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Abrtract A matricial approach for the Dirac-Kahler for;malisn is con-
sidered. It is shown that the matricial approach i) brings a great com-
putational simplification compared to the common use of differential
forms and that ii) by an appropriate choice of notation, it can be ex-
tended to the lattice, including a matrix Dirac-Kahler equation.

1. INTRODUCTION

The Dirac-Kahler formalism has been investigated by some authors.
The most extensive study on the subject has appeared in the work of
Becher and Joos! where the formalism is discussed in the light of dif-
ferential forms with very little attention to the matricial approach. In
addition, the study of the Dirac-Kahler formalism on the lattice has not
been considered in the matricial approach.

In this paper we intend to review the Dirac-Kahler formalism ac-
cording to the matricial approach. It will be shown that this approach
provides a great computational simplification. In particular, it is very
useful in obtaining proofs and other results where long and tedious cal-
culations are required by the differential form approach.

The Dirac-Kahler differential formalism, through the equivalence
between the Dirac-Kahler equation and the usual Dirac equation, has as-
sumed relevance by allowing the study of fermion fields using antisym-
metrical tensors associated to differential forms?’®, But this conse-
quence has become more important because the lattice fermion energy de-

**»5 can be solved in a natural way in the lattice Dirac-Kahler

generacyl
formal ism. ’ N

The lattice field theory has become very important mainly after
applications to QeD®, which offer many important results, as for example,

quark confinement, through Monte Carlo simulations”.
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It is believed that the Dirac-Kahler formalism offers a proper
mathematical structure for the lattice field theory developments.

There is a point to be mentioned: when we demonstrate the equi-
valente between the usual Dirac and the Dirac-Kahler equations, this
equivalence is true only after the minimal left ideal reduction of the
differential form space. This is because the four dimensional differen-
tial form space is equivalent to the 4k matrix space, and the minimal
left ideal reduction corresponds to the column matrix reduction of the
matrix space, each column representing a Dirac spinor.

W know that a general differential form defined in a four-di-
mensional space has 32 degrees of freedom, while a Dirac spinor has 8.
However, the matrix equivalent to a general differential form has exac-
tly the same 32 degrees of freedom, hence there is the necessity tomake
a reduction if we intend to represent a Dirac spinor by a differential
form: Otherwise, we can profit from this degree of freedom redundance ,
as for example in the superfield formalism®, where we may represent the
N=8 extended supersymmetric charges by 4x4 complex matrices. This sug-
gests that we can build the N=8 superfield on superspace where the
spinor coordinates are elements of the 4x4 complex matrix. Actually,one
purpose of this work, exalting the matrix representation, is just to
prepare for the study of this possibility. W can foresee that from
chiral reductions we can obtain the several N=8 supersymmetric represen-
tations, at same time that, from fermionic variables reduction, calcu-
lations may become feasible.

in the study of matrix representation, the possibility has
appeared to extend it on the lattice, which hasn't been done at present
because the lattice basis elements don't satisfy the Clifford algebra.
However, we can extend the matrix representation to the lattice if we
define the exterior product and contraction to act on Dirac matrices in
much the same way as they act on differential forms. While it makes ob-
scure the field geometric interpretationg, there is simplification for
calculations.

The plan of this paper is as follows: in section 2 the mathe-
matical preliminaries are given, where definitions and notations are es-

tablished. Section 3 is concerned with the study of the continuum Dirac-
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Kahler formalism in a matricial approach. The Lorentz transformations,
the scalar product and currents are also considered. In section 4, the
matricial approach for the Dirac-Kahler formalism is extended to the
lattice, and the matrix Dirac-Kahler field equations on the lattice are
obtained.

This work is part of the author's doctorate thesis®®

presented
at the Instituto de Fisica Tedrica - Sdo Paulo.

| am grateful to Dr. Waldir Leite Roque for useful discussions
as well as for the English translation. To Prof. A H. Zimerman and H.

Aratyn my thanks for useful discussions.

