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Abstract  We discuss the introduction of a term depending on the extrin-
sic curvature to the string action, and related non linear sigmamodels
def ined on a symmetric space SO(D) /SO (2) x (D-2). Coupling to fermions
are also treated.

String theories have been used to understand low energy phenom-
enology the so called old dual modes (which rnust actually be described
using the Liouville theory to avoid the critical dimension), as well as
critical phenornena. However, the most exciting possibility is the de=~
scription of all elernentary interactions from a unified (super) string
point of view.

The starting point of string theory (in the bosonic case) is

the Nambu-Goto action

s=%Tszg Nar ()
where
Tap = K01
a,b =1, 2
u=1,...,0

We have adopted an euclidean formulation which is more suitable to the
construction which will follow. The construction of this first part is

due to Polyakovl.

This work was partially supported by CNPq and FINEP (Brazilian govern-
ment Agencies).
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The equation?

aax“ r¢

3
b 3 X +Kbn. (2)

ab¢c
defines Kclzb , Where T is the Christoffel symbol, and {n7.}, i =1,...,D-2
is a set of D-2vectors perpendicular to the world sheet:

u_
§..
nnJ

d

u
1
ax”=o

ST

n.

The intrinsic curvature is given by

_ (A% N2 _ b Za
R=(k") a4 (3)
The Gauss-Bonnet theorem states that the Einstein action in two dimen-

sions

S =fd%vg R (4)

is a topological quantity, the integrand being a total divergence. As
a consequence it does not contribute to the partition function (at least
in perturbation theory). However, the Nambu-Goto action can be modified
to
_ 1 2 2, ,AD Jla
s_fod5J§+;§fdgKa kS g (5)

since the second term is conformally invariant in D dimensions.

Let us discuss the new term in more detail. W shall use the
orthogonal gauge

a_x"a,x (6)

w=g,p" P

It is possible to rewrite the new term in other forms. W& compute

_ ab
L=Vgg9, “vb Py
where

€ab
t ==—93 X 3.X
uv N aubv
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Substituting tu\) back we have

L=Vsg aatuvabtuv

_ 1 ab_cd ef
= /_g' g € € {SaachadX\)Be'ab fX\) + BchaaBdX\)'abBeXuaf){V

+ aaacx adxvae " bafxv + 3 x 3 adxvse uabafxv}

=7 ‘L@_ éab ECdEef {(Kib“' FgcahX )adxv( be" u * I‘;,bceakxu)af‘x\)
+ 9% (X ad ) K‘7 + be KB K)
W n* u +'r SPLEERS +rbfakx )} (7)

where eq. (2) has been used.

The T''s join in a term proportional to
(Pabc)2 - (Fnbb)2
which is zero in the conformal gauge. For the K's we have
i _/]__(7 ke 2.95¢ k% *p'e
=2 /5K 'Lb za (8)
W conclude with the equality

R Al (9)

o
N —
[
Q
N
(sl
Q
%)

a tpv ab tuv
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V¢ can also prove equivalence 6f the previously defined actiontoa sig-
ma model action. if we define a gauge field Azk by

W_oou 2 ku_ 2 by ol
Dani —Bani +Aan7< = KaBbX (10)
then we have
2 ibhbia_ 2 ab i U
de/gKaKb—de;/gg D m; D, my (1)

This model is defined on a symmetric space S0(D)/{S0(2) ® so(D-2)}. It
is not difficult to see that we have the equality

2 Ié bi a 2 ab, 4 42

Jd*E Vg K K I d*t Vg Vg g X}

]
b ~ {7_g_ E)a

At the conformal gauge, the action turns out to be:
1 2p Jpmt g2y 2 ab;n T 4 7 2
S = zfu Jd £ { (3%x)° + X (BaX.BbX pdab) + To a*t p (12)

