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Abstract It is shown that the problem of a Schrgdinger particle in
stationary motion on prolate and oblate spheroidal surfaces has an exact
solution. The constants of motion are explicitly identified, and the
procedure to construct the eigenfunctions and energy eigenvalues is
outlined. Illustrations of the energy spectra for spheroidsofdifferent
eccentricities are presented.

1. INTRODUCTION

The problem of a point particle constrained to move on a M-
-sphere SN under the action of a conservative central force, has been
investigated and solved in its nonrelativistic, classical and quantum
mechanical versions!*??%; More recently, Ferreira and Palladino have
shown that one relativistic and quantum mechanical version of the pro-
blem, namely, a Dirac particle constrained to move freely on a two-di-
mensional sphere 5%, admits exact solutions®, As it was pointed out
in ref. 4, possible extensions of such problems may involve other surfa-
ces.

In this paper, we show that the problem of a Schr'ddinger par-
ticle constrained to move on a two-dimensional spheroidal surface em-
bedded in a three-dimensional euclidean space has an exact solution. In
section 2, we identify the constants of motion, in their classical and
quantum versions, for the free particle in euclidean space in both pro-
late and oblate spheroidal coordinates, which is useful to show and to

understand the separability and the solution of the SchrbBdinger
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equation. In section 3, the constrain on the particle to move on a
spheroidal surface is introduced, and the proceduretoobtainits eigen-
functions and energy eigenvalues is outlined. In section 4, we present
some illustrations of the energy spectra for both prolate and oblate
spheroids of different eccentricities, and discuss their relations with

the spectra of some other rotators.

2. CONSTANTS OF MOTION AND SEPARABILITY OF THE SCHRODINGER EQUAVION

In this section we follow Erkson and Hill® to identify the
constants of motion and to understand the reason for the separability
of the SchrSdinger equation in both prolate and oblate spheroidal coor-
dinates. In fact, the results of ref. 5 for the case of one-electron
states of diatomic molecules can be directly applied to the case ofthe
free particle in prolate spheroidal coordinates by taking thei nuclear
charges equal to zero. For the sake of completeness and as a point of
comparison, we treat the last case explicitly. Then we carry out the
corresponding analysis for the free particle in oblatespheroidal coor-
dinates pointing out the differences and similarities.

Let us first define the spheroidal coordinates. in the pro-
late case we take the foci 1 and 2 on the z-axis at distances f from
the origin below and above the «xy-plane, respectively. The positionof
a point in space can be defined by its distances r; and r, from the res-
pective foci, and the angle between the xz-plane and the plane deter-
mined by the z-axis and the point itself. The prolate spheroidal coor-
dinates are defined by P+ o -

£ = : ,» N , 0 (1)
2f 27

which are mutually orthogonal protate spheroids of eccentricity 1/& ,

two-sheet hyperboloids of eccentricity 1/n, and planes containing the
z-axis of revolution. In the oblate case, the foci form a circleinthe
xy-plane centered at the origin and with a radius f. Calling 1 and 2
the foci in the plane determined by the z-axis and the point under con-
sideration, the position of the latter is again fixed by the distances
I, and r,, and the angle ¢ which that plane makes with the xzz-plane.The

oblate spheroidal coordinates can be defined through egs. (1) with the
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appropriate distances I, and »r,, but we choose the alternative set

2,
g= 1, w=vin?, 4 (2)

which are mutually orthogonal oblate spheroids of eccentricity l/v/CZ:T.
one-sheet hyperboloids of eccentricity I//I::Z and planes containing
the z-axis of revolution. The choice of this alternative set of coor-
dinates leads to a closer similarity of the equations of motion for the
prolate and oblate cases.

For the free particle and for both systems of coordinates the
energy E and the z-component of the angular momentum R are immediately
identified as constants of the motion. In both cases another constantof
the motion can be identified, and we proceed to construct it following
ref. 5. Let

T, =750 = () xp (3a)
and
T, =70 = @-Pxp (3b)

be the orbital angular momenta of the particle relative to the respec-
tive foci 1 and 2. In the familiar case of spherical coordinates the fo-
cal semiaxis f vanishes and both angular momenta reduce to the angular
momentum relative to the origin; in such a case, the square of the lat-
ter 2.3 = (3xp) .(?xg) is known to be a constant of motion. This suggests
one should analyze the quantity El .752 and its variation with time for
the present case of spheroidal coordinates. It is straightforward to

establish that
L) -2 [ x3] L B (#)