2. MATHEMATICAL PRELIMINARES

Let us consider the four dimensional Minkowski space with the
metric gu\) = diag(+1, - 1, -1, -1). For the Dirac matrices, which as we

know, satisfy the Clifford algebra

vy = 26" (2.1)

and generate the 16 dimensional Clifford space, we shall use the Weyl
representation. A suitable choice for the basis of this Clifford space

is
- P TR THR TR TR !
) = 0%y By 2y Y 3y 2, (2.2)
and so
= {1, . yeee 2.
gl = oy vy Yy Yy Y Yy (2.3)
_ 2 1 3 2 1
with

Uy < Hz < Pz < ...

2

I4

satisfy the orthogonality and completeness relations, respectively

er(rr,) = 4s (2.4)

HK

and _
z ()

H

(r,) 5 (2.5)

PH ed 4 Gcb ad
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Thus any 4xh matrix, ¥, can be expanded in terms of FH as

vzt =Ty (2.6)
where
Yy = 1]’- tr(Yry)
and (2.7)

= L errf)
Any differential form can be written as

0(e) = 3 by (@) = 2 " (e (2.8)
H

where the bases {dxH} and {dxH} are defined as

H,y U,

Sy =0, @M, d ade )
and (2.9)
{de}={l,dx,da: Ade o, ...
H H2 H

The coefficients ¢,(x) and ¢H(x) are given by

{¢H} = {0¢’¢U’¢Uxu2'¢U1U2U3"”
and (2.10)
{¢H} - {°¢,¢u,¢“2“1,¢u3u2u1“” }
with 41 <y, < uz <... . If we introduce the symbol €k which is simi-
lar to a truncated completely antisyrnmetric Levi-Civita tensor with the
value +1 for Eu1UzU3 «aa When p; < uz < Y3 < .. and inverting the sign

for each permutation between two of the indices, we can define the ex-

terior product and contraction as

' adf =6 dalUH
and s (2.11)
7 - H= A\l
e, da = am daf-e @,
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respectively. Here, # and X are ordered sets of indices and HAK is the
symmetrical difference which contains the elements of H and K that do
not appear simultaneously in H and X. W also use the other familiar set
theory operations.

Because the elements (indices) of H and K are ordered, then for
H={ }or x={ }, we have

= ¢ =+1 °

€0,k = %1,

Also, the contraction with the upper indices gives

de™ deH,== et J dxH=guv e\)_l dacH

_w HV
=g e\),HA\)dx , (2.12)

which obviously satisfies the usual definition
Moy =gV ' (2.13)

With the exterior product and contraction, let us define the
Clifford product

M v dd = aMadd v @t Jod . (2.14)

It is easy to see that the elements da? provided with the Clifford pro-

duct, v, generate the Clifford algebra
e v &’ + dx v = 28"

in a similar way to the Dirac matrices, yu (with the usual matrix mul-
tiplication).

At this point, it is convenient to define matrix operations anal-
ogous to the differential form operations. More details of this al-
gebraic structure in the abstract vector space, referred to as the
Kahler-Atiyah algebra, can be seen in the works of W. Graf? and Benn
and Tucker3. With this purpose, we define the matrix exterior product
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u =
Y AT €l T (2.15)
and contraction
H H\u
Jrmrs= r 2,16
Yy By ( )
The usual matrix product is given by the sum
YuI‘H =¥ A rf 4 Y i , (2.17)

which is equivalent to the differential form Clifford product.

The suitable arrangement for the bases

I‘H Uy B, Hy
Y Y e
and

= ... , < U2 < U3 < .nn
Ty Vg p Yy, > W2 S H2 S U3

leads us to define the right matrix exterior product and contraction, re--

spectively

Ty 2y = &1 Taum (2.18)
and

Ty LYy = & my Ty (2.19)
with the matrix product

FHYu =Ty Ay, + Tyby, - {2.20)

Having introduced these mathematical tools, let us see how the

matricial approach can simplify rnatters.

3. THE CONTINUUM DIRACXAHLER FORMALISM

In this section we review some aspects of the matricial version
of the continuum Dirac-Kahler formalisn as introduced by Becher and Joos !,

whose framework we wil! follow.
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The Dirac-Kahler field equations written in terms of differen-

tial forms are given by

(d-8)¢ =0 (3.1)

where

@) =3 b’ = 1 o7 (0)dy (3.2)
H H
is a general differential form, which contains

4
2.7 () =32 (3.3)

degrees of freedom. The Dirac-Kahler operator is defined by the exterior

differentiation

d=ds r 8 (3.4)

and its adjoint
§ =+ gk=-dd' U (3.5)

Thus
(@-8) =da"n 3 +a™ 103 =daMva (3.6)
H H U

The Hodge star operator % acts on the basis elements of the dif-
ferential forms space, and the definition given by Becher and Joos? is

enough for our purposes.

