular case, the variance.
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The choice of the Hamiltonian describing the dynamics of the
processes is discussed in sec. 2, together with the equations of motion
of the creation and annihilation operators of the photons involved. Sec.
3 contains the discussion of the way of obtaining the explicit time de-
pendente of the operators starting with the time translation operator.
The quantum characteristic function is obtained in general form for two
modes in sec. 4. The variance and covariance functions are calculated

in sec. 5. Results and conclusions are discussed in sec. 6.

2. THE MODEL HAMILTONIAN AND THE EOUATIONS OF MOTION

The non-linear problem we are considering has been treated,with
classical fields, by Bloembergen and Shen® and a modified classical the-
ory has been put forward by Linde, Maier and Kaizer3. V& consider a
generalized form of the Hamiltonian given by Walls? to take into account
higher-order Stokes modes. The rotating wave approximation is taken with

all fields quantized:

H=H +4; (N
H = thatL;;i=L§“Sp.n,S,P (2)
J Jd Jdd n
Sn+] + 4+
H o=h JLEI Kz(aza“]a]__., + h.c.) (3)

H0 is the free field Hamiltonian and HI takes into account the interac-

tions. The a are boson annihilation operators for the laser, lStStokes,
14

etc., modes. KR are the coupling constants for the laser and 1° ' Stokes ,

lSt and an Stokes modes, and so on.

3. THE TRANSFORMATIONMETHOD FOR THE TIME EVOLUTION OF THE OPERATORS

To determine the time dependence of the operators, we make use

of the time-translation operator

5(t) = exp{int/n} = exp{i(# +H )t/R} (4)

HI
where H and Hy are given in egs. (2) and (3).Due to the energy

. . _ + . . ~
conservation condition, w, m2+1 Wps the Hamiltonians H0 and HI com
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mite. This make it possible to wite the operator s{t) as a product of
two factors. Qne of these is the unitary operator for transfornation
to the interaction representation

SI(t) = exp{iH t/h} . {(5)

Therefore, in Heisenberg s picture we have, due to the factorization
of s(¢)

aj(t) = exp{iHt/n} aj exp{~ZHt/n}

= explifiyt/n} al(e) expl-ifiyp/n} (6)

wher e

alj(t) = exp{i8,t/h} ai exp{-iH,t/A} (7

is the operator «, in the interaction representation, From egs. (7)
and (2) we obtain

aj(t) = a; exp("iwjt) R (8)

which, with the help of eq.(6), Teads to

aj(t) = Aj(t) exp(-iwjt) . (9)

Final |y, through the Baker-Hausdorff identity®, keeping terms up to the
second power in t, we get

"

Aj {¢) exp(-zHIt)aj exp (uYIt)

- a; + 5 Epad s 550 [ Epel)
These equations are the sane as those obtained with the short-time ap-
proximation®. V@ shall refer to this approxi mtionas the SIL appro-
ximation. It renders possibie the determnation of the tine dependence
of the boson operators by just doing two commutators

(10)

- + +
(Hpad = - . Ky (8% st * 85 ani%% * Sie%n%) (D)
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EH 3 @I’aj]] = _hz sz KQ/Km{G ( 8 ag Q+l m+] - (SQ,‘F] sm Q, m+]ap

+ St
- 6 193 + 19 )+ 6 ( 6pma£a2+,a SZH 2% %
+ + +
+ 6£pama2+]ap) * 38, (2 az!“_]am+l 6p,m+la2a£,+lap
8 Tes MNETIAG
T O, 29 %mr 1% e pd p,m+\aslama9v+1
+ + +
+ - +
AR (Szmaﬂﬁ‘akﬂap) 6j,m+\ (akamal“
+ 6 aaa -8 a 33 )+ ( $
W, p mp 241 2%+ 241 p
- 8y mﬂap PR (12)

4. THE QUANNM CHARACTERISTIC FUNCTION

To describe the statistical properties of the non-linear inter-
action in higher order Raman scattering we calculate the joint normally
ordered characteristic function. For two different modes i and j it is
defined by the relation

CN(Bi,Bj;t) = Tr{Co(D)expEBia;(t) + Bja;(t)jexp[:-B;ai(t)-ﬁgaj(ﬁ)]} (13)

The densi ty operator p(0), for coherent laser and Stokes nodes and
chaotic phonons is witten as’