In the prolate case, T =Kk is a fixed vector, and therefore 11 .Iz is a
constant of the motion. The corresponding quantum symmetrized operator
will be represented by

B24
p

it

5 e+ L] = 22 - (B)-(P)

it

2 - 7 (6252 (5a)
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In the oblate case, the position vector of focus 2 is radial = pf and
its time rate of change is df/dt = @d.)f By using the cylindrical com-
ponents of the linear momentum, pp = uf) and p¢ = upd.J, and the e-com-

ponents of-angular momentum SLZ = up2$, eq. (4) can be written as

>

2(.0) (. -;-ZJE ) = 2f2p0p¢5>

g; #,.3,)

27 008? = 27%220/0°

_ . d (lei
at

=) (6)
Consequently, il .32 + (fZSL;/pz) is a constant of motion; the last term

can be interpreted as arising from the rotation of the plane containing

the foci 1 and 2. The corresponding quantum operator is
2,2
L
S 1 > f
thO = -2- UZ].EZ + 22.31] + pzz
202
A > > >
= 22 - (Po) . (Pp) + =2 (5b)
p

The quantum operators representing the constants of tlie motion
in prolate and oblate spheroidal coordinates can be written respectively

as follows, The hamiltonian operators are

- 2 2
i ==l ! [i(gz-l)a—-+i(l-n2)%ﬂ:l+—2—-'——-—-,’_a_
P oouf? | g2n? |98 € o : (£2-1) (1-n*) 3¢?
(6a)
- 2 2
PN CEP B BN - SRR SUNY SN & BN RS o
0 ur? | gP+® (32 L w dw|  (2%+1) (1-w?) 3¢?
(6b)
The operators of eqgs. {5) become
7\ - nz _3__ (52_]) ?_. - _____gz _§_ (]-nz) i.. - ___Ejﬂi'_l_____a_‘; (7a)
Pog2n? 3¢ 9  £%-n® o o (£2-1) (1-n?) 3¢?
2 2 2 2 2
AO =- w -a— (C2+‘) -g—— - —-—C-—-——i— (l-wz) §— - —E'-'u‘)""‘—z"'-a——z' (7b)
2402 7 g2y w  (22-1) (1=w?) 3¢
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And the z-component of the angular momentum has the well-known
form
P |
%, ih 5T (8)
The operators #, A and Qz commute with each other by pairs and conse-
quently they have common eigenfunctions. We represent the respective
eigenvalues by E = A%k%/2u, X and %m, wherem = 0, £1, 12, +uu . The

eigenvalue equations for H and ]\\ are separable with eigenfunctions

"

w(E,n,d) =E5EHM)o(p) (9a)

V(z,w,0) = 2()w)o(e) (9b)

It is straightforward to obtain from eitherof those eigenvalue equations

the corresponding separated ordinary differential equations

d 2.y 4 m? 20202 _ 4| = =

E (g2-1) I e + kif2e AlE =0 (10a)

d .2 _C_Z____ m? _ 1,2p2.2 “ =

Zf—n(]n)dn - k22 + A|H =0 (11a)

and

d 2 d ,.m 242,2 _ =

EZ(C +1) d‘:+c2+1 + k22 MZ =0 {(10b)

. , ~

%(I-wz)%- ’”2 + K227 + 20 =0 (11b)
1~w _

When we start from the Schrb'dinger equation, the constant of separation
is A. When we start from the eigenvalue equation for the operator 7\\, the
constant of separation is k?f2. we have thus estahlished that the separ-
ability of the Schrgdinger equation in prolate and oblate spheroidal
coordinates is due to the existence of the respective constants of
motion of egs. (5a) and (5b), which leads to the commutationof the
hamiltonian and & operators of egs. (6) and {7), and to their common

eigenfunctions.