In some sense, apart from a higher number in the degrees of
freedom, the differential Dirac-Kahler equation is equivalent to the
usual Dirac equation. To show this equivalence, we use the auxiliary
basis functions Zab which connect the differential form vector spaceand

the matrix vector space,
T.H H.T
Z2=3(r)de =35 (I') dr (3.7)
H H
H H
such that the general differential form (3.2) can be written as

¢(@) =2 @’ =] gy, )7, (3.8)
H a,b

317



Revista Brasileira de Fisica, Vol. 17, n¢ 3, 1987

Notice that the auxiliar basis function Z cannot be seen as a matrix
while basis of differential form space, but as a set of differential
forms Zab defined on each matrix component.

From the orthogonality eq. (2.4), we obtain

A

i H\T i H
de’ = T tr[:(l‘ ) Z:] =7 azb I‘abzab (3.9)

which inserted into eq. (3.8) results
V() = ] oy(e) 17 (3.10)
H

where

byle) = 5 erTy vl . (3.11)

Notice the similarity between the matricial expansion and the general
differential form (3.2). Here ¢ is a 4xk matrix with the same degreesof
freedom as the general differential form, Suppose that the 4 x4 matrix
Y(x) is equivalent to the differential form ¢(x); from now on we will

denote this equivalence by

¢lx) - vl . (3.12)

Fixing H and defining ¢, =1 in eq.{3.10), we obtain the equi-
valence

e . M (3.13)

and also From earlier definitions,

FRND L NS
a1 &t (3.14)
dxuvdrH~YuFH ‘

Using these equivalence in the Dirac-Kahler eq. (3.1), we ob-

tain
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- = il = M H
{d-8)¢ (dxt v Bu)¢ f] 8u¢Hd’c v dx

B
-8 6T =3y e 7 =
Lot = o = o

which shows the equivalence between the Dirac matrix equation and the

Dirac-Kahler differential form equation
(d-8)¢ =0 - =0 . (3.15)

Including a mass term, we have
(d-6+im) = 0 =~ (iy“au -myp =0 . (3.16)

Notice that the equivalence (3.12) and (3.15) are between dif-
ferential forms and 4xk matrices. This is easy to understand when we
take into account that the differential form space difined by the 16
dimensional basis {d:cH} is a Clifford space analogous to the 16 dimen-
sional matrix space defined by the basis ry.

If we wish to take into account a one-to-one equivalence between
the Dirac spinors and differential forms, we must take the minimal left
ideals reduced differential form space, equivalent to the column matrix
space. So, the general differential form and its 4xk matrix equivalent
contain four Dirac spinors, to which we refer as the spinor four multi-

plicity representation.

3.1 - The Lorentz transformations

In this subsection we wi'll study the properties of the Lorentz
transformations™" of the matrix ¥ which isequivalent to the differential
form ¢. Actually, we transpose to matrix formalism the treatment which
has been done by Becher and Joos! on the subject in the differential
form formalism

The coordinate transformations are

x&=A x (3.17)
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where, due to the metric invariance, we have

AY) ~11V
A Y = (A"1) u o (3.18)

u
By construction, the differential form is a Lorentz scalar,
o' {x') = ¢(x) , (3.19)

thus

o' (x) = "o(ax) + Anv¢v(A-lx)dx

+

i p, © -1 ! A
_Z-A]JA\) ¢DO(A x)dx Ad"l? +...

1

"$(7Mx) + 0, (M) (7T M+

3 goo(n”!

+

2 (7P dt A (7" 4
-1
=¢(A =) , (3.20)
which is equivalent to the matrix expansion

V@) o)+ o (M) () WY 4

U
(3.21)
1 -1 -1yP U -130 Vv
+-2—¢pG(A x) (A7) UY A(A™Y) oY e
Using the equality
oy =5ty s, (3.22)
we obtain
v (@) = splhe)sh (3.23)

Although eq. (3.12) shows an equivalence under Lorentz transform-
ations, the differential forms and the matrices transform in different
ways, see egs. (3.20) and (3.23). This is so because in the change of

the coordinates, the elements d:r:“ transform as
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v
> de! = A" de .24
dz, L = Ay e, (3.24)
while the Dirac matrices Yu are chosen to remain in the same represen-
tation.