] ' |€E|2 2 i
p(o) = TT;l; ( exp(- np ] (gL’gsly---)€p><€L,£sl)~-~’€p' d gp, (] )

wher e nP I's the average nunber of phonons at t=0 and

ajlgL:Esls-'-igsn)Ep> = gjlgL,Esly~--,€sn,gp> M j = L’Sl""’sn’p (]5)
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the 53; being complex numbers.
The linear combinations of creation and annihilation operators
in the exponentials in eq. (13) are obtained as explicit functions

of time in the STL approximation. The result is

+ + _ + + = Ay .2

Biai(t) + ejaj(t) =va;+ Yjaj + Oijt + oijt (16)
wi th
5 o=z
’ Oéj =3 {Yi[HI’a;'] + Yj[ﬁI,a}]} an
~ 3 +
0;:"7. = (%)2 {Y'IZEH ,fHI,a;J] + Yj[H ,[HI,aj]]} (18)
.= f. W, 1

v BJ eXp(th) (19)

The commutators can be calculated, for each specific pair ofthe indices

i,d, from eqgs. (11) and (12). 1t can be easily shown that
+ + A =
a; + o, oiéj 0 (20)
+ +
. ., O = 2
@t + a, 7«.7] 0 (21)
This then allows us to calculate, within the STL approximation,
+ o + + =, =, .2
exp [Biai(t)+8jaj(t)_f = exP(Yiai + Yjaj)exp(OiJ.t + Oijt )
+ + . 5 1 512
o . Lttt (08 += 0! 2
exp(Yzat + ygaj)[l +57,Jt (Oij+2 ij)tz’] (22)

it follows that the second exponential factor in eq. (13) can be
written as a product of exp(-Y;fai - Ygag.) times a polynomial of the
second degree in t.

Finally, the characteristic function for two modes iswrit-
ten in general form as

cN(Bi,Bj) = Tr{D(O)ﬁij(t)} (23)

where
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‘Zrij(t) = exp (\{,La,Lﬂ(JJaJ)237«7 exp (-Y,tat—y;ag) (24)
with
= [ u i, 1 (2 1+2 A ]
P%J l + (0 Ol )t + (0 0‘ 'Z 6 + 5 01‘7 Owﬂw)t
(25)

and. p(D) given ineq. (14).

We can therefore obtain the two-mode characteristic function, as
given in eq. (23), with the help of eqs. {17) through {19).
from the commutators of egs. (11) and (12), for each specific case.
tn particular we have performed the calculations for {£,j) = (L, 8;),
(L,82), (s1;82)

TV + 4+
16, iy, e %, * Y, K, aLap + Ys,Kszaszap) (26)
G - " - +2 +2
Ls, GLK a (apapms a ”) M YLK31K32(aslaSz+dp QSZ)
- 2 + + _ + ! 2
_ Y$1K81asx (aLaL apap) + Y31K32 o1 (@ 3, * as a, +])] (27)
] = 4
-0L32' 1(YLKs as 1ap Yssz %y Iap) (28)
0.. = +2 +2 + y
-2 L\{LK a * ap+a a, +T) + YL - 2(a81a32+ a asz).
, I
+ Yy K K 2 -t
Y82 = aLap-a la ) + Y, Ks s, MY 9 3 as )] (29)
0! ( X * * ¥
s]sz =7 Y, aLap + Yleszas ap + Y, Ks as ap) . (30)
o =~ by x @a -ala) vy 2 d @ a +qa +1)
s, 7 ssslpp L' §, 6,6, 6,8, PP

+y K K -aaq'? 2 -
Yz lsz(aLap aa, )+Ys2Ks 5, (aa a a ):] (31)

Eqs. (23) through (31) determine

C”(Bi,BJ-) = (l+ll)ijt2) exp(y,E% + YJ.g;s - Y, - Y;;gj) (32)
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where

= 7x? 2 *, ; *rk r2
aksl(np+]£sl] +I)lm(YLEL)+zK51Ké2lm(YLESz£SI)

v,

81
+ 2K (= +[E [PVmly_ €% )4k (n +[€_ |2+ im(y* £_)
s, p L' 8,78, s, p ' s, 8,78,

- w2 * rk) -
X2 (2np+1)Re(yLyslgslgL) K,

2 * R
1 Ks (anH)Re(Ys,ngsz)

1 2

-2k K n_ Rely y*E*¢ ) -Kin z 2
8,8, D N_YLYSI‘ESI‘Es2 s, plYL} lgsll

. w2 20y 12 2 2
. Kél(np+l)lysll |ng Kéznp{Yslf |532| (33)

Vpg, = Ky OnrlEg [P Imye) ik K Im(yiEs €2 )
- ikélxézim(ygzggg;l) + iK;Z(np-IESI|2)|m(Y;2€sz)
K hvpltleg 17 - K (e Iy 17lEg 17
- KSIKSZ(2np+l)Re(YzY;Z£;1) : (34)
and
Vg sy = ikél(np-lngz)lm(Y;IEs]) + ikéz(”p*1532‘2+‘)'m(Y;IES,)
- 4K K im(y} EXED ) + iK;Z(np°I531|25lm(Ygzisz)
- KSIKSZ(Zﬂp+l)Re(Y;iELZSZ) - K;z(an+l?Re(Y;1Y;ZEé;§sz)

