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Abstract  The Random Phase Approximation (RPA) treatment of small-ampli~
tude nuclear vibrations including particle-hole continua is handled in
terms of previously developed techniques to treat single-particle reson-
ances in a reaction theoretical framework. A hierarchy of interpretable
approxirnations is derived and a simple working approximation isproposed
which involves a numerical effort no larger than that involved in stan-
dard, discrete RPA calculations.

1. INTRODUCTION

The random phase approximation (RPA), in one or another of its
numerous guises, is the basic tool involved in the microscopic descrip-
tion of nuclear collective excitations which admit phenomenological
characterization in terms of small amplitude vibrations. Prominent among
these are the giant resonances, involving a variety of multipolarities
anddegreesof freedom (e.g. surface, density, spin, isospin). Exci-
tation energies place them typically above particle ernission thresholds,
eventually requiring a reaction theoretical framework for their treat-
ment. The inclusion of continuum effects in microscopic structure cal-
culations has in fact been implemented several times, but always at the
expense of considerable numerical effort!?’?2,

This paper aims at exploring techniqgues which might allow a
reliable treatment of continuum effects in particle-hole RPA typecalcu-
lations at low cost. it is my purpose to argue that, on the basis of
previously developed tools to handle single-particle resonances in com-
plex nuclear reactions?"6 (i.e., including direct, interrnediate and com-
pound processes), reliable approximation schemes can be set up that re-
duce the continuum RPA problem to the level of numerical cornplexity of
the more standard, discrete calculations. Following a general formu-

lation in section 2, these approximations are introduced and discussed
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in section 3. Simple examples to illustrate some of the novel features
in the calculations are treated in section 4, but a detailed numerical
study of the approximations is deferred to a latter publication.

The schemes developed here can be eventually broughtto bear on
a much broader and richer description of reaction processes involving
excitation or formation of particle-hole modes. Such a description, pro-
posed by Kerman7, allows in particular the treatmentof spreading widths,
cornpound phenomena, fluctuation cross sections, etc. & 10. I will however
refrain from involvement with these more substantial problems here, if
only to bring enough emphasis on particularly simple ways of handling
the particle-hole continuum. Further developments of the more general

theory will be given elsewhere.

2. SCATTERING IN PARTICLEHOLE SPACE

I will assume throughout this paper that everything which is
of interest takes place within a restricted subspace, consisting of
particle-hole excitations, of the entire phase space of the nuclear sys-
tem under consideration. Denoting as |0> the normalized ground state, |

accordingly write relevant nuclear states |v> simply as

Jv> = 1 e} £ oary (1-]0><0]) ¥ (2))0(r,) [0> u (rir})

i

I drel [ dr) {r;r;)uv (rir}) (2.1)

The \p+, Y are fermion field operatorg, and arguments and integrations
are supposed to include (implicity) both space and spin-isospin vari-
ables. The defined kets lr; r:) are in general not orthonormal, but con-
veniently represent the particle-hole subspace. The states |[v>, or
equivalently their representatives L\/(rir;), are to obey the projected

stationary Schrédinger equation
[ dr} [ dr} [Ev(rlrzlr;r;) - (rp, |H ey u (1)) =0, (2.2)

H being the nuclear Harniltonian.
The general problem defined by egs. (2.1) and (2.2) can be re-
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duced to the standard RPA level of description by introducing further
assumptions and approximations as follows. First, assume that the
ground state is annihilated by the adjoint of the excitation operatur

appearing in eq. (2.1), i.e.
[ drey [ dr) ]Pl'rg)u\*)'(rl'ré) =0 (2.3)

This assumptionallowsone todrop the (1 - |0><0|) projector in eq.

