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Abstract A nonlinear transport theory for many-body systems arbitrarily
away from equilibrium, based on the nonequilibrium statistical operator
(NSO) method, is presented. Nonlinear transport equations for a basis
set of dynamical quantities are derived using two equivalent treatments
that may be considered far reaching generalizations of the Hilbert-
-Chapman-Enskog method and Mori's generalized Langevin equations method.
The first case is considered in some detail and the general character-
istics of the theory are discussed.

1. INTRODUCTION

Transport phenomena in matter have been treated fora long time
within the framework of Boltzmann transporttheorywhich constitutes oneof
the landmarks in the field of statistical mechanics, where it provides
deep conceptual ideas and a method for the mathematical handling of the
problem. In the area of solid state theory it yielded a vast number of
results, however requiring to be used in conjunction with a quasi-par-
ticle (elementary excitations) picture!. As it is well known, ia solid
state systems, after the Born-Oppenheimer approximation is applied lat-
tice vibrations can be described in terms of a phonon gas plus anharmonic
interactions?, and the conduction and valence bands electrons are treated
on the basis of Landau's Fermi liquid theory®. In Landau's theory the
system of strongly interacting electrons is replaced by a systern of new
and more complex entities, the quasi-particles, using a transformation
which connects both representations3. Landau's theory was extended by
Silin* to encompass Coulomb effects produced by electron charge density
variations, and later on it was generalized to deal with magnetic sys-
tems® and with excitations rapidly varying in space®. Boltzmann-like
equations for the diagonal and nondiagonal elements of the quasi-par-
ticle density matrix are obtained from these approaches"’s’“a.

The original Boltzmann transport equation is derived using

several restrictions on the characteristics of the scattering processe”,
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driving forces, and relaxation effects; all three are supposedtobeweak
in order to make it possible to use linear approximations and long life
-time quasi-particle states. Extensions of the method require the incor-
poration of the possibility to deal with dense systems, strong scat-
tering, high intensity external fields, non-local scattering processes,
strong relaxation effects, and quantal effects of driving fields. These
questions have been addressed by many authors, and recently a largecon-
centration of efforts have been directed towards the aim of deriving
etaborate quantum transport theories. An important result was the deri-
\}a'tion of the fluctuation-dissipation theoremg, which shows that, for
systems slightly deviated from thermodynamic equi ibrium, exact closed
-form expressions for the response functions and transport coefficients
can be obtained in the form of correlation functions in equilibrium.

An alternative derivation of the fluctuation-dissipation the-
orem can be obtained using the double-time thermodynamic Green function
algorithm devised by Bogoliubov and Tyablikov, and described in an
already classic paper by Zubarev'®. This Green function algorithm s
very useful to carry out calculations of response functions and trans-
port coefficients. *The actual calculations may be difficult forthecase
of interacting many-body systems, but they are formally closed at this
level. The method allows one to obtain linear and nonlinear responses to
mechanical perturbations, but it has its own region of applicability
expressed by the condition that the thermal perturbations arisingalong-
side the mechanical action can be neglected. Threfore a completely dif-
ferent situation appears when one needs to deal with systems far from
equilibrium. Systems strongly departed from equilibrium present a much
higher level of complexity than systems that can be treated within the
framework of the fluctuation-dissipation approach. This is so because
of the fact that transport coefficients become dependent on the instan-
taneous macroscopic state of the system, and nonlinear transport effects
take place during the irreversible evolution of the system.

Nonlinear transport phenomena in far from equilibrium systens
is a subject of importance in many areas besides the physics of con-
densed matter, like physico-chemistry, biology, engineering, and others,

and consequently is receiving nowadays a great deal of attention. The
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origin of nonlinear transport theory is connected with the handling of
higher order approximations of the solutions of Boltzmann equation via
the Hilbert-Chapman-Enskog method''. At present several methods basecl on
different approaches are used to derive nonlinear transport equationslz.
Some of them are built upon the generalization of ideas originated in
the theory of the Brownian motion'®, and others on the extension of the
Gibbs ensemble algorithm to nonequilibrium situations complemented with
projection techniques“_lg. The transport equations obtained following
the latter approach are considered a far-reaching generalization of the
Hilbert-Chapman-Enskog point of viewlzb.

We discuss in the present article the derivation of nonlinear
transport equations within the framework of the nonequilibrium statisti-
cal operator method, referred to as NSO in what follows "™ *°, The theor-
etical aspects involved in the treatment of many-body systems strongly
departed from equilibrium were discussed in a previous article published
in this journallg, from now on referred to as |. The application of the
method to the study of the irreversible thermodynamics and optical re-
sponses of semiconductors probed by ultrafast laser spectroscopy isdone
in reference 20. In this article, a sequence of |, we present. in sec-
tion 2 the details of how to obtain the set of nonlinear transport
equations which describe the irreversible processes that develop in
nonequilibrium many-body systems whose evolution is described using the
NSO method. The characteristics of these equations and a practical method
of calculation are fully described. The results of section2are applied
to the study of mobility and diffusion of carriers in a highly excited

plasma in polar semiconductors, to be presented in a future article.