We shalt compute the one loop renormalization constants of

the above theory.
If we split the fields into slow and fast components, we can

integrate out the fast components, analogously to the background field

method:
X =X +X
U ol 14
P=p, +0, (13)
ab _ yab ab
2 = >‘o + A
where
Mo pH o _
E)aXoaon =P 5ab (14)
Consider
_ (a) (b)
S_SO+S]I +SI[ (15)
where
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(a) _ 1 2 ~1 .2 2 aby JUo U _ jaa
Sy --ﬁ a*e {o, (3%X)* + 2 X LR RI% 4 X Py}
() _ 1 2p 30Dy yMg yH =202 02,1 (16)
Sy =37, d*g {)\o XIBle 2 pypy XK +

2 "3 ,02 2

+ 0.0, (3% )%}
W find the propagators.
At zeroth loop order, we read off eq. (16) that
Tobo 5
<X, ()X, (-p)>= o S a7

W must find the Al-two point function. To do so, we integrate

out X,:

1 b
2.{ __.f (3% x + A“ aaxuabxl}

f,P
1 Y00 2
=7{X1+’f_">‘laaob(a)}fp (%) {

FoPo ab 1 Jab Po ed
+ Ta‘z—)‘;}"o“ Ay aaxoab} T IF, A 3% 0% ?3—2—)7 Ay 9% 3 (18)

The last term contributes, in momentum space, as

(k }\ab )2
_ 1 2 a 1 2
2f0 }d k (kz)z pa (19)

where 3 3 x* = p § , has been used.
a o b 0 [ ab
In order to compute the A‘-propagator we just take the inverse
(see eq. (23) for further details);
x2)? g
AP0 k2 R)> = - L 6% 5 (20)
2

o
a

- W can compute the l-loop X,~propagator
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. § 8

X u(p)Xl\)(—p)> = +

_ 7P S lfp" p? aazxog % (-p)2f 2 TP (21)
v 2

ph H pu f§ (Y] p§ p"

FoP ! £,
- 9 - m— = ——
=28 =1 aaxoua X, - Buv AR X))

Relation (21) provides a first counterterm to S , Wwhen subs-
tituted in S(b) [S b) is treated as a perturbative mass, in the sense
that STT has higher order derivatives].

1 2, sab Myl o
77 [ aE 2D < 13,

. (22)
2 p p -
= £ (D-2) J a2t )\ab o (_‘Z_E_. ab D=2 109.1}.f dze 2 ® o
zfo 0 0y (2,”)2 (p2)2 8 A 0 0
which is a first counterterm.
We come back to
2 (k }\ab) aa ]
L='Jdk k‘* +k1pl-z-f: (23)
Using the decornposition
ab » kakb A v 4
X = g(aab - —-}-{—2—) + (kafb RS - {(k.f) dab) (24)
W can read off the propagators
<fa(k)fb(—k)>
< E(k) E(-k)>= & (25)
]
< k k)= - 2
o, (k) pf-k) r £, 0
and from the diagram b..L 2 eoea 1
- 9%y 3 _ 82y b a2 -2
7, oPo. Xl 9 leo ] Xopo
Py - P
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(b)

we find the integral (at each vertex thereir a factor/S]I

dependingon
background fields) ,
- ——--(BX) { d*p Ipz _fopo pz} fopo =
Z 5 Sem? || pt p*
: 2 2
ST T | (26)
2p0 by R

The counterterm reads

-2 g0g b fdzg ~ (% )2 (27)
lHl‘ K 2 0 0

The one loop effective action is given by the expression

fD A] -1 2 ‘2
é ijdé{(\~;;log;\_~ 0, (3X0)‘ +

ab D2 A
+ >\ [aaxoabx - Gdbpo[l e TR logi ”} (28)
Renorrnalization is achieved by
X, WAPE A, =270
_ 1 _ D=2 A
Lol 21 A
FTF T2 997
Therefore :
I “linayy2 ab -
s = TfJ %t {p (32X)% + A [aaxabxv ,‘Sabp]} (30)
It is important to note that
1 -1 D A
- — - log = 1
7 fo Wn g I (1)