(2.1). Furthermore, set the energy scale so that
H|0> = 0

Eq. (2.2) can thus be rewritten as
S ar} S odr} Eav<o)1¢+(r2)¢(p1),¢+(r;)w(r;3jo> -
- <@ BT e, 18 e ]]105]) u (eird) = 0 (2.4)

The usual (continuum) RPA equations now emerge when the ingredients of
eq. (2.4) are evaluated in terms of the Hartree-Fock ground state as an
approximation. Since nucleons can be promoted to states above nucleon=
~-thresholds, egs. (2.2) and (2.4) constitute in fact a scattering Ppro-
blem involving in general several coupled channels, and must therefore
be supplemented by a set of appropriate scattering boundary conditions,
such as e.g. an asymptotic plane (or Coulomb) wave in a given channel,

c, and outgoing (or incomming) waves in all channels). The correspond-
(e)+ , (e)-

v wy ).

Typical uses of these states are then as follows. First, they

ing solutions are then denoted as u

can be used to construct the RPA approximation to the particle-hole re-
sponse function as!?

+ + + .+
<O ()0 0ey) 0P O ey ) 05

(rlrle(m) lrire)) =}
e E\)>0 A - E\) + 1n

<" DU vy @) 0 ey) 05

B + E, +in (2.5)
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where the particle-hole transition amplitudes are given as

(e)+,

. L (e)+
v =Jdrgow e reEr,

<0yt )yt ) |

-raet ol oin,) L (2.6)

Second, one may treat within the same approximation direct re-

action processes of the type

a+ [0> =+ a' + |v (2.7)

L]f>+c

»

in which a particle-hole mode is directly excited by inelastic scat~
tering of some probe a (e.g. inelastic electron scattering) and sequen-
tially decays through one of the open channels ¢, leaving a residual
state |f‘> If then the inelastic scattering process is dealt with in
terms of the Born approximation (possibly with appropriately distorted

waves) , the transition amplitude corresponding to eq. (2.7) is®

T, = wle)- . l0> ‘ (2.8)
where Maa’ is a one-body operator acting on |0> which depends on the
nature of the particular direct interaction which has taken place. The
assumptions made above on the structure of the excited state |\)> are
certainly too stringent if a realistic description of the sequential
decay of collective excitations based on particle-hole excitations is
sought. As was noted, this shortcoming can be eliminated by allowing
for the participation of other degrees of freedom in the reaction theor-

etical formulation. This will not be pursued here.

3. RESONANCEHOLE STATES PLUS BACKGROUND

Rather than tackling directly, once again, the problem of
finding solutions to eq. (2.4) in terms of some technique' or represen-
tation2, 1 will in this section first anatyse the physics involved there

in terms of a number of coupled but distinct processes, in the expec=
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tation that the relavant part of the particle-hole amplitude u{(r,r,)
for egs. (2.5) or (2.8) can be substantially circumscribed. The way to
get hold of these processes is first to split the particle-hole phase-
~space (spanned by the states vectors lrlrz)) in two orthogonal parts

according to

fryr,) =} v‘)‘“)a}\u(z'lrz) * plrxrz) =
. Au :
= Rlryry) + plryry) (3.1)

where R and p are orthogonal projection operators, so that, in particu-
lar,p{Au) =0. Themain content of the decomposition (3.1) then hinges
on the specification of the discrete set of state vectors ,Au) spanning
the R subspace. This is done as follows.

Previous experience with the calculation of transition ampli-
tudes for complex nuclear reactions involving the participation of
single particle resonances has demonstrated that the latter can be pro-
fitably analysed in terms of a normalized state, which contains the es=-
sential behavior of the resonant wavefunction inside the nucleus,coupied
to a continuous spectrum of single particle scattering eigenstateswhich
will be referred to as the background. These are scattering solutionsof
the one-body Schradinger equation projected onto the orthogonal subspace
to the selected normal ized state®’*. The energy dependence of the cor-
responding phase-shifts is smooth, in the sense of lacking the resonant
behavior; and the amplitude of the associated radial wavefunctions in
the internal region is strongly reduced. This at once suggests that, for
the problem at hand, the discrete states I)\u ) be chosen as the reson-