The left matrix transformation

p' (') = 5¢(x) (3.25)
acts on a matrix row,

= .26
(S‘P)ab Sac ‘bcb ' (3.26)
corresponding to a spinor transformation if we consider the 4xk4 matrix
P(x) containing four Dirac spinors in its four columns, each column
equivalent to the minimal left ideal decomposed differential form. Now,
the right matrix multiplication is a flavor transformation which mixes
the four columns, that is, the minimal left ideal subspaces,
-1 -1, 7

=1
Ws™h = 5= T

ab (3.27)

ae’
In this sense, the Lorentz coordinate transformations induce internal
transformations on the flavor space. |f we consider the Dirac space as
element of some reduced minimal left ideal, the flavor transformationis
of no matter. On the other hand, if we consider the fourmultiplicities,
we will have an internal simmetry transformation, because the right
matrix multiplication does not affect the Dirac-Kahler fiel'd equation.

Nevertheless, it is not needed t/hat each column should represent pre-
cisely a Dirac spinor if we take into account the whole Lorentz trans-
formations. That is, we could represent Dirac spinors without making the
minimal left ideal decomposition. For example, we could make the four

left and right chiral decompositions.

3.2 = Scalar products and currents

The matrix representation of differential forms is very useful

for practical calculations. Here we will express the scalar productsand
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the conserved currents in a matrix notation. Let us consider two dif-

ferential forms,

b(2) = I 4" = £ o (@)dm,
H H (3.28)

=¢(@) + ¢ @d" + 5 0 (@)dH A dx’ + ..
and

Z(z) = ¢ ZH(x)de =3 ZH(x)de
H H (3.29)

= %(a) + Ep(x)dxu +% £w(:c)dxu A de s ..

with the matrix representations

@) = % gyla) TV (3.30)
¥4

and

X&) = £ 2,(a) r" (3.31)

respectively.
The scalar component of the Clifford product between ¢{(x) and
Z(x) is

"6v2) = 2 oy 2ie) = 0%+ 0,8+ g 0, 8

1 oVl 3210
+ 3T ¢UVD£ + ¢0123€ . (3.32)

When we use eq. (3.11), we have

i i ; H
ovar s 1T g gl T 1),
=T alp Vap @, () = § £r Lh(@)x(a)) (3.33)

1
- o () 2 () tr(rr%)
Eng‘Hx \x) tr

Fixing ¢H=ZK =1in the above sum, we have
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@ v @) = oerrTh (3.34)
or, if ¢, =2 =1,
(e v dz) = f ey = 5, (3.35)
and so,
“dr v e v de®) = | er(MTTN) (3.36)

The generalization of eq. (3.36) is straightforward.

The Lorentz invariant scalar product can be conveniently de-

fined as
(6,2)0 = (86 v 2) A € = tri(BY)x}e
(3.37)
- u 1 v, b HVp 0123
= (%% + ¢11g * 2 ¢11\’€u * 3! d)vVDg +¢0123E e
where
E =& A de! A dx?® A dx® (3.38)

This expression for the Lorentz scalar product has been introduced by
E Kahler in his original work!?. He also introduced the generalized p-
-product (¢,Z)p.

The operator B! is an anti-automorphism,

Bl v &) = gt v Bad . (3.39)

so
B(dx Ade’ AdePa..) = ...dd® Ade” ade . (3.40)

In this work we define the anti-automorphism 8 to act in much

the same way on the Dirac matrices Yu,

BOMYYYP...) = Py (3.41)
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The scalar product defined in eq. (3.37) is a 4-form. A general
p-product (¢,Z)p is defined to give a (d-p)-form, where d is the space
-time dimension. (in our case, d=k.). V¢ are considering here only the
cases p=0, scalar product, and p=1, vector product. The latter is de-

fined as follows

(6,2), = e, J @My 9,2) = e, J (8" v ¢) v 2) ¢

%Bp v dx" v z)eu € (3.42)