268



Revista Brasileirade Ffsica, Vol. 16, n@ 2, 1986

3. THE EIGENVALUE PROBLEM ON SPHEROIDAL SURFACES

Now we follow ref. 4, starting with the equations of motion in
the Euclidean three-dimensional space developed in the previoussection,
and restricting ourselves from now on to the two-dimensional spheroidal
surfaces defined by § :50 or ;0 =|/'£—§_:l_. Correspondingly, in eqgs.(10)

we take

5 (&) E(«En) = constant , CZZZE,' = 0 (12a)

dz _
T = 0 (12b)

Il
SN
—_—
Y
~

z(z) = constant ,

and obtain the energy eigenvalues in terms of the other two constants

of motion
2 2 2
By, == A |—x . ] (13a)
n ot L gl
242 2 2
Em=hk N hz [A_ m] (13b)
TR 1Y i S C24l

The eigenfunctions of egs. (9) can be rewritten as
by (6 0) = x(x) () (14)

where x equal n and w for the prolate and oblate cases, respectively,

Then egs. (11a) and (11b) can be rewritten in the form

d ( 2y d m2 2p2.,2
- 1-¥%) &~ + * K23 IX = AX (15)
[ X X2
where the plus and minus signs apply to the respective cases. This

equation and its solutions correspond to the angular spheroidal wave-
functions®. For the sake of completeness we discuss a method, alterna-
tive to that of ref. 6, to obtain the solutions of this eigenvalue
problem, which is the eigenvalue problem for the operator R. Such a
method consists of constructing the matrix of the operator R inan ap-
propriate basis of functions and diagonalizing it’. The natural basis

is that of associated Legendre polynomials Ef;'(x), which are eigenfunc-
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tions of the first two terms inside the bracket in eq. (15) with eigen-
values L(L+1). The eigenfunctions of eq. (14) can be written in the

corresponding ''spherical'' harmonic basis as

Up = % a, ¥, (8,9) (16)

where x = cosB, and the matrix form of eq. (15) becomes

I+

<Im| (L% + K2£2%% - A) |L'm>

(20-1) (5 1m) (G41m) + (2043) Gm) ), L
(20-1) (20+1) (20+3)

L(I+1)+ K252

L'

1 / (r+V+mXL+2+4m) (L+1-m) (L+2-m3‘
27+3 (20+1) (21+5)

1
. /?L+m) (L-m) (£-14m) (L-1-m) SL-Z,L’ } -0 (17)

25-1 3 (25-3) (2r+1)

I+

2 a2
k°f L+2,L'

For chosen values of m and k2f2, this matrix equation can be
constructed and solved in a computer obtaining the coefficients aL for
the eigenfunctions in eq. (16) and the eigenvalues A(sz'z) to the de-
sired accuracy.

The energy eigenvalues can be determined through egs. (13a)and
(13b), by-finding the intersections of the curves A(k%£2) with the

straightlines

2
y(k2f2) = 2272 - T (18a)
0 52_]
and 0
y (k257 = 2eg? + 2 (18b)
0 241
0

respectively,
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4. ILLUSTRATIQN AND DISCUSSION OF ENERGY SPECTRA

In this section we present some graphical resultsto illustrate
the solution of the eigenvalue problem, as outlined in section 3, and
the energy spectra of the nonrelativistic quantum particle constrained
to move on prolate and oblate spheroidal surfaces of different eccen-
tricities,

Figures la, b, ¢ and d are plots of the eigenvalue X of eq.
(15) versus k2f2 for prolate spheroids on the right and for oblate sphe-
roids on the left, and for values of m = 0,1,2 and 3, respectively. No-
tice from eqs. (15) or (17) that the difference between-the prolate and
oblate ca~es is in the sign of the term k2f%x?, resulting in the
monotonic increase of the eigenvalues X when going from left to right
in the figures, In particular, when f = 0, corresponding to the sphe-
rical case, the eigenvalue A reduces to £(2+1), with R = mm+1 m+2,...
The numerical values of A obtained from the diagonalization of the
matrix in eq. (17) with a basis of twenty functions are as accurate as
the ones in the tables of ref. 6 for m = 0,1,2, The same figures contain
the plots of the straightlines of egs. (18a) and (18b) for splieroids
with eccentricities of 1/2, 1/1.25 and 1/1.1, respectively; notice the
variations of the slopes and interceptions of those lines according to
the values of £, and m. The energy eigenvalues are determined, according
to egs. (15), by the values of k2f2 at the intersections of the A (k®f2)
curves and the straight line associated with each spheroid. If we take
JiZ/Zuf2 as the unit of energy, then the energy eigenvalue are given
directly the abscissae k?f2 of those intersections.

Figure 2 shows the energy spectra for the particle on prolate
and oblate spheroids on the right and on the left, respectively, for
eccentricity parameters of £, = 2, 1,25 and 1.1, grouping together the
energy levels with common values of m = 0,1,2 and 3.

