Revista Brasileira de Fisica, Vof. 16, nQ 2, 1986

Surface Electrons on Helium Films*

NELSON STUDART*

Departamento de Fisica, Universidade Federal de S&o Carlos, Caixa Postal 676, Sdo Carlos, 13560,
SP, Brasil

and

OSCAR HIPOLITO?
Departamento de Frsica e Ciéncias dos Materiais, Instituto de Fisica e Quimica de Sdo Carlos, USP,
Caixa Postal 369, S3o Carlos 13560, SP, Brasil

Recebido em 29 de julho de 1985; 2@ versdo em 22 de novembro de 1985

Abstract Theoretical calculations of some properties of two-dimensional
electrons on a liquid helium film adsorbed on a solid substrate are re-
viewed here. We describe the spectrum of electron bound states on bulk
helium as well on helium filrns. The correlational properties, such as
the structure factor and correlation energy, are determined asfunctions
of the film thickness for different types of substrates in the frame-
work of a General ized Random-Phase Approximation. The collective exci-
tations of this system are also described. The results for electrons on
the surface of thin films and bulk helium are easily obtained. W exam-
ine the electron interaction with the excitations of the liquid helium
surface resulting in a new polaron state, which was observed very re-
cently. The ground state energy and the effective mass of this polaron
are determined by using the path-integral formalism and unitary- trans-
formation method. Recent speculations about the phase diagram of elec-
trons on the helium film are also discussed.

1. INTRODUCTION

The extensive study of the properties of the system formed by
electrons on the surface of liquid helium began in the early seventies
with the theoretical prediction made by Cole and Cohenl, and indepen-
dently by Shikin?, about the possibility of electrons being trapped on
a dieletric substrate where they could be confined by a potentialwell in the
z-direction and could move more or less freely in the X-y plane of the
surface. After this prediction, a series of experiments were performed

® conclusively ob-

to investigate this system until Grimes and Brown
served the existence of these electronic surface states in a beautiful
spectroscopic experiment, This experiment consists in the measurement

of the microwave absorption as a function of an alternating electric
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field applied in the direction perpendicular to the layer of electrons
on the surface of liquid helium. They measured the splittings due to
transitions between different electronic states in the potential well
by observing the wave absorption as the splittings were tuned into res-
onance with the frequency of the incident radiation. The motivation for
studying this system froma fundamental point of view is that an immense
variety of well-defined and clean experiments can be done, which are im-
portant for theoretical progress in areas such as phase-transitions in
two dimensions, many-body theory, the polaron state, transport phenom-
ena, the Wigner crystallization, etc. Furthermore, realizable techniques
of measuring the mobility of surface electrons were employed for study-
ing the thermal surface excitations of quantum liquids and solids. W
would like to emphasize the pedagogical appeal of this electronic sys-
tem. For example, the image-potential-induced surface states are ob-
tained from a very simple one-dimensional Schr'c;dinger equation. Moreover,
a large amount of theoretical and experimental work could be done using
techniques sucessfully applied to other systems and there are excellent
reviews devoted to this field4_9,

In this paper, we would like to surnmarize some recent theor-
etical work, emphasizing the case of electrons on the surface of liquid
helium adsorved on a substrate.

Theoutlineof this paper isas follows. In section 2, we
briefly discuss the general properties of surface electrons on bulk
helium, such as the spectrum of bound states, evaluated througli model
calculations and compared to the experimental results. The dielectric
formulation of this two-dimensional {2D) many-electron system is des-
cribed and we emphasize the breakdown of the Random-Phase Approximation
(RPA) by treating the correlations of the 2D classical plasma. In Sec-
tion 3, we analyse the new experimental situation with the electrons on
the surface of a liquid helium film wetting a solid substrate, W pre-
sent the change in the spectrum of the electronic states due to film
and substrate, By varying the film thickness and taking different sub-
strates one modifies significantly the nature of the electron interac-
tion, from a strictly dipolar potential to the usual Coulomb interac-

tion for electrons confined ina plane. {n section 4, we analyse in
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detail the influence of the film thickness and several kinds of sub-
strates on the many-body properties of the system, by using a kind of
Generalized RPA, the self-consistent fie 2 method’®. We obtain the cor-
relational properties for electrons on the surface o thin films &nd
bulk helium, In section 5, we investigate the self-localization of an
electron in a polaronic state by considering its interaction with a
cloud of ripplons, the quantum excitations of the helium surface. Our
calculations are carried out in the framework of Feynman's path integral
formalism'’ as well as in the modified variational scheme of the Lee,

Z+1% W discuss the intriguing transition in

Low and Pines theory1
which the electronic state transforms from a nearly free to a localized
state, with a dramatic increase of the effective mass., This polaron
transition has been observed quite recently in the electron system levi-
tating above a helium film'™, And, finally, we describe some recent
speculations about the shape of the phase diagram for electrons on he-~
Tium films, with the possibility of creating a new 20 fluid witk an in-

teresting quantum Wigner transition not yet well studied.