ance-hole states
) = f dr, S dr2(1—|o><ol)vA(r;)v;(rz)w"(rl)w(rz)|0> (3.2)

where Vu(r) stands for a single-particle occupied state in ]0>and v)\(rl)
are normalized single-particle states corresponding to bound unoccupied
single-particle states or to states containing the essential behavior
of the relevant single-particle resonances inside the nucleus, in the

same sense as above. With this choice, given the fact that relevant two
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-body matrix elements will necessarily contain hole states and will
therefore be sensitive to the behavior of u_(r'xrz) inside the nucleus,
one may expect that contributions related to the p component (see eq.
(3.1)) be of minor importance when evaluating egs. (2.5) or (2.8).

In order to streamline the notation | now rewrite eq. (2.2)
simply as

E, -8 |[»=0 (3.3)

and, using |V> =R|V>+p|\)>, cast it in the form of the coupled

squations

[Ev—HHE:]RI\» A plv>

(3.4)
E -H v> = H _ R|vw
2,7 p] e
formal solutions of the second equation are
+
plv> = x> + = 2 or Rjv> (3.5
vV pp
which, substituted back in the first edquation, yield
E-H_ -H_ — B IR|v = ERp |x*>
V'RR "Rp G+ , PR . (3.6)
+ v pp
The state lx > is a scattering solution of
Z -H p]]x+> =0, (3.7)
VP e

with the subscript ¢ denoting the incident channel. Since eq. (3.6) in-

volves the complex effective hamiltonian

~ 1

pp
in the discrete resonance-hole subspace, the component R|v>canbewritten

in terms of the biorthogonal set of states an>, ]§n> satisfying!?

- PR ~
[_an- R};l 'Rn> =0 [62' RR] ,Rn> =05 <Hn' lBn> = 6nn' (3.9)
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* IR ><& |E|v,>

Rjv> = § -1 S (3.10)
n E - e:n

which, together with eq. (3.5), completes the formal solution of eq. (3.3).
The physical content of the various pieces of this solution
can now be analysed as follows. First, the background continuum com-
ponent.lxe> corresponds in general to the projeeted coupled channels
problem (3.7). The channels correspond.to the various allowed hole
states associated with an unbound particle. That component will thus in
general contain all of the allowed hole states. To the extent that the
unbound particle does not significantly leak into the nuclear volume,
the dominant hole will be the one associated with the incident channel,
and ignoring channel coupling may be useful as an approximation (see
fig.1). The second term of eq. (3.5), on the other hand, can be viewed

H Fig.1 - Particle-hole scattering within the
1 background subspace. The first contribution
+ P involves elastic scattering of the particle

T in the presence of a spectator hole, and the
+ second indicates channel coupling processes.

as a virtual leakage to the background continuum of the flux trapped in
resonance-hole subspace (cf. ref.(6)). This term contains, inparticular,
the coupling HR between the resonance-hole space and the background
continuum. As indicated in the various possible contributions shown in
fig. 2, this coupling takes place either through a (dominant) one-body

5or through a particle-hole (two-body) interac-

(mean field) mechanism
tion. Finally, the interaction between the resonance-hole and the back-
ground continuum subspaces also gives rise to the complex, energy-de-
pendent effective interaction within the resonance-hole subspace ap-
pearing in the second term on the right hand side of eq. (3.8). This
term can be analysed in terms of the several contributions shows in fig.
3, which involve diverse contributions of one-body or two-body coup-
lings, and elastic scattering or channel coupling contributions within
the p-space.
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P S G (P

FHg.2 = Mirtual background space conponent enanating
fromthe resonance-hol e conponent. The first two com-
tributions invol ve one-body coupling betweenresonance
-hotle and background spaces, the last two involve two
-body coupl ing. The second and fourth contr i but i ons
contain channel coupling effects.

Fig.3 - Contributions to the effective resonance-hole interaction, se-
cond termon the right-hand side of eg.(3.8). The mddle part of each
contribution invol ves one of the possibilities of propagationinp-space
and coupling to the resonance-hol e space goes either through one- or
two- body processes. Synbols are as in figs. 1 and 2.