2. NONLINEAR GENERALIZED TRANSPORT EOUATIONS

At present there exist several methods todescribe macroscopic
processes that occur in systems with a large number of degrees of free~
dom*2’2}, One of them, the NSO, isastatistical rnethod based ori the use
of distribution functions derived by the ensemble method initiated by
Gibbs for systerns in equilibrium. For nonequilibrium systems an ensemble
is built as a set of replicas of the physical system distributed with a

given a priori probability over all the microscopic states satisfying
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. S o . 14- 19 )
the constraints and initial especifications . In this method the

evolution of the system is described by generalized transport equations
which are the equations of motion for dynamical variables averaged over
the nonequilibrium ensemble.

The problem of the determination of the time-dependence of
averages of dynamical quantities over the nonequil ibrium ensembie canbe
tackled in either of two ways, (a) following the treatment proposed by
Kubo, Mori, Tomita and others in which an appropriate initial distri-
bution is defined and one looks for the dynamic equation ofthequantity
itself (the generalized Langevin equation method)"", or (b} one looks
for solutions for the time-dependence of the distribution function {Green
-Zwanzig's approach). The nonequil ibrium statistical operator method
belongs to case (b) and it seems to offer a formalism in the
theory of irreversible processes adequate to deal with a large class of
experimental situations. It provides a macroscopic description for sys-
tems away from thermal equilibrium whose evolution, for not too short
time scales, is described by a statistical operater which includes non-

-linear, non-local and retardation (memory) effects.

2.A - The Nonequilibrium Statistical Operator Method: Fundamentals

The NSO method is based on Bogoliubov's assertion that if
exists a relaxation time for microinformation, T, after which the
system loses the memory of the detailed initial distribution (Cf.!),for
t >> tua randomization (damping of microinformation) should occur, and
a reduced number of variables (e.g. a few reduced density matrices of a
many-body system) are enough to describe the state of the system in a
macroscopic way“. The initial distribution, i.e. the one that describes
the evolution of the system immediately after it has been strongly de-
parted from equilibrium, depends on the coordinates of all the degrees
of freedom of the system and its subsequent contraction is connected
with the separation from the total hamiltonian of strong interactions
with certain symmetries, which are those related to the fast relaxing
processes®?,

Hence, for not too short times, i.e. t >> Tu, correlations

with 1ifetimes smaliler than T, can be ignored and the state of the sys-
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tem can be described by a reduced set of macroscopic variables (or
macrovariables for short), say &(t), Q2(t),..., Qn(t), which are the
average values of the dynamical quantities Py, ..., Pn over the non-
-equilibrium ensemble. Further one defines the set of intensive vari-
ables F,(t),...,Fn(t) thermodynamical 1y conjugate to the macrovari-
ables Q in a sense to be made more precise later on (see also 1). The
PJ.'s may be chosen_}as densities of dynamica_l> quantities and therefore
the extensive, Qj(r",t), and intensive, Fj(r,t), state variables become
a function of position as well as of time.

In I we devised an approach for the construction of nonequitib-
rium statistical operators which describe the irreversible evolution of
many-body systems from an initial macroscopic state defined by a coarse
-grained statistical operator pcg, which is a functional of the basis
set of quantities P and parameters Fj' The logarithm of the coarse
-grained statistical operator, log pcg, is the projection of the logar-
ithm of the complete NSO over the subspace defined by the quantities
PJ.“. Next, from the family of possible NSO's defined by our method we

17

single out the one due to Zubarev'’ which is given by

]

pe(t) = exp{ef.‘Jo dt! et':t| log pcg(t+t',t')} , (1)

where €(> 0) goes to zero after the trace operation in the calculation

of averages has been performed (cf. 1). tn equation (1) the first term

in the argument of P, stands for the time dependence of parameters

F3.(t), whereas the second denotes the evolution of the quantities Pj
under the action of the Hamiltonian H.

The coarse-grained statistical distribution representing the
effect of idealized reservoirs fixing the initial condition for the sys-
tem after the randomization process has occurred is given, as shown in
!, by n

pcg(t,O) = exp{-¢(t) - | Fj(t)PJ.} . (2)

J=1

Here ¢(t), which ensures the normalization of the coarse-grained stat-
istical operator is a functional of the thermodynamic variables Fj(t-),

and plays the role of a Massieu-Planck function in nonequilibrium stat-
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istical thermodynamics (cf. Appendix 1 in 1).

