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Abstract Analytical and numerical calculations are performed in orderto
obtain order-parameter fluctuation modes for the triple hexagonal in-
comnensurate charge-density-wave (1CDW) phase in 2H-TaSez, using the
McMillan-Landau Theory of Phase transitions. It is shown that the op-
tical modes present large energy gaps, except when T is very close to
onset temperature, T,.

1. INTRODUCTION

1% have

Very recently many theoretical and experimental works
concentrated on the study of the commensurate phase of the dichalcogenide
transition metal 2H-TaSe,, owing to the controversy whether such phase
is orthorhombic rather than hexagonal. Other authors have pointed out
the possibility in considering the incommensurate phase present in this
substance, between 112%k and 122%K as being a typical honeycomb (hexag-
onal) phase. Despite this, Chen et al® have emphasized that we can ex-
perimentally observe that in this range the hexagonal symmetry is re-
tained on a larger scale.

In this note we report some calculations of fluctuation eigen-
modes (ampl!itudons and phasons) for the hexagonal incommensurate phase
of 2H-TaSe,, using the McMillan-Landau free energy, which is wvery con-

3

venient in the study of incomrnensurate phases®, Firstly, we summarize

the basic points of McMillan's approach, than we write the free energy

for this phase and finally we compute the fluctuation eigenmode.

2. THEORY

In 1975, McMillan introduced his Landau free energy potential,
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where the real order parameter 0L(g) is obtained from the electronic
charge density D(_;). After some algebraic manipulations it is possible
to expand 05(;) in terms of three complex order parameters lPﬂ-(z’t), with
amplitudes ¢;(;), which correspond to each of the three CDW's present
in ZH-TaSeZ.

in this theory one normally defines the following vectors:
Z- (7 = 1,6) are the six shortest reciprocal lattice vectors in the

J

->
hexagonal symmetry; Q,3

These three vectors lie in directions 120° apart. The other vector QJ-

(7 = 1,3) represent the charge-density-wave vectors and ¢ are the ex-

(7§ = 1,3) are the three incommensurate vectors.
->

citation wave vectors,

Now, we consider the hexagonal incommensurate phase of 2H-TaSe,.
This structure is characterized by the space group D6h-6/mmm. We per-
form the calculations of excitation modes, which have been previously
considered by McMiHan7. That author has done computations of order-
-parameter fluctuation modes for this phase, discussing only the caseof
phase fluctuation modes (phasons) with wave-vector 3 along a symmetry
axis. In our case, we concentrate on amplitude fluctuation modes (am-
plitudons) for a different a—direction, doing the same for the case of
phasons. In our discussion we have confined ourselves onlyto intralayer
terms.

in this phase, the McMillan-Landau free energy canbe rewritten

as

] ] > = > >
V=-2-fd2r{§ anl¢j|2+7" 300|¢jlu+ZeoIQj.v¢jI2+Zfolexvd)jlz] ( )
i

- 3 35, (9,0,0 +470%0%) + (3o, + 2d,) (19,0, 2+19,04]2+[0,6,1%))

because, 3 = 5,, and ¢,= ¢, =¢,= ¢, The vectors being incommensurate
with the Igttice, only the uniform terms’ a,, b,, ¢,. ., contribute.
The 'lock-in' cubic term vanishes in this case. The first term in eqg.(1)
is the unscreened elastic constant; the second is the quartic energy of
Landau expansion. The third and fourth terms are the elastic energy con=
tributions; the fifth one is a weak QW interaction permitted by sym-

metry and the last term is a CDW interaction which arise when two CDW's
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compete to open an energy gap on the same portion of Fermi surface’,
Now, we use the minimum value for the free energy potential in
terms of ¢0, in order to expand eq. (1) in powers of ¢jq’ keeping only

second-order terms,

= V(o) +Z [a +9cod>0 +bd, ¢2 + 2e (Q q) + ZfO(Q Q) _I Jq‘bm
Jq9

1 2 1 |t
*3 3c°¢°qu (5e%5-q * %a%-d " 2 I_73b°¢0

- (3¢0 + Zdo)¢::} CZZ (#7495 + ®1q%5-q T Permutations)

+ % (3co + 2do) 93 g (¢?q¢2q + ¢;q¢]q + permutations) (2)

This expression is a little different from one in McMillan®
because he omitted the contribution of the last term of eq.(1). W will
retain it here, because it is important in the case of amplitude fluc-
tuation mode calculations.

Following the standard procedure, we compute the eigenmodes,

rewritting eq, (2) in terms of the coupled modes qu and ij, such that
= V() + V4V (3)

where V factorizes into amplitude and phase contributions with no cross

term and V(¢n) corresponds to the minimum of the free energy. So,

+ 1 *
V=-2-{§q[-53b¢0230¢0+8(62 q)+f(§q:quJq

_[Tf 3,9, - (3¢ +2d )d) Z(A]q 2 A;qA]q + permutations) (4)
-1 1 . 2%
e {gq [ 3008, + 0 @02 + 7,852 P e

+ E 3b,9, E (qu 2 * P;quq + permutations) (5)
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Nowwe diagonalize the matrices obtained from eqs,(4) and (5)
find the six mode frequencies, four being optical, which are three am-
plitudons and one phason; two are acoustic modes, which are both phasons.