1}

7 tri(ByXe ¢

Let us consider the action of the Hodge star operator on the
contraction,

x'e le=-dn
'] H

Then
¥ 1(0,2), = - el (3.43)

From this. we can define a current’

j=d"@dn = - % (,2),

‘ H m
T tr [(BY) v )adacu , (3.44)
with vector components

Fa) =g el = B v & vz . (3.45)

The action of the adjoint operator 6, defined in eq.(3.5), on

the currents gives
. o . J
8§ = -e".1 3 =-3
J e uJ UJ

=~*_1d*,7' = - *_ld(‘i’,z)] ’ (3.46)
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which, to be conserved, requires
d$,z), =0 (3.47)
From eq.(3.42) we have
a($,2), = d™ A g, %tr{(Bw)va}ev_J €

=3 tr 3, LBy "1a A (e, Je)

A simple inspection shows that

u _ M
de” A (e, 38) =g" €

hence

d(6,2), = eriBOMo X + (B xle . (3.48)

Also, from the definition of the scalar product (3.37), we have

((d-8)9,2)5 = trl[B(M3 W)]xJe (3.49)
and ] )

(8, (d-8)2)4 = 1 tri(BR ¥ xle (3.50)
leading to the result |

d(¢,2), = ((d-8)¢,2), + (¢,(d-8)2), . (3.51)

This is the so-called Green's formula. Hence, the condition for the cur-
rent conservation demands, from eq. (3.51), that the fields ¢(x) and Z(x}
both satisfy the Dirac-Kahler equation, This is a known result 2; how-
ever the matricial approach has been shown to be very handy in obtaining
it. As another example of the usefulness of the rnatricial approach let
us consider the product

- H K
(pvz) = H,ZK Oy (@) 2, (x)dx” v dx
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The calculation of the Clifford product in differential forms is a very
hard task, though with the aid of the matrix representation, we  see

that it is

(pvz) =2 (¢vZ)Hde = % by tr{I’HlPx}dxH , (3.52)
H H

which is a simpler expression.
Here, ¥(x) and x{z) are the matrix representations of the dif-
ferential forms ¢(x) and Z(x), respectively. The trace is on the Dirac

matrices products, and its evaluation is well known.

4. THE LATTICE DIRAC-KAHLER FORMALISM

For the sake of simplicity, we use the eartesian coordinate
system, and we present some current fundamental definitions. For a com-
plete and more precise definitions we refer the reader to Becher and
Joos's work L We must mention also that the lattice is better defined
on Euclidian space-time.

The lattice analogous of the differential form (see eq.{3.2))is

the co-chain, which has the general form

0= o) = £ ¢l | (b.1)
X x,H

H .
where the elements dx’ are the elementary co-chains, dual to the el~

ementary chain [x, H], and defined to satisfy

JHe _

&y,K = 8y Oug » - (4.2)
just to allow the integration (sum) of the co-chains on the lattice
space.

The lattice version of the Dirac-Kahler equation is
vV v -
(a-V)¢ = d" v pd =0, (4.3)
where
+ —
8 ola) = L [lave) - o] (4.4)
et
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and

M ¢ (x) =j [9(x) - & (r-e)] (4.5)

are the up and down finite differences ,both approaching the usual con-
tinuum derivative " in the continuum limit, and the element du is de-

fined as the sum

&=z (4.6)
x
or in general,
PN L (4.7)
x

The symbol v means the Clifford product operator, defined as the sum of
the exterior product and the contraction. The lattice exterior product

is defined as a non-local operation by

H
dx,H A dy,K _ EHK sere Ly dx,HUK , (4.8)
which leads to
-oH
g™ @V e a Y (4.9)
y I
and the contraction by
A H
e, & =€, HAud”’ \H (4.10)

From this, we have

(X—%lm = vae= I A md vi&l
L e (4.11)

2

= ZH&U,HAUA: ¢ (e, H\u) + eu,HA; ¢z, B Uu)]dx’H

where we have used

8, ww“) = A: ¢ (x) (4.12)

Due to the non locality of the exterior product the lattice

elements d" together with the Clifford product v do not satisfy the
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Clifford algebra. Thus we cannot define any lattice Dirac equation in
matrix representation founded only on the usual matrix product. However,
we have a way to introduce a rnatrix representation on the laticce: let

us define the auxiliary lattice basis functions given by

7"

T 1 TT 2,uv
i EY w3 s P

-zt &S (4.13)
H
where
(& - (F SN, (b.14)

Here, we write

$(x,H) = ¢H(x)

with the lower Lorentz indices as defined in eq. (2.10), and the lattice
elements dm’H with the upper indices, analogous to the continuum el-
ments da' defined in eq.(2.9),

After a sirnple manipulation, we obtain
P = -L— tr(tf)T 2% (4.15)

and, in the new basis eq.{4.13).