Equation (1) defines the operation of selecting the subgroup
of retarded solutions corresponding to the initial value problem of
Liouville's equation. This is guaranteed by the presence of an infini-
tesimal source which breaks the time-reversal symmetry of Liouville's

equation, i.e.

Blogpe

1
_—at___.q.i—h Dog OE’H] = - (Iog DE - log OC ) (3)

9

Hence, irreversibility is associated with this syrnmetry breaking andthe
average of a physical quantity A over the ensemble defined by distri-

bution (1) is a quasi-average in Bogol iubov's sense’”

<Alt> = 1im Tria p_(2)} ()
€40

Invariance under time-reversal transformations is not satisfied for
these quasi-averages because of the removal of the corresponding de-
generacy in Liouville's equation19

Except for the normalization condition, the parameters F, are
still undetermined. An additional condition is inposed on distribfjtion

1Y in the form
cg

Qg.(?,t) = <P3.(?) t> = <Pj(?){t>cg = Tr{pj(?)pcg(t)} , (5)

J =1,2,...,n, which leads to the relation

5 (¢t)

>
- =) e =<2 @) =g, (6)
8F (r,t) ¢ 9 J ¢
]
a generalization of the concept of thermodynamic parameters to the non-
-equilibrium state. The non-equilibrium thermodynamic parameters 7. are
said to be thermodynamically conjugate to the macrovariables &. in the
J
sense established by eq. (6). This definition of the thermodynamic par-

ameters has been used, for different non-equilibrium distributions, by
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-19,2 .
14719,25 1t should be noted that there exists the ques-

several authors
tion connected with the measurement of these parameters in the non-
equilibrium state. {f one of the quantities P is the hamiltonian, the
conjugate parameter F plays the role of an inverse temperature; in an
equilibrium measurement a properly calibrated thermometer will always
yield the correct value of the thermodynamic temperature. This is no
longer true in a nonequilibrium situation. However, there is no diffi-
culty in principle since one can measure the quantity Qj and then invert
eq. (6) to obtain the conjugate nonequilibrium thermodynamic parameter
F, Alternatively one may devise a way to determine the values of the Fj
through indirect measurernents, for example the ultrafast laser spec-
troscopy experiments described in reference 20.

The NSO formalism provides a statistico-mechanical foundation
for nonequilibrium thermodynamics once a thermodynamic function of state

is defined. This is done introducing a coarse-grained entropy in the form
§(t) = - <log p_ (£,0)]¢> (7

i.e. generalizing the statistical entropy for equilibrium but in the
auxiliary fields F?;(r,t) and with instant averages as given by egs.(5).
Using this definition it can be proved that Zubarev's statistical method
is compatible with Generalized Thermodynamics“. Using eq. (7) we can

write the reciprocal of eq. (6),
Fj(Z,t) = Gé(t)/éQj(;,t) , (8)

which defines the intensive state variables F as the differential
coefficients of the coarse-grained entropy. In our following analysiswe

drop the dependence of the state variables on position.

2.B - The Generalized Transport Equations

Next we consider the time evolution of the nonequil ibrium sys-
tem, i.e. we proceed to derive the equations of motion for the non-
equilibrium thermodynamic variables, or generalized transport equations.

By time-differentiation of both sides of equation (5) we obtain
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d d d s 1

5= Q. S <P |t> = o= <P.|t> = <P,|t> = — <[P H||t> .
TG® =T pfe =5 <t i dlon .41 (9)
Alternatively it is possible to write equations of evolution
for the intensive state variables FJ. using the fact that

IR N LA B NPT (10)
Q.(t) = F,(t) = - c. (t)F, (t) , 10
dt 2= éFl(t)EE . gap IR
where
8¢, 5Q2
- Eﬁf = Cip(t) = - g7 = € (®)
C(t) is the correlation matrix,
Cij(t) E (Pi;PJ.It) = Trep, APJ. pcg(t)} s
i,j =1,2,...,m, and where
AP = P - <P|t> = P - qlt) ,
1
i =J du o W(,0) , us(e, 0)
is a generalized Kubo-transform of operator A, and
n
S(t,0) = -1 t,0) = ¢(¢) + F (t)P,
(¢,0) ogpcg( ) = ¢(¢) jil J()‘7 (1)

is the coarse-grained entropy operator (cf. 1).