Physical Interpretation

If there is no (non trivial) fixed point, then <kab> = Xéab

meaning that the increase of the coupling constant will be stopped by
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Y2

the forrnation of the average Lagrange rnultiplier. As it turns out, A
is a correlation length for the norrnals to the string surface.
The effective action in the infrared region is given by

S==ﬁijcfa(%ﬂhz+uofcfsp (32)
which leads to the Liouville theory®. The string tension is given by X,
which cannot be made zero by adjusting Ho. This is the creased string,
and the Regge trajectories are straight lines.

QCD and Ising strings do not belong to the above class, since
they must present critical behavior, and X must go to zero, with acriti-
cal exponent defined by theanomalous dimension. Thecorresponding
string must be smooth.

It is conceivable that a 8 term could induce non perturbatibe
contributions to the B-function through instanton‘s, generating a non

trivial zero.

Related sigma models

Suppose that an SO(D} valued field g is given, transforrning
under a gauge group H = SP(D-P)} & S0(P}. That field can be written
under the following form (Z and Y are rectangular matrices)

9 = (Zyap Tngp-p) (33)

fn the case of interest P = 2. The previous field n7’u will correspond

to Y above. The gauge symmetry is implemented by the gauge field

Z°9 2 0
4= . (34)
7+ ¥
- u
and the action is defined by
s=§trjfgz§qg (35)

where

Dg =3 g-ga
g = 99y
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Using the symmetric space constraints

+ +

'z =1, YY=1,,
ty=0=yv72 ; 2zt +yt - 1, (36)
we have identity
s=tr|dpzpz=1tr |dDpy DY
v Tu VR
where
+
= AR 3 2z
Dt =829, (37)
DY =3Y-Yray
u u u
It follows that the theory containing n (namely Y'L ) can be
replaced by the theory containing Zi’ i =1,2,

We shall work with the complex fields z, and Z defined by

Z =2 +112
1 2

- : (38)

Z=12y,~112,

in terms of which the following constraints hold
22 =0=172°
72D (39)

"7

where we introduced a coupling constant fy/D. The partition:function

can be defined by

7= J DZDZDADRDEDN.  exp - J Pz { 2[—1)“0 +m? o oc:]Z
u u /B

#-Lew) (40)

where Du = Bu + /YD )‘u’ and the fields a, B, B implement the con-
straints eq, {39), and )\u linearizes the Z2-field equation.
Imposing that the vacuum expectation value of  vanishes (or

equivalently, gives the mass m?) we have'
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m? = A2 ¢ M/ 1)
or
oL, g h
?(7--?+27T 10gu . (142)

Rewriting f+f D/2 to compare with the previous result, we have (compare
with eq.(31)):
1 1 D A
-— ==+ log = k4
Ffo FTE %9y (43)
Moreover we can compute the )\u propagator by summing the one
loop, Z-diagrams, which is equivalent to taking D-eo:

p.p
NP> = (8, - LY {67 + ) alp) - 3} (44)

where

. vp? + bm* 4+ /pT

A(p) = log ;
ZTT/pz(p?‘ + l&mz)' v/pz + 4p? - /Eq

The above impliesin a massless pole. It follows that Z is confined, and
a normal to the string world sheet cannot be defined at finite separ-

ation. The string is severely creased, confirming previous results®.

Fermionic models

A simple toy model (non supersymmetric) is given by (seecomment
before eq. (48), and ref.(5)).