¢(x)=z¢(x11)d'“1 Z 3 V@2 F
5 L @0, & (.16)
that is,
dla. ) = er{b(2)T,) (4.17)

On the other hand, by eq. (k.15),

) = § ¢la,m)d@F =L 1 2 & (1) (TF) (4.18)
a.b H

7 - bab
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which when compared with eq.(4.16) above gives

We) = 2 0z, ) e (4.19)

This is the matrix representation of the co-chain.

Inserting these results into the lattice Dirac-Kahler eq. (4.3},

we obtain

vV ¥ _ + ,HU}) - »H\U
(o= 1 e, 8 tend™ T vl 8 b nd

_ + i Y, &

=l G B ) 5T 0 ¢

- 1 n,x
* ey anuly @0 szhb 2w
= I g B o@m (Parh, -
x,H

+ 0 olen) (M AT ] 20
RN AR TC RN IO P A (1.20)

which gives the matricial Dirac-Kahler equation for the lattice,

YA A: viz) + Y Al'J Yiz) =0, (4.21)

where ¥(x) is a 4xh matrix. W can introduce the gauge interaction by
+ + + .

making the substitution Au + D, where Du are the gauge covariant de-

rivatives. Then, with the gauge interaction, the matricial Dirac-Kahler

equation for the lattice becomes

WA D: Yiz) + y* d D; Y(x) =0 . (4.22)

W notice that the gauge covariant derivatives as referred to above are

well defined only in the adjoint representation“‘, and their precise

geometrical interpretations are considered by Aratyn and Zimerman'S.
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4.1 - Scalar products and currents

Let us consider two general co-chains denoted as ¢ and ‘Z, re-

spectively,

)) oG, )l
x,H

©-
Il

T %o(x)d” + cpu(ac)d"c’u + % ¢uv(x)dx’w + ... (4.23)
X

and

[\N]
L}

b oz2(e,md
X, H

] %@+ g @™ 4 g @dH e ()
X

W wish to define a scalar product between them in the usualway,

that is, as a Lorentz invariant expression
040 w1 uv
(0,2)0 = "% + 0.8 + 50,8+ L, (4.25)

as in the continuum. In the lattice we cannot define the scalar product
as {Bd v Z) A E because of the non-locality of the Clifford product.
However, it can be well defined if we adopt the matrix representation
directly
(¢,2)¢ = 1];2 tr{(BW)V} e (4.26)
X

where Y{x) and x(x) are the matrix equivalents of the co-chains ¢ and

Z, respectively, with

e = g 123h (4.27)

From this definition, we can see that the scalar product is sym-

metric in ¢ and Z,

(¢’Z)D = (Z’¢)D [ (428)

We wish to define a vector product (¢, Z)1, in order to obtain
a simple expression for the conserved current. Notice that if we use

the analogous expression on the lattice obtained from the continuurn,
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e, 4 @"v o2, ,

we do not have the syrnmetry between the ¢ and Z fields, due to the non
locality of the Clifford product. Also, the direct use of the matrix
representation, as in the scalar product (4.26), is not useful because
we cannot show current conservation in a simple manner.

A better way to define the vector product (¢,2); would be such
that it were symnetric on the lattice as well. In the continuum, this

symmetry is a consequence of the equalities

(@M A 6,2)0 = (9,6 3 2), (4.29)
and
("4 ¢,2)0 = (9, d'a2)o (4.30)
which give
(dz" v ¢,2)0 = (6, d=" v 2), . (4.31)
Because of these, we can define the vector product in the con-
tinuum as
(6,2), = " d(da" a ¢,2)0 + & | (¢, &M A 2), (4.32)
or . .
(6,2), = M 9,2, + & d(o, M 12), (4.33)
where the symmetry between ¢ and Z fields appears explicitly. In the

continuum, we have the equivalences

de A ¢(x) - ¥ A pix)
and
Mol -y du)

