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Abstract The non-compact 03N model is formulated as the M=1 caseof the
generalized non-compact Grassmannian sigma models on the coset space
SU(M,IV)/[SU(M)XSU(N)XU(I)]. Quantum properties obtained within an in-
definite metric formalism and the 1/N¥ expansion show the phenomena of
dynamical generation of mass and of a composite gauge boson for certain
values of the coupling constant, without any input parameter.

The non-compact 03N model is the M=l case of the non- compact
Grassmannian sigma model defined on the space G/H = SU(M,N)/
/[SU(M)XSU(N)XU(UJI. The Lagrangian in the general matrix formalism ir.
given by2

L =- é- Tr auq(x)apq(x)_l, (1)

where

qlx) = g-l(x)gog(x) (2)

are a subset of the group elements g belonging to SU(M,N), with the fixed
element

—IM 0

0 +I, ] (3)

g4, =

By definition, an element of thepseudo-unitary group satisfies the

condition

.

+ *
9 Ged =9y =9 909 » (4)

with inverse given by

,f.
g =ge9 9, - (5)
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The interaction in the model is provided by the constraint

glx)glx) = Lyn - (6)

The coset elements can be parametrized by off-diagonal ¥ x ¥ complex
£
matrices X and X' in the Lie algebra in the form®

ST
cosh Vxx' XS_’""_‘[‘{:X_
™
7 VAT
) H
weoo [y e |
[x' 0o} o T -
g XM {cosh X'x{

ax®

In the M=1 case, the block Z reduces to a single row para-

metrized by a set of N complex numbers g1~(7«'=l,~--,#) which,  with
defined by the non-compact constraint zyzg = 1 - Efzi. become the field
variables transforming as a vector za under SU{1,N). In terrns of these

variables, the coset (2) can be written as

[ o1 s B 25 5. |
q= } ! : | ®)
L 2:/3027 -1 - 227:7. _j
The Lagrangian in eq. (1}, after some algebra, now assumes the canonical
form
~ EREN P % AH,
L = au 3"z, 2: 5 3 I



Revista Brasileirade Fisica, Vol. 16, n2 4, 1986

or
1

z 29
a

L =3z %%+
a

) (Eaauza)(éba“zb) . a,b=0,1,...,N (9)

in which a rescaling of field variables has been performed through ‘the

introduction of a coupling constantf in the constraint

23 =-2 3 + 3.2 =—N+I, (10)

Under the local transformation za(x) > Za(x) exp ZA(x), the Lagrangian
is seen to be invariant. Thus classically there exists acomposite field

defined by Ay = 722 BU 2%, which transforrns like a U(}) gauge field. Al-
T e
L=D3z, Da , (11)

with D = Bu + iAU' The above formulation thus far is relevant for any
dirnension. 1t is our emphasis in this note to concentrate on the quantum
properties in these models, which are only renormalizable in two dimen-
sions, and to demonstrate that the composite gauge boson can indeed be
generated dynamically.

In the two-dimensional model, several studies® of the quantum
theory in the positive coupling region of eq.(10) have concluded that
there cannot be dynamical generation of a composite gauge boson due to
the lack of a mass generation, unless a certain extra input is intro-
duced®. Thus the gquantum theory in such case is not too interesting.
However, a previous analysis6 of the non-compact 0(1,¥) sigma model
shows that a negative coupling does not prevent the construction of a
positive definite quantum Hamiltonian in an indefinite—metricformalism7,
in spite of the fact that the corresponding classical Hamiltonian is
not positive. The 1/N expansion study of the model further shows that in
the same region there can be dynarnical mass generation, though the
0(1,¥) model does not possess a gauge degree of freedom.

Following the ideas in the analysis of the 0(1,N) model®. we
introduce a mass term ngaza in eq.(9) to regulate the infrared diver-
gente of the massless theory. The mass at this point is an extra par-
ameter but will become related to the coupling later on. The overall

Fock space of quantization in the free field theory on which a pertur-
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bative treatment of the interacting theory is based, is of course, in-
definite as the fields carry both positive and negative norrns. Thus in
the momentum space expansion of the complex fields, the creation and an-
nihilation operators aj;, a. satisfy the prescription

1- for =0
|

B
<0[ai(p)ai(p’) [0> = 2p, 8(p-p') <
i+ for = ,...,N.

(12)

The physical subspace, obtained by projecting states consisting of an
even number of negative-metrid fields but arbitrary number of positive-
-metric fields, is always positive definite. As a result, all physical
gquantities constructed in this subspace have positive-definite eigen-
values.

We now examine several important features of the quantum theory
for the non-compact CPN model. Implementing the non-linear constraint in

eq.(10) via a Lagrangian multipiier A, we rewrite the Lagrangian as

_ .5 pH o A 2 (T . z .,
L= Duzo Dz, + Duzi D Z,-m ( z,5, + (,Z.ui.)
T T (13)
vN+1 .