L =Dz, 02,® 3, B, + M=1,...,D

Using the same techniques, we can compute the ku two-point function. The
fermion contribution is given by a constant (1/T), which is the usual

anomaly

AP = (6 - LV ) {(p + hm) ()}

By p
pyp

= (8,0 =) (45)
p
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inpl ying di sappearance of the massl ess pa e
However we have yet simlar conclusions

})B(f)=-£;r.< 0 E)r %=?‘.°.-H%1Og§] (46)

§
2) <z,(p)2, (-p)> = pzf:,,vz (u7)

with a non zero mass gap (mass transnutation), inplying short distance
correlation, and the string is creased, inplying Regge behavior

It can be proved that the o-model is integrable’, and the S
-matrix IS known up to bound state poles.

Supersymmetric coupling

General Iy, non'linear sigma nodels interacting with ferm ons can
be defined in a geonetrical way, considering the fermon as belonging
to some representation of the gauge group H® In the previous case v
belongs to the d rect representation. It has been proved that if X
belongs to the adjoint representation, then there is a supersymmetry
transformation leaving the action invariant. The usual supersymmetric
partner is'defined by

¥ = gx (48)

wher e 9=z

obeys the previous constraints eq.(36).

However, we have now extra constraints defining the fermonic
interaction, which arise as follows.

The field x is related to y as

R A A
X =g Xx= (49)

Y+\Dz Y+\by
x is the adjoint representation of the gauge group S0(P}®S0(p-P), and

we inpose the constraints®
+z=0= + Y

Z'y Iy
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also
Z+‘lfy _ wz+ e
(50)
.Y+1PZ _ ll)y+ 7
The supersymmetric |agrangian reads
+ iz 1 -y -
= z - i
L=DgDg+3XPX™ T X0 XXX (51)
with the supersymetry transformations given by
8 =g €X
8y = -1 g+DugYu€ (52)

The fol lowing set of identi ties can be deduced using egs.(36)

and (50):
. 1 J_.d 7
7 G0t = 3 B2 YN e F - eY)
XPx= 5 VR + 5 WRY + PP R W v
(53)
wher e
J =22t = ¥o ¥t
i u "
Using the identities
W= (22" + prtwY = 2zt o= -ty (54a)
pyt®=-p vryy¥z -0 (54b)
u u
we have
A VLR T g (55a)
u u
) 1 Ly
Fx =y VT + g WEW (55b)
Also
—yi yj J'-zk 2Kod
Yy ¥y = T Iy¥y ¥y Yy (56)
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and it follows that

Z

- ' .t J_d
E A SR A S AR
1 -zi zi —-zj zj'
vy U Ve T v (57)
7 v = TF v® =3YF oY (58)

The conclusion is that the full action may be witten com
pletely in terns of Zand $, or equivalently ¥y and @ as bel ow

—-— , - 1 - — Yy
L=D¥D v+ i B +q Pwywy)z - (wyvsur"){]
=E;sz+¢wm+ [ww)z—wyw)] ©(59)
with the constraints

22 =32=0;%22=2;02=20=2p=2p=20

and sinlarly for Y and i respectively.
The forces in this mode! are al short ranged:

} §
<2, Zy(-p)> = ==&

(60)
p2+m2
’SMIV
<y (p) By (-p)>= (61)
A @) A (p)o= (6 - V02 4 by a@)) !
<«\u(p \)(p = ( v —;2—) (p* + hm p
. PyPy
o (Gu\) - —Z;?-) il (62)

The supersymmetric string is al so creased, with Regge behavior.

v shell scattering can be def ined, and conputed (up to  bound

state
poles) °.
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The B~-function 'has the same previous value
2
8 =-{ (63)

The model can be coupled to local supersymmetry, with similar
conclusions, the only difference being a long ranged graviton and gravi-
tino fields.

The only difference between the models interactings with fer-
mions and the purely bosonic model is the presence of the long range
force in the bosonic case, which is presumably hiding an infinite string

tension.
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o

Resumo

discutimos a introdugdo de un termo que depende da curvatura
extrinsica a acdo da corda, e os modelos sigma ndo lineares associados,
que sdo definidos no espaco simétrico S0(D)/S0(2) x SO(D-2). O acopla-
mento a férmions é também tratado.
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