Defining a n-dimensional space of vectors é(t)a(Ql,Qz,...,Qn),
and the space composed by the thermodynamically conjugate vectors ;(t)i
= (F

,Fn), we can write in compact form

d =~ _ %
ar Q(t) = f(¢) (12a)
and

d = ~=1 -
a-t-F(t) = -C (t)f(t) , (12b)
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where

. .
Fle)z (|t ,....<p, |t>) ,

is a vector of generalized forces <P)t>. It should be noted that, whenever
convenient, one can write the equations of evolution (12) in a mixed

representation involving part of variables Q, and part of variablesFk

say @, @,,...,4, (sn) and Foprrnnoofy.
Ve recall {(cf. !) that Zubarev's NSO (2) can be rewritten in
the form
P (t) = p  (£,0) + p'(2) , (13)
where
1 -
p'(t) = D_(¢) pcg(t,o) , (14)

1

_ ' -us(t,0) us(t,0)
De(t) = -’fo du Y(qslu)e Ce(t)e R (15a)
0
ce(t) = [ dt' eSt' ab(setr e {15b)
n
A5(t,,t,) = jzl (F1(2,)8P.(t,) + F(¢)8P(8,)) ,  (15¢)

3

Y(Ce|u) =1+ J dz Y(C€|x) e
0

w0 ¢ 0 50 (15)

Operator p' = pe-pcg’ given by eq. (14), describes the relaxation pro-
cesses that develop in the media; note that there is no dis-

sipation in the coarse-grained ensemble, <3!t>cg =0, and then AS = §.

Using egs. (13) to (15) we can write the general ized transport

equations in the form
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[

d 2 , EE' s T f '
7z Qj(t) = <Pj]t>cg + 2 J_m dt' e <Pj,P2(t )it>FQ(t+t )+
2
]
1 tl y I I ]
"1 [ e ey 10k ()
= <pjlt>cg + {Pj;ce(t)(t} , (16)
where

{4;B(¢") |t} = f du <4 Y(calu)e-us(t’O)AB(t')eus(t’o)|t>cg (17

0
is a generalized correiation function of quantities A and B. Putting Y=l
we obtain the generalized transport equations in the so called quasi-
-linear approximation in the NSO-theory of relaxation processes‘”. Fur-

ther, using the fact that

=0,

% Tr {r, (1) [5,P] Py’ = Tr{[:y,s]pcg} = Tr{H[s,pcgj}

after deriving with respect to F:.3 we obtain

. 8 .

< > -— < > o=

Pj|t Cg+%Fz = B, lt ca 0,

J

and therefore the first term on the r.h.s. of eq. (16) becomes

. ) —— ) C i
<let>cg %Fg(t) <P, APj!t>cg = ; (P52, 1¢)

4

2.C - The Linear Regime Around Equilibrium: Mori's Equations

Consider next the particular case of a system stightly de-
viated from equilibrium. Let & and F;. be the values of the state vari-

ables in equilibrium, and we write

_ AN
AF () = F.(¢) -F°
J J J
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for the deviations of Q and F from their equilibrium values. The coarse
-grained statistical operator is for this case

n

p_ () = exp{-¢°-BH-80(2) - |

AF . (£)P.} ,
cg = J Jd

where the exponent is composed of the contribution corresponding to the

equilibrium canonical distribution and the deviation from equilibrium.

Mori's equations are the equations of evolution for the deviations inthe

linear regime (i.e. in the domain of Onsager's theory) rneaning that eq.

(10) is now

AQJ.(t) = - % (Pj‘PsL)o AFJ,(t) ,
where

1

. 0 = = ’
(Pj’pﬁ) Cjﬁl,o J du <Pj APQ(LhBuPO
[}

is the scalar product defined by Mori”’ze, with

P(ihBu) = exp{Buli}P exp{-ful}

and <...> stands for average value over the equilibrium

(canonical)
ensemble; as usual B = 1/kT. Further,

I

bjlergg = Trb 0 (0] = ] f dusk; BB (18)> AP, (1) =

1

= mzk Jo du <PJ. APm(ihBu)>0 ka_,o AQk(t) , (18a)

the second term on the right hand side of eq. (16) becomes

0 1
1 et 7 7 [ -t 1
E J dt' e J du <Pj APm(t +’LhBu)>0 ka,o AQk(t+t } , (18b)

m,k Y 2

and the last term in eq. (16) is now
0 1 1
' . -
Z J dt! est !du <Pj APm(t'+7,'hBu)>0 C £Z—-AQk(tﬂ&') - (18¢c)

mk,o dt
m,k - 0
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Replacing the right hand side of eqgs. (16) by the sum of the
three terms given by egs. {18), we obtain an integral 'equation for Q3.(t).
Using the iterative method we replace the time derivative of AQ in eq.
(18c) by (18a); however, we neglect (18b) since it leads to a term of
third order in the interaction strengths. Thus, using these results, in
the linear regime near equilibrium egs. (16) become Mori's equations

g2 04510 = ¢ [ 00,0 - ] [ ey ter-vine o0 (19)

