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Abstract The equations of motion of a spinning nucleon interacting witk
a scalar massless field are derived from energy-momentum conservation
and charge conservation following the moment method of Papapetrou.

1. INTRODUCTION

The equation of motion of a particle, which will be called
nucleon, interacting with a scalar field has been derived by Harish-
-Chandra® using the method that Dirac® developed for the electron, by
calculating the flux pf the energy-momentum tensor and of the angular
momentum tensor across a tube containing the wortd line of the particle.
As in the case of Dirac, simplicity arguments were used to Jjustify the
eontribution of the basis elements of the tube. In this paper we will
derive the equation of motion by the method of moments of the energy-
-momentum tensor. The method of moments was introduced by Fock® and
elaborated by Papapetrou”’ to describe the motisn of a partiele with
spin in a gravitational field. This method was recently used to obtain
the equations of motion of a non-abelian charged spin particle in a
Yang-Milis field®.

Besides the fact that the equations of motion can be obtained
in a straightforward and simple way, the methsd of moments allows one to
obtain the expression of the energy-momentum tensor and ofthenucleonic

current of the particle and of their moments.

2 THE EQUATION OF MOTION

The energy-momentum tensor of the scalar massless field ¢ is

wel T -known®

* This work is based in part of the master's dissertation of N.K.S.
+ Work supported by FAPESP (Brazilian Government Agency) .
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where we use the notation &* = B¢/3wm = 970,
Calling p = dg/dT7 the restdensity of nucleonic charge, dg
being the quantity of nucleonic charge in the element of volume dv in

the charge rest frame, the equation obeyed by the ¢ field is
3% @ = -4mp - (2)

o

Note that as & is a Lorentz scalar the appropriate density is the scalar,

actually invariant scalar, 5 The density p of the moving element with
velocity Y is, in the system of units =1

b =dg/dv = p(1-02) %2 = pu® =

&

) (3)

where 2 is the time component of the four-velocity.
Using eq. (2) we can calculate the divergence of eq. (1) with the
result
a, °f=-5 ¢ . ()

. . oB
Now we introduce the nucleonic energy-momenturn tensor 7T

by
requiring energy-momentum conservation of the particle plus field sys-

tem, which has t'he covariant expression
B By _ g .
ag(Th + ) =0 (5)
From eq. (4) we see that ®8 satisfies the following equation:

8, 7% =5 & ‘ (6)
This equation is our starting point to obtain the equations of
motion of the particle and of TaB itself. The only thing that we demand
is that TOLB be symmetric as T%B is.
We shall consider our system as an extended body pcupying a
volume V, which will tend to zero at the'end of the calculations to de-
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scribe our point particle. Following Papapetrou we start by integration

eq.(6) over V to obtain

J ™ 01y av = 1 p e ar (7)
By Gauss's theorem the three-divergence term can be converted
into a surface term, which is zero just outside the system, and we ob-

tain the result

v =05 % ar . (8)

R
&+

Now, we choose a reference point x“ inside the system, which
. . . . o
can be its center of mass as will be discussed later. Calling &z the

distance of > to XOL we have
= 3% a & (9)
This choice is being made at equal times, that is, ¢ =X° or
Next,we expand () in eq.(8) around X to obtain

) = S + B B, X + ... . Qo)

B

We shall work first to zeroth order in 6z. To that order eq.

(8) becomes, after using eq. (3},

o.
& g (1)
ds

where &% is now caleulated at point Xa,

=™ av (12)
is the momentum of our system and
g=/Jpdv (13)
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its nucl eonic charge. @ course this quantity is a constant as fol |l ows

by integrating the equation of continuity for the nucl eoni c chargeover
the volune V. W have

3% =0 - (14)
B/ Gauss's theorem

dr o ar=0-%
dth V=0 =25 . (15)

To obtain nore information on pa we consi der the divergence of
=L Wth eg.(6) we obtain

BA(xBTaA) = 78 + Boe® . (16)
Integration over the vol ume of our system gives
gt—fxBTo“’dV:J‘T"‘de+f5x6¢°‘dv : (17)
Wsing egs. (8 and (9) we obtain

B
A gy d P e ™ e s s’ ar - (19)

dt dt
To zeroth order in dzf this equation becones'
uB 0.0 0.8
= ST ar=sT"av (19)
uO
wher e 8
B_dx
u == . (20)

Putting a = 0 in eq.(19) we obtain with eq.(12)