(see eq.(3.14)}. n the lattice, we have

Fas -y A plore) (4.34)
and
L I R T ) (4.35)
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It is the non locality of the exterior product dqu> that makes
eqs. (4.29) and (4.30) fail on the lattice. To correct them, we can use

the translation operator Tu defined as
H -t
Tud”’ = (4.36)

which provides the equivalence

T_udu/\cb N 10 B (4.37)
Thus
(7@ r 6,20 = (0, d 20 (.38)
and
(46,2, = (6, T_d"r 2y (4.39)

The symmetric vector product (¢,Z), can be defined now as
(9,2); =7 & S [d 26,20+ (0,d a2}, | (4.50)

where the symmetry of ¢ and Z fields is evident.
From the definition of the scalar produc (4.26), we have

($,2), = -A— T tr{Bl}u A Plx + eu)] Cxlx) o+
x

+ By (x) Bu A Xz + eu)] }T_ueu_] € (k.41)

If we apply the operator
SEN
!

to the left hand side of eq.(4.41) above, and after some manipulations,

we get

332



Revista Brasileira de Fisica, Vol. 17, n? 3, 1987
86,2y, = d" r &) (6,2),
=%iuw5“Agquxu)+
+s@“AqugIﬂw—+m;wu95“Axuﬂ+
B (=) ¥ # 47 X ()] Ja®etRt (4.42)

Now the definition of the scalar product and the eguivalences

W By - ang=to

' (4.43)
Yu A l’)(x) - T_udu A¢ ’
yield

X(6,2), = $6,2) + (7 d" n 6,07 2), + (86,7 d* a 2), + (¢,02)
] 1 ] o _.u ’u 0 u;_u 0 4 "]

The equalities (4.39) and (“-‘*0) give

U - _ u - o v
(T_ud N 7)o = ($,0e" I Au z), = ~{6,A2), ,
(b 0,7 d"a2) = (eu.JA;‘P,Z)o = -%¢,2), ,
and therefore
20,2), = (5-99,5), + (0, (B-N)2), . (1. 44)

This is the lattice version of the Green's formula (3.51).
The Hodge star operator on lattice is definedl by

H
*dx,H de+e SCH .

= €y,cn

B d:c-eCH_. CH

* o . , (4.45)

€cn,u

where CH is the cornplementary set of H, which in the four dimensional
space is
CH = H,\H = {1234} \ H
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Then
X 3e) = pmeetu (b.46)

V¢ can define the current as

=z j“<x)d”'“ =% (¢,2), (4.47)
X

with components

ju(x) = 71.- tr{B[Yl1 Aw(mfeu)] x{z) +
+ Bu) M A X3 . (4.148)

The divergence of this current is

v

Vi v

K . ;- U ’
e 4 Auq iAugv(x)ede

-zt 4.
achu HMo)d® ., (4.49)
or, in terms of the Hodge star operator,

¥row A wgaw 73(¢>.z)1 . (4.50)

The current is conserved iff
- v
L (x) = 0 <= A($,2), =0 , (4.51)

that is, if the fields ¢ and Z both satisfy the Dirac-Kahler equation,
as shown by Green's formula (4.44).

5. CONCLUSION

in the Dirac-Kahler formalism, the very hard task are mathemat-
ical calculations which involve Clifford products within differential
forms space. To avoid this, the suggestion is to work with the matri-
cial approach, which actually simplifies these caiculations, as we have
shown in this paper.
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One of the main results obtained in this paper is the intro-
duction of the exterior product and contraction defined on the matrix
space in analogy with these operations defined on the differential form
space. Through these operations it is possible to obtain a matricial
Dirac-Kahler equation on the lattice.

This work is an attempt to show the power fulness of the matri-
cial Dirac-Kahler formalism and as such many more developments are

needed in this direction.
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Resumo

Uma versdo matricial do formalismo de Dirac-Kahler é apresenta-
Pode-se mostrar que a versao matricial 1) permite uma grande simpli-

ficado nos céalculos comparado com a versdo diferencial e que ii) por uma
escolha adequada de notacao, pode ser estendida para a rede, inclusive
com uma equacgdo matricial de Dirac-Kahler.
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