(o)

where
1
. : , -1
Qg =1 ,% J du <P AP (1hBu)>, Coco (20a)
0
is in Mori's terrninology the precession matrix, and
1
Y., (1) =8(-1) &7 f du <P, AP (T+ihBu)> C,
Jk m J m o mk,o
1
ET : .. -1
+08(-1) e mzk fo du <P; APm(T+,nf3u)>0 ka’o
1
. -1
x R
) [ <P AP (ihBu)> C, (20b)
rs [}
is the memory function matrix. ® is Heaviside's step function.
In a compact forrn,
& 8a(t) = i G 8d(t) - r det' Y(e-t') A3t (21)
-0
with
N T o
Q= —i(P;P)o Co , (22a)
PN (.;-['_.'_.> -1 ET alud Ael > K =]
Y(1) = 8(-1) e (P;P(T))o Cy + 8(-ve (P;P(1)), C; (P;P), C, - (22b)

Mori's equations (21) are the average values over the equilib-

rium ensemble of the generalized Langevin equations!®, and, by analogy,



Revista Brasileira de Fisica, Vol. 16, n? 4, 1986

one may consider the generalized transport equations (16) as the aver-
ages over the nonequilibrium ensembleof the generalized Cangevin
equations for quantities P.. Oefinition (5) ensures the cancellation of
the rapidly varying forces, making the state variables Qj(t) secular,
i.e. of smooth time variation compared with time variations on a micro-

scopic scale.

2.D - NSO Generalized Transport Equations from Projection Operator

Techniques

W show next how the generalized transport equations (16) can
be obtained in an alternative form using the projection techniques de-

scribed in |,
First, we recall the definition of the projection operator

P(¢) of eq. (30}in |

n
P(t)a(t) = ]
m

~=1
; ij(t) {p ;4(1) It}PJ. (23)

=]
where

Ejm(t) = {PJ.;Pm]t} . _(214)

This projection operator, specialized for the case of Zubarev's method,
can be used to write Liouville's equation with sources, eq. (2), in the

form of a Liouville's equation with a modified Liouvillian

& 1og b (2) + i log o (8) = 0 (25)

where

iAh = 7L + e[1-P(¢)]. (26)

The time-reversal symmetry of Liouville's equation is broken and irre-
versibility is thus introduced in the theory (cf. eq. (5) in I).
V& now return to egs. (16}, which in the quasi-linear approxi-

mation {¥ = 1 in eq. (15a)) are
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d .
a 908 = Fylte g

* % j de 9<t-t')e5(*"t)(F3;P (£'-2) |£)7, (8")

- sugn rﬂ dt’ 6(t—t')e€(t|_t)(Pé;Pl(t‘-t)lt) € (t")

X (PysP [EOF (1) (27)
where

(4;B]t) = {A;Blt}H )
we have used eq. (10) in the inverted form

%I—Fg(t') = - ;Z( C;L;((t') % Q (") (28)

and, consistent with the quasi-linear approximation, we put

d i ~ 7 [ . . 1Y ] .
o G () = <Pt >Cg_§1 (P ;P [¢1)F (£') (29)
Noting that
i(t"t)L D o 1o -1 1 .7 [
e P(t")P = QZm Py (8'-8)C, () (B:E 1Y) (30)
we find
d - r | 1 i
s Qj(t) = <Pt o+ ; LO dt ij(t,t )F (') (31)
where
Kol = ew-t)eiﬁ(t"“(z‘aj;ei(t"“L[n-P(t-)]Pmlt) . (32a)

The evolution equations (31) are akin to those derived by

Robertson when the quasi-linear approximation is used. However, it should
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regime and far-from-equilibrium conditions. Further, the generalized
transport equations (16) can be written in a form that contain on the
right hand side a series expansion in collision operators, involving
only the calculation of averages over the coarse-grained ensemble, as

shown next, thus providing a quite practical way for calculations.

2.E - The Generalized Transport Equations in Terms of Collision

Operators
Let ys assume that the hamiitonian of the system can be writ-

tem in the form

B=LH 4V = (DH+V ) 4V 28+ V! (33)
a aQ

where g Ha is the sum of the hamiltonians of the free sub-systems ofthe
whole system, ¥V is the interaction energy operator between them, and the
separation V = V"€ + V' has the symmetry property

n
B’j»ﬁoj =m§‘ hajmpm y J=ha,..om (34)

where the ajm are real coefficients. Then

d ) ! ; T
% (e) = = nzT @l 75 <Bpv e+ zZz n:” () (35)

where

©

(1) ; = . * =
222 ns (t) = <P Ds(t)[t>cg {Pj,c(t)lt}

1
= f du <Pj Y(clu)i;(t)!t>cg ,
]

but because of eq. (34) and taking into account eq. {5}, it follows t!
5. = __L 1. = {pt.
{Pj,cs(t)it} p {[:I’J..Ho*»i’],?;e(t)‘t} {Pj,«;e(t)it}

- e Wrote
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be noted two differences: (a) the initial time is taken in the remote
past instead of t,=0 of Rpbertson's theory, and {b) we have introduced
the weight function W defined in article I, which in Zubarev's method
is exp {e(¢'-¢)}, which fixes the initial condition and provides irre-
versible behavior for the macroscopic evolution of the system. Near
equilibrium, when <...>Cg is replaced by an average over the canonical
ensemble, and the projector P becomes time-independent we recover Mori's
equations (21) {n the framework of the projection operator formal ism'?,
but in the quasi-linear approximation.

