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Abstract In this paper we present an integration of the null geodesic
equations in the Schwarzschild geometry, which is valid to first order
in GM/Rc?. W compare our solution with others published in the litera-
ture and analyse their range of validity. W also clarify some misun-
derstandings.

In the Schwarzschild field the metric is

ds? = B(r) dt? - 4(r) dr® - r2d82 - p? sin? 8§ d¢? (1)

where
B(r) = Ezl(r)]" =1 - 2n/r ; m= MG/c? ;

r>2m; 0<0<m; 0<¢<2n (2)

The time-like and nul! geodesic equations can be written' as

2
i—zf+u=3muz+£ (3.a)
de? J?
2 d
) =dJ .
r % {(3.b)
9 = /2 (3.¢)
adnie Lo Lo g (3.d)
dp p2 B :

where u = 1/r, dp = Bdt, and E and J are constants.Also for 8 = n/2
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ds? =E ar? (&)

and we see that bradyons are characterized by E >0 and photons by E=0;

when E = 0 eq. (3.a) becomes

LU sy o 3 (5)
de?
and eq. (3.b) has the physical meaning that the generalized Zaw of areas
is valid also for luxons.
Observe that the constant J can be calculated from the critical
point of the orbit. Indeed, if Py = (Ry,n/2) is the critical point of

the orbit we have from eq. (3.d)
J% = R§/B(R,) (6)
For weak fields we get, to first order in m/Rg,
Ro = -m + |J| (7

The invertibility of eq.(6) in a weak field implies that the
orbit has only one critical point (for the function radial ccordinate
relative the center). Recalling that A(r) > 0 we get frorn eq. (3.d) with
E =0,

J% < r2/B{r) (8)

which implies that Pj is a point of minimum. This result is inagreement
with our intuition that light must follow an orbit that looks like a
hyperbola in a weak Schwarzschildfield, similar to the trajectory of a
particle with speed greaterthan the escape speed. Also our intuition
says that the shape of the orbit must by symrnetric with respect to the
straight line through the center of the coordinate systern to F,. This
is indeed true, as can be see from the following argument: eq.(5) gives
us the orbit of the luxon, r = r(¢) = [u(d:)]-l once we give the initial

conditions

u(n/2) = V/R, 5 u'(n/2) =0, (9)
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and both the initial conditions as well as eq.(5) are invariant by the
substitution ¢ + -$. Then r(¢) = r(-¢).
The classical equation for the orbit of a light ray is

2
U, y=0 (10)

de*
With the initial conditions given by eq.(9) we have the sol-
ution

uozs_”‘_¢ ()

R,

V¢ see that eq.(5) differs from eq. (10) by the factor 3mu®and,
since u = 1/R < 1/R,, we can solve eq. (5) by iteration. For the first

iteration,

d?u
1

de?

+u = 3mu§ . (12)

Ignoring terms of second and higher orders in (mu) and wusing

eq.(9), we get

u=-'—(1-Rﬂ)sin¢+3—’”—-—’”2-sin2¢ (13)
- ,

1
0 2R
0 0 0

Also ignoring terms of second order in (mu), we have from eq.

(13)
WP = y? (14)
1 0
Eq.(14) warrants that eq.{13) is correct to the first order in
m.

We now analyse a possible misunderstanding which appears in

some text-books?. There egs. {3) are written as

2
i—i‘+u=';";+3mu2 (15.a)

b
r? % =h ; h = constant (15.b)

6 =m/2
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W first observe that the use of & as the parameter in eq.(15.a)
is irnproper since for luxons it is ds® = 0. Also eqs.(3) depend on two
integration constants E and J while egs. (15) depend only on the constant

h, and the only way t¢ make them compatible is to write (using eq.(4))

ds® = Edp® ; h =J/VE (16)

For the case of luxons E = 0 and it is necessary to put h = =,
which is indeed what Rindler did when he calculated the bending of light
by the sun. With h = ® eq.{15.a) becomes
2
4y = 3t (17)
de?

and eq. (15.b) makes no sense. Also, in Rindler's book?, for example,

instead of eq. (13) he found the solution

r _Qsm +.__-icos 2¢ (18)
Ry ZRZ ZRi

Although eq. (18) gives the same result as eq. (13) for the par-

ticular problem of the bending of light in the sun's field, we observe

that
K =g 00+ 2 (19)

and Rindler's formula, contrary to eq.{13), leads to an error of first

order in (m/RO) when we calculate the critical point of the orbit.
Wewould like to comment also in the so-called radar echo

delay formula'. Observe that using £ = 0 and dp® = Bdt? in eq. (3.d) we

get
2
A()+J—-—l-=0 (20)
B2 2 B
and using the value of J in eq.{(7) we have
1/2
dt _ A(r)/B(r) (21)

T 8]
B{r.)
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which gives, to first order in m/R,

2-1/2 .
@=[_(ﬁ)]’lp+_ﬂﬁ_+ﬂ], (22)
dr r r(Ry)r r

Integration of eq. (22) in the (R,,r) interval gives

1/2
(23)

r + VI‘Z-Rg\ ' (P-Ro]

R J \r+R

t(r,R)) = vr? -R: + m log [
0

Eq. (23), the radar-echo delay formula can be used to calculate
the time for a luxon to transit from the critical point of the orbit to
the point with coordinate r on the orbit. Observe that for points near
R eq. (23) cannot be used. Indeed (dt/dr) + « when r -+ R,

This point is important when we want to calculate, for example,
the time of flight of a laser beam in a Michelson-Morley interferometer,
with one of the arms in the vertical direction, in the gravitational
field of the Earth®.

W end this paper with the observation that an analogous error
can happen in the case of the calculation of phases. Indeed, if we div-
ide eq.(1) with ds?2 = 0 (and 8 = 7/2) by (d¢)? and use eq.(3.b) we get

(j_Q) - AI/Z(P) (24)

and to first order in m/R, we get

FIHV_‘]”2E+Z+_£L_] (25)

Lz "R T R (reR,)

Integration of eq. (25) in the (R ,r) interval gives

o(r) - ¢(R,) = cos™’ [—° Rl/ - r )1/2 (26)

This equation, like eq.(22), can only be used for values of

r>> R,
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Eq.(25) differs from eq. (8.5.7) of Weinberg's book', where
there is a sen" term instead of the cos™' term. Weinberg's integration
is obviously wrong,although, for the specific problem where he used eq.

(8.5.7), the final result is correct.
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Resumo

Neste trabalho apresentamos uma integracao das equagdes de geo-
désica nula na geometria de Schwarzschild que é valida en primeira or-
dem de GM/Rc?. Comparamos nossa solucdo com outras publicadas na litera-
tura e analisamos o seu limite de aplicabilidade. Também esclarecemos
alguns mal-entendidos.



