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Dispersion Relation of the Collective Modes of Alfvén Wave Resonant Heating

K.H. TSUI and C.A. DE AZEVEDO
Instituto de Fisica, Universidade Federal Fluminense, Caixa Postal 296, Niteréi, 24270, RJ, Brasi!

and

PAULO SAKANAKA

Instituto de Ffsica, Universidade Estadual de Campinas, Caixa Postal 6765, Campinas, 13700,
SP, Brasil

Recebido em 06 de maio de 1986

Abstract By considering the magnetic cornpressibility it is shown that,
for a theta pinch type plasma, the m=l collective mode could be cut off.
This is in contrast with the results based on an incompressible fluid
model. This restricts the collective mode to a small region of % space
near zero.

Alfvén wave plasma heating using the continuum spectrum b2s3 ro.
lies on the resonant absorption at the singular Alfvén layer by exciting
a collective mode. Early works!’? considered an incompressible fluid so
that the collective mode is a surface mode. With the inclusion of mag-
netic compressibility, the collective mode becomes a niagetosonic bulk
mode whose first radial mode resembles the surface mode. Balet, Appert,
and Vaclavik? solved the linearized magnetohydrodynamic (MHD) eigenvalue
equation numerically and compared the heating characteristics of the
first and second radial mode. They concluded that the first radial mode
is far more efficient. Ott, Wersinger and Bonoli?® solved the magnetosonic
mode with poloidal mode number m=0 and Nozaki, Fried snd Morales® treated
the case of a high-B semi-infinite plasma. Both of them used WKB ana-
lysis and slab geometry. Besides, in the case m=0, the Alfvén mode is
actually decoupled from the magnetosonic mode. Here we consider a theta
pinch type high-8 plasma and solve the radial eigenvalue equation for m#0.

We consider a cylindrical plasma with a magnetic field in the 2
direction. Both the plasma density and magnetic field are constant up to
r=a (first region) followed by linear profiles of decreasing density and
increasing rnagnetic pressure up to r=b (second region) and then jointed
by a very low density plasma (third region) limited by a conducting wall

at r=R. W obtain the solutions in each region and connect them up by
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boundary conditions. A vacuum third region would lead to the same dis-

persion relation.
Taking the Fourier component of the perturbations of the form

exp 7 {(kz+mB-wt), the equation for the radial displacement Er is

2
3 Bz(kz ] %’j_ﬁ_] 13 w?
> S r s FEIp - B - —)E = 0
[kz + m_z] - 2; J VA
r ‘VA

We now normalize the distance by a and magnetic field by its vacuum

value, By. Multiplying the above equation by a/BIZ/, we have
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(1)
where k, r, «Er are now normalized dimensionless quantities, n, is the

plasma density at the center, Qt; = VA/a is the Alfvén transit frequency
calculated with resgect ton and BV’ ofr) = B(r)/BV < 1 is related to

plasma 8 by
B=1 - a*0)

and the shear Alfvén dispersion relation
2 _ 2 242
w® =a (rs)k Qt

is assurned to be satisfied in the second region where 1< r € b/g. inthe

first region wherer € 1 the modes are described by

L-g=o (2)
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K = —_— -k >0
a‘z(O)Qi

whose solution is
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In the second region, we write the density and magnetic pressure as

n(r) = n[ib/a)= 7 /fbsa)- 1]
af(r) =1 -g[(B/a) - 2] /{b/a) - 1]
= | Bb/a + 8 r
(bra)- 1 (bja) - 1
and eq. (1) becomes
2 (BP - A) ] 3 _ Br A _
L TL @) (g, = 0 ()
+ —— . e
PZ sz; no
__ b _uf__{__ﬁb/a)z
4 (a/b) - 1 Qi la/p)-1
B = ] w? + 8 P
(@/p) -1 @ (a/b) -1

In Alfvén wave heating, we usually have m?/r? >>k?, so that the radial
variation of eq. (4) comes mostly from the shear Alfvén branch. In the
opposite case, magnetosonic cavity modes (second and higher radial modes)
can be set up in the plasma7. The Alfven resonant layer which is located
outside the homogeneous plasma maghetosonic cutoff is near the plasma
surface and the heating efficiency is low". We then replace the magne-
tosonic branch variables by their averages as was done by Grossmann and

1

Tataronis!. We rewrite eq. (4) and its solution as

2 (e u (g )} - €2(Br-A) (rE,) = 0
2
e? ek e 2 n, ozt
r2 GZQZ n <P2>

+ 0
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rgr(r) = 4,1,(2(r)) + 43K (2(r))

Z(r) =e(Br - A)/B -(5)

In the third region, eq. (1) and its solution are

5 13 ¢
T\ T ©

1‘2

d 9

£.(r) = A, 5= I (kr) + A5 5= K (kn) (7

Using the linearized MHD equations®, the continuity of the perturbed
radial magnetic field and the total pressure across r=1 and .r= alb is
equivalent to the continuity of dlog Er/dr. The condition at r = R/a is