31 - Approximation Scheme

On the basis of the preceding anal ysis a sinple approximtion
to the eval uation of egs. (2.5) or (2.8) suggests itself, to which a
nunber of corrections can furthernore be devised and calcul ated if
needed. For def initeness, | Wil refer to eq. (25 in what follows.

The approxi mation consists, first, in neglecting t hebackground
cornponent (3.5) when evaluating the transition anplitudes
<0|w+(r2)w(r1)|v(c)+>. This is based on the fact that the anplitude as-
sociated with the background particle is small inside the nucleus. Sec-
ond, when obtaining the resonance-hol e anpl it udes IRn>, {§n> (see eq.
(3.10)), the first contribution in fig. 3 should domnate, and consti-
tutes the mninal addition to the dynamcal ingredients contained inthe
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HRR term of eq. (3.8). This contribution, in fact, takes into account
the (one-body) coupling of the resonance to the back-ground continuum,
giving rise to the dominant contribution to the particle escape width.

It is perhaps worthwhile to enlarge somewhat on this last
point. The second term on the right of eq. (3.8) admits the spectral

representation

RH ——— HR =
E-H
pp

+

D J Hﬂlxz(s)xxz(e) |HR
de -
e E - ¢

where the continuum eigenstates of H are delta-function normalized
in energy. This expression, which involves all the contributions il-
lustrated in fig. 3, can be split into a hermitean part, given as the
singular integral evaluated with the principal value prescription at

E = E, and an anti-herrnitean delta-function part

-iw § RH}X;‘(E) ><xZ(E’) |HR
(3

Ignoring both channel coupling effects'built into |Xg> and particle-
-hole interactions in HRp this expression reduces in fact to the single
~particle escape width of the resonant particle for the appropriate
value of the energy E. This is clearly an energy-dependent quantity as
usual in this approach, but it is also such that its energy dependence
is slow on the energy scale of the width its‘elfq-s. In this way, re-
taining just the first contribution in fig. 3 amounts to effectively
replacing real by complex particle-hole energies in the otherwise dis-
crete nuclear structure ‘problem formulated in egs. (3.9). The imaginary
parts are then just the single-particle resonance escape widths.

In terms of the solutions of this problem the basic approxi-

mation consists thus in writing

<0 |w+(r2)w(r1) [Rn><§n[H|X;'(E)

<Ofiw+(r2)w(r1)|\)(0)+> = z
n E - en

(3.11)
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This contains the transition densities associated with the complex
states |R > weighted with (complex) pole amplitudes. The matrix el-
ements <§n|H|xc(E)> are themselves related to the escape amplitudes of
the complex nuclear structure eigenstates. Within the adopted approxi-
mations, they involve just the first contribution shown in fig. 2 and
thus, given the result of the structure calculations, reduce to linear
combinations of the various resonance-hole width amplitudes.

Finally, it is worth stressing that the techniques toactually
evaluate the continuum amplitudes involved here have been used before
in different though related contexts. They involve nothing but simple
modifications of standard potential scattering calculations for given
partial waves and are reviewed for completeness in the appendix. Pro-
cesses like those involved in higher contributions shown in figs. 2and
3 have also been evaluated before, so than an actual check of their
guantitative importance is within reach. The nuclear structure problem,
as formulated in eqg. (3.9), on the other hand, involves no more than a
complex extention of real, but already non-hermitean, RPA calculations

in a discrete particle-hole space.