Further, because of egs. (5) it results that
<QDe(t)|t>cg = {5 (2)]e) =0

where R is any linear combination of quantities Pi. Thus, in eq.(16) we

can rewrite the last term as

{Pj;ce(t)lt} = {Pj;D-P(t)]EE(t)It} ’

and then

Kig(ert') = e(t'—t)eie(t'-t)(i’j;[I—P(t)]ei(t‘_t)L[I-P(t‘)]PmIt)- (32b)

The presence ?f the operator 1-P in the kinetic coefficients Kij(t’t')
projects the P on the orthogonal space to the one defined by the basis
set of P's, i.e. in Mori's language, K is a correlation matrix of the
rapidly fluctuating generalized forces. Inspection of eq. (16) tells us
that this is achieved in the NSO method through the difference between
the correlation matrix of the total generalized forces minus the projec-
tion of the generalized forces over the space of variables P; we will
return to this point later on. Finally it should be mentioned that be-
yond the quasi-linear approximation the kinetic rnatrix X contains time-
ordered projection operators in the exponential, which renders the math-
ematical handling for actual calculations a quite difficult task??.
These partial results make it possible to advance the conjecture that
egs. (16}, derived in the framework of the NSO method, represent a far-

reaching generalization of Mori's approach extended to the nonlinear
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regime and far-from-equilibrium conditions. Further, the generalized
transport equations (16) can be written in a form that contain on the
right hand side a series expansion in collision operators, involving
only the calculation of averages over the coarse-grained ensemble, as
shown next, thus providing a quite practical way for calculations.

2.E = The Generalized Transport Equations in Terms of Collision

Operators

Let us assume that the hamiltonian of the system can be writ-

tem in the form

Believ=( B+ V)t oz gt (33)

where C Ha is the sum of the hamiltonians of the free sub-systems ofthe
a
whole system, V is the interaction energy operator between them, and the

separation V = V¢ + V' has the symmetry property
_ n
ij,y‘,] ) rzaijm, J=1,2,...n , (34)
m=]
where the ajm are real coefficients. Then

d p | . T )
T o) = - z ol + 75 <Povdle 4 QZZ ne (#) (35)
where

(=] (1) . - . . -
222 ne(2) = <P De(f:)|t>Cg {Pj,t_;(t)lt}

1

= L du <1'DJ. Y(clu)iu(t)Lt>cg )

but because of eq. (34) and taking into account eq. (5), it follows that

D . =L M. = {PV.
{Pj,;s(t)lt} - {[:Pg.,Ho-fV],l;p(t)]t} {Pg.,ce(tﬂt}

where we wro'te
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Pl =5 EPV]

Further, formally solving eq. (15d) by the iterative process we obtain,

7 ) - Jdu<P' FONT
=2 Y o
1"
+Jndsufdx P (t)c(t)|t>g
+ +
1 u zn;l

+[@I a,“.L dz,, <P} T, (BT, (9)..
0 0 _

+ .
with
Ex(t) - e-xs(tyo) c(t) ezS(t,O)
’ '
- J gt ot oIS e 41y, 75(8,0)
’ '
= f dt. eat e.‘xS(t‘.O) (z Fm<t+tl)APm(t|)
o m
+ 2B (5488 (6)) 700
m
But
f 1
o ",
P ==t JZI o Pt . v]

and then

Ly (t)|t>cg

(36)

(37)
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0

J dr e [T ap (1) S 7 (eeet]]e
m

xS (t,0)

Y

—
<

~—
]

-0

Q
y €' ~xS(¢,0) . . v xS (t,0)
f_mdt e e [szrnFm(tw )ocijj(t ) e

+

0

+ J dt! eEtlexS(t’o) sz(t+t')e-xS(t’0) z_lﬁ [Pm(t‘),V']exS(t’O)
-0 m

(38)