[
pB=E-o— B . (21)

u

Substituting this equation into equation(ll) we have

0 0
%s' (%—) w4 5—5%&— =g 3% (22)
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Now we contract this equation with TR Noting that u uC1 =1,
uadua/ds =0 and um3a<i> = d¥d/ds, we obtain o
d p’y _  d®
s (uo) 97 (23)
From this we obtain a constant of motion
0
&0 - g® = constant = m (24)
U

which we identify with the mass of our particle. Retyrning to eq. (22}
we finaly obtain the explicit form of the particle equation of motion

af e, d@®) |
mE 99 %975

(25)

This is the known equation for a particle interacting with a
scalar field, which can be derived- from the lagrangian L = - (m+ g9} x
x ()", As it was mentioned before, the moment method also gives the
form of the energy-momentum tensor of the particle. Frsm egs. (12},(19),
(21) and (24) we have

s TDLB av = Lo m + g@)uauB . (26)

u

This is the integrated form of the energy-momentum of our par-
ticle.

From this we obtain
™ o (Gepeyt® (27):
where o is the rest mass density of the particle and 5 its charge den-
sity

0@ =L m s@-H, o@ -1 g G . (28)
u U

3. THE EQUATIONS OF MOTION FOR A SPINNING PARTICLE

After illustrating the procedure for a spinless point particle

we turn to the case of a spinning particle with a nuclieonic dipole mo-
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ment. For this we substitute eq. (10) into eqs.(8) and (18) and we keep
terms to first order in &*. From the first equation we obtain

NN
ds ge + D BB<I> . (29)
where
D% = psx®™ dv (30)

is the nucleonic dipole moment of our system.

From eq. (18) we obtain, after multiplication by uo,
WP + &1 &P 1™ av =u 5 18 gy ¢ pPe® . (31)

Subtracting from this equation the one obtained by inter-.

changing o and B we obtain the equation

gs*®
ds

R R L (32)

where

B (6™ B0 - 6B ) v (33)

is the spin tensor of the particle.

Egs. (29) and (32) are the equations of motion of a nucleon
with spin and dipole moment. They coincide with those obtained by
Harish-Chandra by the method of Dirac. These equations are approximate
equations of motion for an extended system and are exact for a point
particle with spin and dipole moment, defined as the limit of the ex-
tended sy¢tem when the volume or Gma tend to zero, with p and ,_,,OtB going
to infinity in such a way that the integrals (12) and (13) remain fi-
nite, just as one defines the usual electric charge multipoles.

Considering that g and p? are given we have fourteen quantities
% and 88, As eqs. (29) and (32) add to

only ten equations we still need four more equations to solve for the

to be determined, that is pa, u

unknown quantities. These extra subsidiary equations are related to the
choice of the ,particular point X for the extended system. One possi-=-
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0
bility is to choose Sa =0 in the system's rest frame. From eq. (33)

this cheice gives the following expression for the reference point

o _ Sy

* I ogy 3

0
As we see the choice 5% =0 is equivalent to the choice of ©
as the center of energy of the extended system. In an arbitrary system

. 0 .
the choice §& = 0 in the rest system becomes

u S =0 (35)

This gives the four additional equations that we need.to specify our
problem.

As we shall see now, we can also determine the energy-momentum
tensos and the nucleenic current and their moments. Using eq.(33) wesee
that eq.(31) can be written as

o8
W rray = B - pBe . 1 48

CEZE £8P 4 5B ar L (36)

To determine the last term in terms of ¢® and 5P we consider

BA\)

the divergence of <

3 (xoc BTAV) - mBT)\oc O, AR B

+ T (37)

+ x x
Integration of this equation over the system gives

Zt £2%B %y = (PP + 2Py 4 s2%P p@x av . (38)

a
Using egs. (9), (17) and (18) we obtain to order &x
axB
%ﬁf& By + B s ay = f(a” 4 5PNy . (39)
Now we add to this equation the one resulting from the ‘inter-

change of a and A and subtract the one comming from the interchange of
g and A. The result is
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o
2 [ 8PPy = %A. sB an 33" %_ 1(8° % sz ™yav . (a0)

Putting B = 0 in this equation and recalling that éz® = 0 we
obtain

= %’t‘i 50 4 g’é—u g 4 (60 4 sPYar (1)

Using this equation in (36) we obtain

u® 1%y = uBp% - pBe® - 7 45 +%2—(“ °+.::iss°).

(k2)

This is the integrated form of the energy-momentum tensor of
the system.