4. COMPLEX PARTICLE {RESONANCE)-HOLE MODES

Restricting oneself to the basic approximation discussed in
section 3.1 implies having to solve the complex eigenvalue problem of
eq. (3.9), in which the complex, energy dependent part of the effective
hamiltonian HRR (eq. (3.8)) is approximated by just the first contri-
bution shown in fig. 3. The Purther reduction of this problem to the
standard RPA form is straightforward. Since the relavant phase-space is
discrete, it is convenient to represent it in terms of the discrete

set of states |aB) defined as
+
jag) = (1 [0><0[aaa6|0> (4.1)
. + : .
where l0> is the ground-state, and the a4, are fermion creation and

annihilation operators associated with the relevant bound ornormalized

resonanceorbitals a. Thus (cf. eq. (2.1))
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- (n) = (12 +
|7 > -ais N laB) = (1-]o><0])E |0> . (4.2)

A similar expansion can of course be written for adjoint states l§n>.
The subsequent steps are identical to those involved in the

reduction of eq. (2.2) to the form (2.4) : require that the ground-state

l0> be annihilated by the adjoint Bn of the excitation operator Br': de-

fined in eq. (4.2); set the energy scale so that H[0> = 0. This yields

- (n) _
YZ(S {e,<0] [aBaa,aya(S] [0> - <0 [aBad’ [HRR,aYas]] [0>}R v =0 (4.3)
which is to be evaluated by using the Hartree-Fock ground state as an
approximation to |0>.

Apart from the complex, energy dependent part of HPR, eq. {4-.3)
can be cast into the usual RPA form

€, 2™ = ecr™ + aug g™ (h.4)
where P(n) rtands for the column vector formed with the components R(n)
and
GOLB;YG = (pB-pa)Gay 685 H (4.5)
€ . = -
0.8;5v8! (ea EB)GOQY 666 s (4.6)
and
M(xB;Y(S = <ad|[7]Ry> . (4.7)

Here Py denotes the occupation number (1 or 0) associated with the or-
bital a, €, is the corresponding Hartree-Fock-like single particle
energy and the bracket is the antisymmetrized two-body matrix element
of the residual two-body force. To the approximation proposed here, the
remaining term of HRR just adds energy-dependent shifts and escape
widths (for unbound states) to the real single-particle energies Eot'
The structure of eq. (4.4), and in particular the diagonal character of
€, eq. (4.6), remains therefore unchanged except for the now complex

(non-hermitian) nature of €. Furthermore, the smooth energy dependence
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which comes from coupling to the background continuum (p-space) can be
neglected within energy intervals of the order of the widths, so that
eq. (4.4) eventually amounts to a standard, discrete RPA problem with
complex single-particle energies. Taking into account that the matrices
G and E commute (they are simultaneously diagonal), together with the

hermiticity of G and M, the adjoint problem defining the states Fi(n) is

g;';cﬁ(”) - etei™ o amer™) (4.8)

4.1 - Simple Analytical Examples
(n) 5(n)

Some salient features of the complex modes R™ 7, are use-
fully illustrated in situations involving matrices of small dimen-
sionality which, in particular,allow simple analytical solutions of
egs. (4.4) and (4.8). The simplest case is that involving one single
resonance-hole pair, for which the RPA matrices are two by two (fig.4).

Eq. (4.4) becomes in this case

ress5559555555 €
.......... THRESHOLD Fig.h - Simplest two-level systern. The upper
- state is in the continuum, so that E~ is com-
-te—-—-—-""FERMI LEVEL plex.
Eq
¢
R, €,-€,+<21|5]12> <22|7]|11> Byay (0 By (B
E{R“J = {-<H}5]22> —ez+el-<12]5]21>] (}?21) = | n] {Ru)

so that the complex eigenvalues are given as

e, = * /n*-|B|? (4.9)

+

Apart from normalization the corresponding eigenvectors are

Rf;') L i -1 el (4.10)

21
B
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and
Yoo B, g oy (4.11)
12

n GI:TETP ’ 21

The adjoint problem, on the other hand, reads

B, n* ~B 3 ﬁ‘z
[l = o ) [

21 n 21
which leads to the complex-conjugate of eq. (4.9) and

5(+) ~(+) /n*2-|B|% - n*
Ri," =1 5 By =-

B

; (4.12)

G A S| o (4.13)

12 21
n*+/m*2- ||

These eigenvectors explicitly satisfy the orthogonality relations, eq.