W have considered a particular 3 direction, when this vector
is perpendicular to 51, writing results correct to order 42. In this

case, we find the amplitudons,

By, ¢ 3 a0 = (F 30, +24,)67 + 4 (3¢, + 1,142 (6)
EZg : -;-Bborbo - (% 3e, +2do)¢§ +-}; (e, + 3f,)0%¢* 7)
hay b 3bude + (g 150, + M) 0 + 1 (eg5,)@0a? (8)

Similarly, we can compute the phasons and find

T (e + ek (9)
Bl -,]; (e, + 3f,)Q%* (10)
Bry ' T 9u0, + 3 (6445, 0% (1)

E A‘ E. and A,, are the symmetry character of the irreducible
Tu* “u 29 g

representation of the D6h-6/mmm grcup and each expression above rep-
resents M*w?/4, where w is the mode frequency’. These results (6-11) are

illustrated numerically in figures 1 and 2. The value of ¥* = 206 au 7.

3 NUMERICAL RESULTS

In this section we present the results of numerical compu-
tations of normal mode frequencies (amplitudons and phasons) for the
hexagonal incommensurate superlattice of a single layer of the 2H-TaSe,
structure. W have calculated the mode frequencies in terms of the wave
-vector a and we have also obtained the behaviour of these modes as the

temperature changes, Firstly, we have followed Nakanish and Shiba9,
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using their values for the phenomenological parameters b,, b, and ¢, in
order to simulate 2H-TaSe,, Those authors have taken b, = 4/30, b;= 1.2
and ¢, = 8/3. However, as regards d,, we have taken a different valuee,
namely d, = -3.9, corresponding to our use of a different form of free
energy potential (1), We have performed straightforward analytical ma-
nipulations, obtained the eigenmode frequencies, that is, amplitudons
(Ezg, Alg) ang phasons (Elu'_Blu) in the range of temPerature between
122°K and 112°K, where experimentally the charge-density-wave phase has
hexagonal symmetry. These parameter values have been used with success
in fitting the experimental datal’ involving other features of diifferent
phases of this compoundG.

Figures (1) and (2) show the eigenmode frequencies from the
onset temperature T, (122°K), where the Landau parameter a, = 0, until
the hexagonal-orthorhombic stripe incommensurate transition temperature
(HZOK) where, in this numerical simulationG, a, = 0.5499. These figures
are based on (6-11) with fy = 0 and the coordinates have been expressed
as = % /%, and q= e'l/leq.

4. CONCLUSION

The theoretical description of the excitations of the lattice
below a phase transformation from a normal structure to an incommt:nsurate
one is not straightforward, because translational symmetry is lost. De-
spite this aspect, it is very important to increase efforts in order to
get information about incomnensurate rnaterials tike 2H-TaSe,. Our nu-
merical investigation has concentrated in simulating this compound®, as-
suming phenomenological parameters to obtain some picture of normal-mode
frequencies of the hexagonal incommensurate phase as the temperature
changes. The parameter values used in this work are in good agreement
with experimental data!®, In the case of this phase, the 'lock-in'
(Umklapp) cubic term, in the McMillan-Landau free energy, drops out.
The basic points about the phason modes in this phase are that there
are two hydrodynamic modes and another optical one with an energy gap
(1/4) 9by6,. In our calculations we have considered one simple possi-
bility for the a—direction. These modes involve long-wavelength distor-

tions of the charge-density lattice, Another aspect is that ths more
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Fig. T - Normal modes of the hex-
agonal incommensurate CDW, with

~

= 0.5 M2y, §g=el? @,q and

€:

Fig.2 - Normal modes of thehexag-
onal incommensurate CDW, with
T = 112%K. Coordinate axes are the
same as in fig.,1.

accessible characteristics of the pictures involving the amplitudonsand

phasons, are the variations of the energy gaps for the optic modes (A

EZ_q' Blu) '

The author is indebted to Professor R. Loudon who

g’

suggested

these calculations and for helpful discussions,
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Resumo

Calculos analiticos e numéricos sao efetuados com o fito de ob-
ter modos de flutuagao do parametro de ordem para a fase densidade de
onda de carga incomensuravel hexagonal tripla no 2H-TaSe,, usando a Teo-
ria McMillan-Landau de transicédo de fase. £ mostrado que os modos Opti-
cos apresentam largos ''Gaps'' de energia, excetuando-se quandoa tempera-
tura € muito préxima daquela entre a fase normal e incomensuravel T,.
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