Ep = 0. We join the solutions for the three regions and normalize the

coefficients to As by choosing As = 1. The eigenvalues are determined by

5= 1 k)[R, (2(6/a))13 (1) = I, (2(b/a)) K} (2(D)]]

2

+ (K* - ”’—2)1 I, (@) (ko (2(b/a))Iy(2(1)) - I,(2(b/a))ky(2(1))]}
r
/17 (e (kg (2(b/a)) 13 (2(1) - 13 (2(b/a) kg (2(1))]

+ 0 =1, g (k) [k, (206/a)) 1, (2(D) = 1,(3(6/)) %, (2(D) ]
r

(8)

where J”'I(Kr) stands for the radial derivative of Jm(Kr) and so on, and

ellb/a) - l]kf
(W% + k%)

Z2Q1) = - <0

2(bja) = Elbra) - T2
(W2 + k%)
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P2 e - a(0)k2) = a?(0)k? > ¢
o
v=L 2Ty (a1 (kr) + K (kr)}
2 o3 v 4y m r=b/a
. b ' '
vV = = {A,’ Im(kl‘) + Km(kr)}r=b/a

4, =-{Kr;'(kr)/I,;'(kr) }r=R/a

Eq. (8) is a complex value equation since Z(i1)<0. Considering
b/a =1, we can expand I,(2), K,{Z) and their derivatives by small ar-
gument expansions. We choose the branch cut of log Z(1) = log(~2{1))~ <
where both log Z and log(-Z) are on the same sheet. Writing W = Wp t iWI
and assuming !VR[ >> lWTf, we can also expand Jm(Kr') and its derivative

about WR' Wiih all the terms considered, eq. (8) reads

¥ = (6, +16,)/(6, - i6,) (9)
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)
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"

WG, = Py
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with
P, = n(Kz-mz/rz)Jm(Kr)
and
2 2 2
G“=WI{[2(W+T<)_I_K+ 2 (Kz__r_n__)ﬁ
(b/ay - 1 k' a(0)  (b/a) -1 r? k?
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4 2 (W2 _ kz) m
and where, for simplicity, the subscript of W, is suppressed and alil

R
the expressions are evaluated at r = 1. The dispersion relation of the

magnetosonic mode is given by

G, . G, G,
%p___.____ = — (10)
(G3)% + (6.2 Ga
and the damping rate is
P,.G, - P,G,
W_ = an
I -
ze'G3 le'.Gl
Consequently, with @ = w4 7:“’1'
w 172
Lo w0t o) (12)

we
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To evaluate the effect of compressibility, we compare with the
incompressible case where, in equation (8), Jm(KI‘)_,, (JT;I)KT become
Im(kr), Ir'n(kr) and k? becomes (-k?). The expressions of G, and G, fol-

low the same substitution, whereas G, and G, read
[ 1
Gy = yI{tz(kz + m?/r?) WJ I (kr)

N l]f-ml
(bay -1 W (bja) -1 W

I:—Tr(k2 + m%/r?) Im(kr)]

2 2 2,2, W
Gy = W - —— (k* + m°/r*) ]I(kr)
T [ (b/a) -1 K]

o 2.5 W}
k wilw ™
€2 (bla) -V 2,2 2,2
- M == k*(k /YT (kr)
[ 2 (W + k%) +mr}”’

+

+

In the original work on Alfvén wave heating by Grossmann and Tataronis',
they considered the incompressible surface mode and arrived at a some-
what simpler result by taking I,(Z}) =1, I'(Z) = 0. The magnetic com=-
pressibility significantly reduces the damping rate. Fig. (1) compares

the damping rate for 7 = 1. The case of 8 = 0 is shown in fig. (2). The
dispersion relation is also presented in the same figure in each case.

The most interesting feature is that the m = 1 magnetosonic mode exists

only at low frequencies. For k = 0

Jm(KI’) = Im(kr)

2
[—:](0) - ﬂz—] = - {k* +m*/r?) = -m?/r?
a r
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Fig.1 - Real and imaginary part
of oversus k for different
values of a/b with B=0.5 showing
that the collective mode ceases
at k=0.25 with compressibility
(C) yet continues to k=0.5 and
beyond without compressibility
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Fig.2 - Real and imaginary part
of o versusk for different values
of a/b with B=0.

As k increases, magnetic compressibility becomes important andessential

differences begin to appear, and for k>kmax eq.

(10) allows no solutions,

which is in contrast with the surface mode that allows solutions forany

k'. This limits the collective mode to a small region of k space

near

zero. Form 2 2, krrax becomes much larger and there is not much differ-

ence from the surface mode.
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Resumo

Considerando a compressibilidade magnética, € mostrado que,

para un plasma numa configuracdo de 6-pinch, o modo coletivo m=1 pode-
ria ser limitado en contraste com os resultados baseados no modelo do
fluido incompressivel. Isto reduz o modo coletivo a uma pequena regido

do espaco dos K perto de zero.