(3.9). As for normalization, one finds

(m2-18]2 - m2 [3]?
- : <R( )IR( )> = | ——
' |B]? (/h%-]B|% + n)?

which are in general complex quantities. This implies that the normai-
)
> and

<§(+) lR(+)> =1

s s . . . . *

ization condition (3.9) constrains the relative phasing of IR(
~(+

the corresponding adjoint vectors IR(‘)>. In order to make contact with

the usual RPA results (real n), write the adjoint vectors are

FONEERCR

’

G being given by eq. (4.5). Referring directly to the eigenvector. com-

ponents, one finds that, for real 7,

so that, in this case

,ﬁ(i)> =+ GlrR>

The minus sign corresponds to the familiar negative normof the negative

energy state, but can also be interpreted in terms of the appropriate
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relative phasing of IR(1)> and of Iﬁ(i)> in this case.

Given the properly normalized and phased complex eigenstates
it is straightforward to write the sought approximation e.g. to the
response function, eq. (2.5), byusingeqgs. (3.10) and (3.11). Note
that, for the particular case in hand, each of the two terms in eq.
(2.5) will in turn contain four terms as originated frorn a double sum
over complex modes: Furthermore, cross terms in this double sum will
depend crucially on the relative phasing of the adjoint pairs of states.

A second example which can be trivially worked out is that
which involves two particle (resonance)-hole states, backward matrix
elements being neglected, so that the RPA reduces to the Tamm-Dancoff
Approximation. In this case one is led to a secular determinant of the
form

Ay-€ A
l A*  A,-e =0

with A; and A, complex, in general. This leads to the compex eigen-

=7
[:Al +h, * /(A,-A2)2+41A|‘J

and to the (non-normalized) eigenvectors

values

€, =

] —~

e - A
+ A + T+ 1 - . - A .
Bi=1 5 B 2—=7— 3 R =1 B =g—Ff
The adjoint vectors can be likewise found as
e* - A}
Bi=1; B == s B=1 5 R 4
- A * © o oe¥ - A%

Again orthogonality properties can be expiicitly checked and normal-
ization implies correct relative phasing of adjoint pairs. The limiting

case of real A, and A, is entirely transparent.

5. CONCLUSION

I have proposed an approach to the treatrnent of small ampli-

tude vibrations occurring above particle emission thresholds in terms
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of the RPA which allows for a hierarchy of meaningful approximations.
The simplest approximation involves a computational effort equivalent
to that in a standard, discrete RPA calculation. It can be checked not
only by comparing results with the more expensive calculations butalso
internally, through the evaluation of corrections. Several of the cor-
rections which have been mentioned involve in fact also a very modest
numerical effort.

A detailed study of the approximation was excluded from the
scope of this work, in which only simple, analytical illustrations of
the features of complex RPA modes, and their implications for the
structure of the approximate response functions, were touched upon.

Finally, the general reaction-theoretical framework which ser-
ved as starting point can be further explored, especially in the sense

of making explicit the contributions of higher configuration.

I acknowledge a discussion with Arthur Kerman in which, among
fancier topics, he communicated to me his thoughts on more mundane
subjects such as projection techniques leading to the RPA and BCS ap-
proximations. One of these is the basic technique involved in the pre-

sent formulation.

APPENDIX — CALCULATIONS INVOLVING THE PROJECTED BACKGROUND CONTINUUM

This appendix summarizes, for completeness, some useful tech-
niques for the numerical calculation of quantities involving the pro-
jected background continuum. For simplicity, channel coupling effects
will be ignored except for the remark following eq. (A.6). in fact,
much of the appeal of the present formulation as a computational tool
would be dissipated should a full-fledged treatment of channel coupling

prove essential.
The first problem to be discussed is the solution of eq.