Replacing eq.(38) in (36), and the latter in eq.{(35), we can
see that the quantities with increasing index R contribute with terms
involving from one to % times the interaction energy operator V'. Thus
they can be rearranged in a series of collision operators of increasing
powers in the interaction strengths. Note that this implies to incor-
porating the entropy production operator, contained in 5, in ever in-
creasing contributions into correlation functions caiculated over the

coarse-grained ensemble. For the case Otij = 0 we obtain

0
d _ 1 VB (P - !
% Qj(t) == <[Pj,Vl]|t>Cg + r% f_m dt'e”” F (t+t )(PJ.,Pm(t Y1)
0
, et! it
* r% f_m dt' e Fm(t+t')(P3;Pr‘"(t'){t) + o (39)
where
1
. = . = (£ ,
(4;B|t) = {A,Blt}Y=‘ f du <A bB (¢ )it>Cg (40)
0
and
AB = . uS8(2,0) AB euS(t,O)
u
Keeping only the terms written in eq. (39}, i.e. taking ¥ =1

in the correlation functions defined by eq. {17), corresponds to the so

called quasi-linear approximation in the NSO-theory of relaxation pro-
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cesses. Up to this second order in the interaction strengths we canmake

in eq. (39) the approximation

ZF(t+t'P(t) Y F t)P ,
m

3

and using the fact that

gl P [Fm(t)Pm,V'(t')]euS = % e (e e,
we obtain
0 .
) J ! £t Fm(t+t')(i>;;Pr;I(t')\t)
" 0
=-;2]?{mdt- < (vien, e Olt >eq * (41)

Furthermre, recalling that [1’7-,1‘10] =0 it follows that

s . s - s<[p. yille>_ =8F (¢) 42
(PJ..Pm(t)lt) Py <Eng :H cg m ’ (42)

and

d . d < d
E_p (tet') = F (1) = - ] Cpn(t) = @ (2)
dt' dt ™ L T

-1 ‘
= - = <[p, V! } 4
E Cpr(t) g <[z, ]It>cg (43)

Hence, up to second order in the interaction strengths
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0
) I atr ' 4 Fm(t+t’)(f’j;Pm(t')lt)

m e aEr
0 -

s<[p.,vi]|e>

) f gt o <[]l ) —2 <

Bokm? o, 9 §F_(¢)
° ;o _ s<[p.,v] e
) f e &° <[p,vr(e)] —L—.<a (bk)
Rk - 5Qk(t)

Replacing eqs. (44%) and (43) into eq. (39) we obtain the non-
linear transport equations for the quantities Pm in the quasi-linearap-
proximation in the NSO-theory for relaxation effects: these are the
equations given in article I. In the quasilinear approximation p' ofeq.
(14) depends only on the first power of the coarse-grained entropy pro-
duction operator :9; it will be shown in a future article that in the
quasi-linear approximation the production of entropy (of generalized
thermodynamics) can be written in the form of a self-correiation of the
coarse-grained entropy production operator, defined in the coarse-grained
ensemble, and that the fluctuations of the macrovariables § follows a

Gaussian distribution.

3. CONCLUDING REMARKS

The generalized transport equations {(12a), or the equations
for the thermodynamic parameters F, egs. (12b), or those in a mixed rep-

resentation, contain non-local (dependence on position F has not been
shown explicitly in our previous treatment) , and memory effects, and,
fundamentally, they are highly nonlinear integrodifferential equations.
This is a quite important fact since one is then dealing with autonomous
dynamical systems (non-al;tonomous if the hamiltonian contains a time-
-dependent potential energy) with feedback mechanisms. Such systems may
present stable solutions corresponding to small perturbations increasing
up to a stable final macroscopic fluctuation irrespective of the initial

conditions, in accord with the results of Generalized  Thermo-
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dynamicszs. For a long time unstable transitions leading to different
kinds of flow patterns in Hydrodynamics have been known, and widely
studied. Similar situations appears in physico-chemical systems, 1ike
chemical or biochemical reaction networks, and clearly the most striking
feature is the high level of complexity and organization in biological
organisms. These steady states can occur in open systems since for iso-
lated systems the second law of thermodynamics precludes ordered struc-
tures ®®. Further, some physical systems comprising devices }ike lasers,
tunnel diodes, Gunn oscillators etc, can also be included as having
similar kind of transitions to ordered steady states.

The profound analogies of general behaviourof these systems
are a priori surprising as are the analogies in behaviour with
purely dissipative systems around the situation of thermal and mechan-
ical equilibrium and second order phase transitions. This diversity of
situations have been brought under a comnon description through Gener-

26>30 " which put into evidence the common features,

alized Thermodynamics
and in fact common origin, of these phenomena: the fundamental point is
that one deals with nonlinear dynamical systems where instabilities may
arise in conditions of far-from-thermal equilibrium. External sources
in these open systgms force the departure of the elementary excitation
distributions from their equilibrium values to new ones compatible with
the constraints. A decrease of the degree of order may occur because of
collective effects among the elementary excitations after a certain
threshold in the intensity of the external sources has been attained.
Beyond the instability an ordered pattern stabilizes, which has been

80231 " and may be one of various spatio-

termed dissipative structure
-temporal self-organizations.