Using egs. (41) in (40) we also obtain the integrated first mo-
ment of the energy-momentum tensor

rozPrA%gy =;(ﬁ}: gBo U gBA )+ JZEE(?& g0 4 4 sA) L (43)
u® u® u® u® u?

Now we turn to the nucleonic current. With eq. (14) we have the

identity

3 (:c J ) . (44)
Integration of this equation over the volume of our system
gives

—‘% [2%7% v = rd%av . (45)

Using egs. (9) and (13) we obtain

P R (46)
Therefore
o
fay =g, L 22 (47)

u' u® ds -
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which is the integrated formof the current. Besides the convection term
we aiso have a contribution fromthe dipele nonent.

4 EQUATIONS OF MOTION FOR CONSTANT SPIN AND DIPOLE MOMENT

Let us now see in what physical circumstances We can simp)ify
the equations of motion,

First we note that as p° = 0 we have

u. D =10 (48)

since this js valid in the particle rest frame. Also, as dp%/ds = 0, we
also have

w b% = 0 {49)

where the dot designates d/ds.
From eqs. (48) and (49) it follows that

u,o =0 {50)
From eq.{35) we have
«af _ . .aB (1)
uaS = uO‘S .

Contracting eq. (32} with ug and using egs. (48) and (51) we have

the relation

P = (ugp®ru® - %0+ iSO (52)
V¢ shall now try to obtain (qua)‘ Contracting eq.(52) with &,
and using eq.(50) together with the antisymmetric character of 5

. B’ we
obt ai n

pp =0 . (53)

Contraction of eg.{29) with u, gives
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.Q . B
= gd d .
ugh = g + D70 (54)

Adding these last two equations we obtain

d B _ .6 - pPp ) = - pB
g5 (ugp ge = Dey) = - D o, . (55)

As we shall see now, the right-hand side of this equation is
zero if we postulate that both the spin and the dipole nonent of the
particl e have constant-nagnitudes, that is

s%f g const ant (56)

B

constant . (57)

D" D,
Contracting eq.(32) w th Sus and using egs. (35 and (56) we
have 5.8 P o -0 and, therefore, as & is arbi trary
s 8o . (58)
o
From this we have

B + B

SuBD = - SOtBD (59)

Now contract eg. (32) with DOL/'DB. Using €0.(59) and the antysim~
metric nature of S together w th egs. (48), (49) and (57) we obtain
the relation

0 =0 0% ofh . (60)
o]

ofh. =0 . (61)

in this.vay eq.(55) gives us the following constant of notion:
uB - q) _ DB — —

pg = ¢ ch = constant =m (62)

which we identify with the nass of particle.
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From tkis we obtain

A

“P8 =+ goow D% (63)

Substituting this result into eq.(52) we obtain

Ba

o s

pa= (m + go + DBCDB)ua - Db + u,S (64)

i‘B

From egs. {(35) and (58) we see that spin tensor is perpendicular
to both the four-velocity and the dipole moment, that is, we can write
the relation

ofB - EaBAv

5 “\Py - (65)
Contracting this equation with itself and using eq.(48) we ob-

tain

aB - 2 A
§*®s . =-21% php, . (66)

This shows that| is a constant and that the magnitude of
the spin and the dipole moment are related to each other.
(64} and (65) coincide with the expression given by Harish
-Chandra" who uses eq. (65) to prove eq. {64).
Substituting eq. (65) into (64) we obtain

p% = (m + gd + DBrI>B)uoc - D% 4 1 ¥RV u/\i‘BD\) . (67)
Using this result in eq. (29) we obtain

d B Q o a}\fs»

I [(n+gd+D @B)u -D%+T¢ D\;l g<D +D BB (68)

Substitute now egs. {65} and (67} into eq. (32). After using the
equal ity

quBA\)p wnD 8 Eak\)p aBlv i

avo U u)\“\)Dp=€ Av

wich can be verified by contraction of the right-hand side with ¢ 2BT0

we obtain
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1 W u,D,, = o™ 2P - uPp) - DP(a® - %) (69)
Egs. (68) and (69), which contain two arbitrary constantsmand
I, are the equations of motion of the nucleon with spin and dipole no-

ment constant in magnitude.
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Resumo

As equagBes de movimento de um nucleon com spin em interagdo
com un campo escalar sem massa s8o obtidas a partir da conservagdo da
energia-momentum e da carga, pelo método dos momentos de Papapetrou.
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