The value of m can be chosen so that the vacuum expectation value

<> =<0|Thxexpz [ L, 0 =0 (1)

is satisfied. This condition implies that

»7

- A S (15)
1T 1

- <z, =

0

Since the field 2z, has the negative metric, its propagator carries an
additional relative minus sign with respect to those of the positive-
-metric fields and the combined effect on its vacuurn expectation value
is that it is positive! As the dynamics is invariant when 3z, is trans-
lated by a constant value, i.e. z, > 25 =0 t a we may exploit this
.invariance. Denoting the translation of the vacuum expectation value by
<zgzy>' = <3z

0> + o0 , we obtain the linear part in z, of the shifted

Lagrangian
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- - - 1 - _ -
L' =L+ m?(ac + gz, + z,0) + — (00 + cz4 +2,0)
o RN o Fo (16)

+ other terms,

so that in the tree aproximation, the requirement that the shifted field

2, now hsve zero vacuum expectation value further implies the condition

2

miog = 0 , (17)

Thus there are two distinct possibilities according to eq.{17}) in the
analysis of the dynamics:
Case |. If G0 # 0, then m* must be zero identically. This is the case

corresponding to the absence of dynamical mass generation. Equation (15)

further shows that to lowest order in the large N limit,

5o=(zv+x>[ L% I : }+M, (18)

(2my2  (k%-m?+i f

in which the integral diverges when m = 0. For positive coupling f, the
quantity 00 is therefore infinite, a result which is physically meaning~
less. In addition, as we shall see in later expression, the zero mass
Timit is not well-defined for the propagator for the composite gauge
field As p2 - 0, the pole of the propagator is absent and this is why
the gauge boson fails to appear dynamically.
Case Il. If 00 = 0, then m?® can be finite. This is the case where there
is dynamical mass generation. The evaluation of the integral in eq.(18)
after a Wick's rotation leads to the following relation

) dzke 1 y
{2m)?% k; + m* bl Toe

H
X2

25 k: (19)
Q

which is valid only when the coupling f is negative. Equation (19) gives
the typical asymptotic freedorn behavior of the coupling as a furictionof
the cutoff A, i.e. f_I(A) = constant x log(A?/m?). The mass introduced
earlier is now nonperturbatively related to the coupling and is the dy-
namically generated mass. The proper two-point function of the gauge

field, obtained from eq. (13), is
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] , - a -+ a - & b

Fuv(p) —7\]—; LZZ gU\) <3a3>+<:za8uz toroBy 3\):, . >_[

g 2 ] . ( 4k (pU+2k]J) (pv+27<\))

WV am 2 (k2em?) ) (2m? (K2-m?) ((pek) 2om?]
i.e.
pp, o 2 2
r v(p) = constant X (g v —uz—\)) | dao Z0-20) 7 p° R (20)

H s P a(l-a)p’-m?

which is the same as the corresponding function in the compact model®.
In this massive case, the expression in eq. (20) shows that the gauge
boson propagator develops a pole at p2 = 0, indicating the presence of
a physical gauge boson in the quantum theory. The same expression shows
that the pole at pz = 0 variishes when m = 0. In fact, the integral in
eq.(20) is infrared divergent if m = 0. This is tne reason why dynamical
generation of a gauge boson js dependent on mass generation in the model
In general, the dynamics of the compact and the nsn-compact CPN models
are very similar. In addition to the negative sign carried by the pro-
pagator of the negative-metric field, the Green's functions involving »n
negative-metric fields in the non-compact model are related to the cor-
responding Green's functions in the compact model by the factor (_”n/Z
(n is always even).

The phenomenon of mass generation with asymptotic freedom be-
havior in the negative coupling region is a common feature of the
S0(1,N) 750{N) and the SU(1,N)/SU(N) U(1) sigma models. One important
difference between these two types of theories is that in the nun- com-
pact (PN model there are no single-particle asymptotic states corres-
ponding to the scaiar fields of the Lagrangian. Unlike the SO{1,¥)/350(¥N)
model in which the physical asymptotic states contain an even number of
negative-metric particles and the S-matrix structure for two-body scat-
tering is well defined, it is no longer possible to discuss the scat-
tering of fundamental particles in the non-compact (PN model. Thescalar
fields are permanently confined by the Coulomb potential which is linear

in two dimensions®. However, if the non-compact (‘,PN model is coupled
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minimally with a fermion then the gauge boson pole at p? =0 will dis-
appear . In such a situation, the scalar fields are no longer confined
and scattering between the scalar particles becomes possible. One can
then discuss the features os particle scattering in this non- compact
model as has been done in the 0(1,N) sigma model®.

We finally remark on the equivalence between the non-compact

SU(Y,1)/7U(1) sigma model and thecon-compact S0(2,1) sigmarnodel, the
latter being defined by the Lagrangian
3 3
i T .U z
= 5 3 Ca .= . 21
L izl 7 9 ¢ ¢7,’ @Z ¢ 9, constant (21)

In the spinor representation, the generators of S0(2,1) can be given in
terms of the Pauli matrices 0. as: I''=ia ,T,=1ia , s =0;3.Defin-

ing the composite fields to be
a, b =0,1 , (22)

which are real, we find that d)f + ¢>§ - ¢§ = -5020 + 5121. Similarly, a
simple calculation using eq. (22) shows that the Lagrangian resulting

from eq. (21) is exactly of the form of the non-compact P’ model.
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Resumo

0 modelo CPN ndo compacto € formulado como o caso =l dos no-
delos sigma generalizados def'inidos no espaco coset SU(M,N) /3l (M)xSL ()
xU{1). As propriedades quanticas obtidas dentro do formalismo de métri-
ca indefinida e expansdo 1/N, exibem o fen6meno de geracdo dinamica de
massa e de um boson de gauge composto, numa certa regido da constante
de acoplamento. Isto resulta sem uso de nenhum parametro auxiliar.