3
(3.7) ’ . Here the projector p will be explicitly implemented as
p=1-7 u>u]
n
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where the Iun> constitute an orthonormal set of single-particle states
spanning the resonance states. To the extent that channel coupling is
ignored, the hole state is passive and eq. (3.7) is a one-body problem.
Denoting as E the effective one-body hamiltonian (kinetic energy plus

mean one-body potential) eq. (3.7) reads
E?" q -g Iun><un[)H(l - g |un><un|):[|x> =0 (A1)

with the subsidiary condition that [)(> is in p-space, i.e., <un|x>=0
for all n. Thus eq. (A.1) reduces to

(E-H x> = rzl |un> a, (A.2)

with a = <un|[?|)(>. A formal solution of (A.2) (with outgoing wave

scattering boundary conditions for definiteness) is

4+ -

"> = x> + E”_H Ll o, (A.3)

where Ixt> is a solution of (A.2) with the o, = 0. From (A.3) one gets

1

Et-B

+ +
<unb( > = <uano> + g‘ <un| lun»>("nx = An + 7% Bnnl an'

(A.%)

which shows that, for general an’s, the overlaps <un|X+> are linear
functions of the ozn‘s. The procedure to be followed in order to obtain
the correct |x+> is thus:

a) Solve eq. (A.2) setting all o, = 0 to get ]xj>. Form over-
laps of this with each {un> to get the A eq. (A.4).

b) Solve eq. (A.2) setting one of the un,=| (other an's set to
zero). The overlaps with the Iun> will now determine the Bnn" eq.
(A.4).

c) The appropriate a's, givenas o = <un|Hlx >, are now

solutions of the linear system

T
£i B0 vA =0, (A.5)
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The desired function |X+>will be a linear conbination of the solutions
obtained in step b) with the coefficients found from (aA.5).
This procedure is a straightforward extension to many states
Iun> of that programmed for a single resonance in subroutine TAB0O!?,
whi ch has been used in refs. (5 and(6). It should be stressed that
the sol ution of the inhomogerieous one-body equation (A.2) is in no way
nmore involved or time-consumng than the sol ution of the corresponding
homogeneous equation; and also that the escape width anpl itudes
<unll7]x >aredirectly obtained as solutions of the 1inear system
(A.5),without any further nunerical integrations. The corresponding
single-particle wdths are just
r, = 27r|<un!Hb(+>|2 (a.6)

where the states lx+> have been &§-function nornal ized in energy.

Wth a sinple extension of this procedure it is also pos-
sible to estimate anplitudes involving two-body coupling to resonance
~hole states (third contribution fromthe left in fig 2) as well as to
estimate channel coupling effects through the eval uation of two-step
contributions. tn the former case the equation to be solved is®

(7] |e> =ZL lu,>8, + lo> (A.7)

where the Bn again are chosen to guarantee that |&> lies in p-space,
i.e., <un|£> =0, and the genuine source term |o> is

lo> = ] |p><ph'|5]hp'>
p
where p* and h' stand for the resonance and hol e states within R space,

h is the final hole state and " is the (antisymmetrized) two-body poten-
tial. Wen eq. (A7) is solved w th pure outgoi ng wave boundary con-
ditions, it yields in fact

1
|e%> = ——— & plp'n'>
g PR
pp
{cf. eq. (3.5)).
Li kew se, two-step channel coupling anplitudes can be esti-
mated by sol ving agai n an inhonogeneous equation of the form (A.7) in
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which the source term is obtained from the action of the two-body force

on a continuum-hole state (see second contribution, fig. 1).
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Resumo

A chamada Random Phase Approximation (RPA) para o tratamento
de vibracdes nucleares de pequena amplitude, e incluindo excitagoes de
particula-buraco com espectro continuo, & formulada no contexto de téc-
nicas desenvolvidas anteriormente para tratar ressonancias de particula
independente num quadro de-teoria de reacoes. Obtém-se. uma hierarquia
interpretavel de aproximagoes e propde-se uma aproximag¢do de trabalho
simples, que exige um esforgo numérico comparavel aquele envolvido an
calculos padrdo na RPA, com espectros discretos.

212