In order to discuss the characteristics of these energy spec-
tra, we take the energy spectra of the rigid rotator %22(9+1) /27 and of

the svmmetric top

2
m ] 1
21.1 + T (j.—s ?Z'T) }

as points of comparisona. The comparison can be made more directly py
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i
T ) [5) o0 an a7 b [s) P “

Fig.1 - Energy parameter k*f* versus X eigenvalues from eq. (15}, and
straightlines of eqgs, (18) for prolate (oblate) spheroids on the right
(left) side, fora) m=0, b) m=1 c¢) m=2and d) m= 3,
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Fig. 2 - Energy spectra, with PZZ/Zuf‘2 as the energy
unit, for particle constrained to move on prolate
(oblate) spheroidal surfaces of eccentricity 1/&£, on
the right {left) side.
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rewriting egs. (13a) and (13b) in terms of the major and minor semiaxes

of the spheroids a = f§; and b = fg, in the respective forms

2 22
E)\m=h>‘ +-———ﬁm Lol (13a')
2ua’ 2u »* 4P
2 2 2
E’)\m=h>‘ +____hm —L--l- (13b")
2ub? 2n a? b?

Notice that the major (minor) axis is the symmetry axis for the prolate
(oblate) spheroid, and I, = wb? (va®) and I, = va® (wb?) play the roles
of the moments of inertia relative to the symmetry axis anda transversal
axis, respectively. Then the difference between the energy levels of the
particle constrained to move on the spheroidal surface and the energy
levels of the symmetric top consists of the difference between the values
of A and %2(2+1). As the top and the surfaces become spherical I451,,ba,
F0, X*2(2+1), and the energy spectra of both systems tend to thatof the
rigid rotator. The departure from sphericity removes the (2%+1) - fold
degeneracy of the rigid-rotator energy levels, and a two-folddegeneracy
remains for the states with m = £1, *2, ... . The energy levels are
shifted up (down) as the shape becomes elongated (flattened).

in the case of spheroidal surfaces of small eccentricity, i.e.,
large values of Eo’ the energy spectra are very close to that of the
rigid rotator, as it can be appreciated graphically in figs.l where the
corresponding straight lines tend to become vertical and their inter-
sections with the A curves are close to A= 2{(2+1); also the terms of
eqgs. (13) depending on m* tend to become negligible. In fig. 2 it can
be seen that even for spheroids with £3 = 2, in which the eccentricity
is not too small, the energy spectra for the particle on both prolate
and oblate spheroidal surfaces resemble the one of the rigid ro-
tator, and the tendency of the energy levels with different values of m
to remain degenerate is still apparent.

As the spheroids become more elongated and flattened, the cor-
responding energy spectra depart more and more from each other and from
the one of the rigid rotator, This can be appreciated in figs. 1 since
the slopes of the straight lines become smaller as the eccentricity in-

creases, approaching the values ofone and zero for the respective
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limiting cases of bar-shaped and disc-shaped spheroids. Figure: 2 shows
that for £ = 1.25, there is a systematicshifting up (down) of the
energy levels with the increasing values of m for the prolate (oblate)
case, illustrating a situation analogous to that of the symmetric top.
In the same fig. 2 one can appreciate that the fairly simple ordering
of the energy levels observed in the two previous cases starts to be
replaced by more complex ones for &, = 1.1, which already show the
trend of the energy spectra for the limiting cases of bar-shaped and
disc-shaped spheroidal surfaces.

Just like in ref. 4, the nonrelativistic particle on spheroidal
surfaces admits an exact quantum solution if the hamiltonian contains
a potential funstion V(A,SLZ) of the commuting operators R and ILZ. We
are also investigating the solutions for the Dirac particle on sphe=

roidal surfaces.

Ore of the authors (E.L.K.) wishes to express his gratefulness
to Prof. P. Leal Ferreira of Instituto de Fisica Tedrica, SZo Paulo,
Brasil, for discussions that led to the study of the above mentioned

problems.
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Resumo

Mostra-se que o problema de uma particula de Schrb‘dinger an
movimento estacionario sobre superficies esferoidais protatas e obla-
tas tem uma solugdo exata. ldentificam-se as constantes de movimento
explicitamente, e esquematiza-se o procedimento para construir as auto
-fungoes e 0s auto-valores da energia. Apresentam-se ilustragdes dos
espectros de energia para esferoides de diferentes excentricidades.
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