Two main questions connected with this subject are (a) what
is themicroscopic originof these transitions and (b) how to deal
theoretically, or better to say, how to analyse these transitions
rigorously. For systéms governed by Hamiltonian dynamics the NSO method
provides a way to describe the evolution aod behaviour of far-from-
-equilibrium systems through appropriate generalized transportequations.
Their solutions are uniquely determined for given conditions; however,

being nonlinear equations a branching point of solutions is apt to ap-
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pear, with branches corresponding to different self-organized dissipat-
ive structures whose stability need be analized. For physico- chemical
dynamical systems this is given by the Glansdorff-Prigogine stability

2830 |n future articles we will return to these questions:

criterion
it will be shown how the NSO method could provide statistical foun-
dations for generalized thermodynamics, and its used for the study of
stability and fluctuations in far-from-equilibrium systems.

Concerning the set of state variables Q and conjugate thermo-
dynamic parameters F we have already mentioned that they must be suf-
ficient for the description of the macroscopic state of the system on
the time scale of interest. As noted in I, one of the basic questions
associated with the forrnalism resides in the 'justification' of a de-
finite choice of macrovariables. One can distinguish two aspects of the
question, i.e. when one set of operators P is replaced by another P',
(a) what changes are there in the description of the evolution of the
macrovariables, and (b) what are the changes in the thermodynamic func-
tions as entropy production and the like. It can be seen that eitherthe
lack or the excess of quantities P is corrected by -the fact that the
evolution equations for the macrovariables contain ar coefficients time
-dependent correlation functions, which satisfy hierarchies of equations
to be solved simultaneously with the generalized transport equations.
Additional equations for the correlation functions will be necessary to
correct the deficit in the original set of rnacrovariables, or a number
of equations will become equivalent if there are superfluous quan-
tities P32, Let us observe that if the number of quantities £ is varied
the separation of the part Vsec, of the potential V, that mixes them as
in eq. (21), also varies. Suppose that 7°%¢ is the part of V that now

produces H, such that the new set {P'} satisfies that

(7,34 ]

Zﬂas’mP;m , 8,ym =1,2,...,n'<n ,
m

and

7S€eC

l;sec) -7

+ V'V,

<
)
<
+
=
"

. . )
Vo + V' + (Vg
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Then

daq!
s - =7 1 ] & ] ] i > H
ecilam egeBraerlle s o)
the number of dynamical equations diminishes but the number ¢of corre-

lation functions is increased through the term [P‘,V"].
Finally it should be noted that in eq. (16) we can write the

last term as

[}

{éj;ce(t)lt} f dtt 8(-t")e?t’ %t_' {éj;s(t+t',t')lt} =

«©

00

ZJ dt' 8(-t')e
q 4

e’ {Pj’;él(t')+P(t') %—,} Fg(t+t') =

m

J dt! 6(-t')e€tl {P?;.;c‘x(mt',t')lt} ,

where
6(t,0) = AdS(¢,0)/dt ,

which shows that the collision operator in eq. (16) tgkes the form ofa
general ized correlation, in the sense of eq. (17) ,‘ between the gener-
alized force P and the entropy-production operator &, with S(t, 0) de-
fined in eq.{11). 1t contributes with two terms, one involving the cor-
relation of pair of generalized forces, and another involvingthe vari=-
ation of the thermodynamic parameters, dF/dt', which substracts the
correlation of secular forces, i.e. the part of the total
generalized forces projected over the manifold defined by the quan-
tities P,. Thus, in Mori's terminology, the memory function is a gen-
eralized correlation of the rapidly varying forces. This is also
evident in egs. {32), and in the quasi-linear approximation a more' ex-
plicit form for both terms is given by egs. (41) and (44). Sometimes
formulae for the memory function found in the literature corresponding
to calculations in the Markovian limit neglect the time derivative of

F(t+t'), and may lead to incorrect results3?,
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in conclusion, we may say that the NSO rnethod, derivable from
a unique variational principle as shown in I, allows the construction
of a nonlinear transport theory which could be consider an ample gen-
eralization of Mori's approach. Further, the theory providesa practical
form of calculation, which requires the obtention of correlation functions
in the coarse-grained ensemble, avoiding the cumbersome task of deal~
ing with projection operators which, for the general case of systems
arbitrarily away from equilibrium, are dependent on time. We illustrate
the use of the method by applying it to the study of ultrafast transient
transport in highly excited semiconductors, which will be presented in

a future article.
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Resumo

Baseada no método do operador estatistico de n&ao-equilibrio
(Rev.Brasil.Fis. 15, 106 (1985)) é desenvolvida uma teoria n3o~linear
de transporte para sistemas de muitos corpos arbitrariamente afastados
do equilibrio. E derivado o conjunto de equacdes de transporte nao li-
neares para as variaveis béasicas a descricdo do estado macroscopico do
sistema. Dois tratamentos alternativos sac descritos os quais podem ser
considerados como generalizagdes do método de Chapman-Enskog e do méto-

do de Mori. O primeiro caso e considerado com certo detalhe, e as ca-
racteristicas da teoria sdo discutidas.