- 2 2]r 2 _ . * ¥
Ksl(npﬂ)iysll IEL{ | 2K31K$2(np+”Re(Yle32€L€sl)

2 2
- K;anlellzlEszlz - Kéz(np+1)lvszl e, I? (35)
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5. PHOTONPHOTON COVARIANCE AND VARIANCE FUNCTIONS

The photon statistical properties we are interested in can be
obtained from the joint normally ordered characteristic function.
The correlation between the number of photons of species % and

J is studied through the photon-photon covariance functions’

+ + + J
Bt > = <ai(t)a¢(t)aj(t)aj(t)> - <a7’.(t)ai(t)><aj(t)aj(t)> (36)
8¢, (B,,B,t)
<An1:Anj> = a
-R% -g* =
=
2 ‘ 2 .
] 3 CN(Bi'Bj’t) P CN(B‘I:’Bj’t) (36')
—R%* = -Bx ;=
26, 3(-8%) gj;:g 38 3( sj) S;=g

The fluctuation in intensity of mode 7 is studied by meansofthe

. 7 -
variance’, defined as

<(tn,) %> =<a;2(t)a7:(t)> - @;(t)ai(t)>2 37)
2
_ 3'Cy(8;,8,,t) ] %GB8 (37
%8, 92(-8Y) gig 38, 3(-8%) gig‘
J i J

Notice that from eq. (37),
<bnydng> = <al(t)ay(8)ay(e) 1;(6)> - <af(tla,(t)>". (38)

Therefore, with the help of the commutation relation for boson creation

and annihilation operators and eq. (37), eq. (38) becomes
= 2 + '
<A niAni>" <(Ani)_ > 4+ <qiai> 0 . (39)
so that the notation can be somewhat misleading. —
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The correlation functions (either covariance or variance) can
have: a) positive values, in which case we say that the photons show
correlations, b) negative values, when the photons are anticorrelated,
and c) zero values when the photons involved are statistically inde-
pendent (uncorrelated) .

From egs. (32) and (36) we have obtained the following covari-

ance functions

sAnLAnsl> = tszl‘531l2|€L]{2Ksznplgszl cos (an+\p32—znpsl)—.Ksl(2np+|)|gL]]
(40)
<bnppn > = -¢2 Klesz(anH) lg, | 13 |2‘5s2|°°5(¢f“’sz'2"’sl) (")
and ’
) _ 42 2 -
<AnslAn82>— t Kszlgsll 'gsz,{ZKsl("p”)"EL’”"‘("’L*‘Psz 2‘”31)
- xéz(znp+r)|582{}(42)

For the variances, from eqs. (32) and (37), we calculate

2y o 9u2p2 2
<<AnL) >=2 KmnplgL' lgsllz ’ v (43)

2y - 9,202 2 2, 2 21 12
<(An31) > =2 {Ksl(npﬂ)lELI l&sll *Ksznp|£s]| |«E32|

2 -
- Ksl'KSZ(ZnPH)'gLI|‘5.91l ‘gszlcos(wstz zwsl) ’ (44)
and
2 9,22 2 2

<bn )® =2t Ksz(np+1)|€31| lgszl . (45)
In egs. (40) to (45), the phase-angles " k =1L, S, 82, are defined

by K
g, = 1&g, explivy) . (46)

6. CONCLUSIONS

The equations for the covariance and variance functions that
were obtained here, eqgs. (468) through (45), are exactly the same as

those obtained by two of the authors in a previous works, employing the
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short-time approximation and a direct calculation of the covariance and
variance functions, that is through egs. (36) and (37), without com=-
puting the characteristic function. V¢ present here a new way of de-
riving the short-time approximation that can, in principle, be extended
to include powers higher than t?, as in eq. (10). Ve have further shown
how to obtain in a consistent way the characteristic function for two
modes, from which covariance and variance functions of any order are
easily obtained. It can be seen without much difficulty that the commu-
tation relations of eqgs. (20) and (21) can be written for three or more
different modes, allowing the calculation of multimode characteristic

functions.
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Resumo

Apresentamos uma nova técnica para obter a aproximacdo de tem-
pos curtos de Agrawal e Mehta. A técnica € aplicada ao problema nao li-
near de geracdo de radiagcdo Stokes de ordem-superior, 0 operador de
translacao temporal € aplicado aos operadores de bosons que criam os va-
rios fotons envolvidos. Un desenvolvimento an série de potenciais de t,
a variavel tempo de evolugado, truncado en t*, da a aproximagao de tem-
pos curtos. £ indicada a maneira para se obter aproximacoes de ordem
superior. Ainda mais, mostra-se como calcular a funcdo caracteristica
quantica com ordenacdo normal e como deduzir as funcdes variancia e co-
variancia.
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