2. SOME PROPERTIES OF THE SURFACE ELECTRONS

The electronic surface states are induced by the interaction
potential between the electron and the helium surface, which arises
from two different contributions: (i) a long-range interaction coming
from the polarization of the liquid surface and given by an attractive
image potential and, (ii) a potential barrier due to Pauli's exclusion
principle which does not allow an extra electron in the helium atom. The

model potential can be constructed as

-Qe?/z 230
V(z) = (2.1)

g = (1/8) [(e-1) /(e+1)] ,

where the dielectric occupies the half-space 2<0, For helium, we have
E = 1,057 and 7y = 1 eV, If one assumes that the barriercanbe approxi-

mately taken as infinite and the perpendicular and parallel motions can
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be separated, the Schr'c;dinger equation

hz
- > Vz‘{/n’k(;,z) + V(z)‘lln,k(;,z) =, 2 ‘i’n‘k(;,z) (2.2)

where

K ->
-1/2 e@z.r @n(z)

>
‘i’n,k(r,z) =4

is solved exactly with the boundary conditions ¢ (0) = <I>n(°°) =0, The
solutions of the unidimensional (z-direction) Schrgdinger equation are

given by
On(z) =z Rn’o(z) (2.3)

where Rn 0(z) are the wavefunctions of the radial equation of the hydro-
’
gen atom with zero angular momentum. The energy spectrum is then the

wel 1-known spectrum of the hydrogen atom,

_ h2k?

En,k Tt gy
(2.4)

£ E szel’ .._].-..

n 2 n?

For the lowest subband, one has
2 ~2/ao 2 2
®, = T8 e , ag = h°/mQe (2.5)
a

)
where ap is the effective Bohr radius and €, = 7x10™" eV for electrons
on helium.

Spectroscopic measurements by Grimes et all® showed that the
transitions between the ground state and the first excited states are
about 5% larger than those predicted by the hydrogenic model given by

eq. (2.4), as shown in the table below

Transition Theory Experiment
1— 2 119.7 GHz 1259 * 0.2 GHz
143 141.8 GHz 148.6 * 0.3 GHz
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This small discrepancy is attributed to interface effects such
as the fin teness of the potential barrier and the true behavior of the
pol arization interaction at small distances. In order to take into ac-
count these effects several nodel cal cul ations have been perforned to
fit the experinental results, In particular, Hipélito et aZ,'® have ob~
tai ned an exact sol ution, in terns of confluent hypergeonetric functions,
for the fol | owing nodel potential

2
[- de 23>0

V(z) = < (2+B) (2.6)
2

z2<0

where 8 is an adjustable paraneter. This nodel potential corresponds to
treating the potential outside the surface as an image potential with
the originat a small distance B inside the dielectric. infact, 8 is
interpreted as being the posi tion of the center of mass of the induced
charge, That is the effective position of the interface. Thus, this
phenomenol ogi cal potential elimnates the non-physical divergence of
the classical image potential at the real interface. Wen the eigen-
val ue equation is solved as a function of ¢ for the levels n =1,2 and
3 and the energy separations between these levels are set equal to the
experimental values, the parameter B takes the value 1.01 R,

In the experimental situation there is an additional potential
comng froman external electric field F pressing the el ectronsagai nst
the surface and distorting the fosmof the potential to

V(z) = - g’ +eFz (2.7)
(z+B)

Since there is no exact anal ytical solution for this problem
we have performed nurerical cal cul ations of the bound-state energies
for the levels 1, 2 and 3, in the presence of the applied electricfield
and with the value of B previously calculated. In fig, 1, we show the
transitions, fromthe ground-state to exci ted |evels as observed in the
experiments of Qines et aZ,'®, The spectrum looks |ike the Lyman series
of the hydrogen atom We plot in fig. 2 the transition frequencies as
a function of the external electric field applied between two planar
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Fig.1 - Experimental recording of mm-wave
absorption derivative vs the potential
difference across the experimental cell
taken at a frequency of 220 GHz and tem-
perature of 1.2 K. The linear Stark ef-
fect is employed to tune the splittings
between bound electronic surface states
on liquid helium to resonance with the
applied radiation. The t - 2, 1 = 3, ....
transitions are analogous to the Lyman
a, B, ... transitions of the hydrogen
atom (After C.C. Grimes et qZ, ref.15).

electrodes one located above the surface and another inside the liquid,
The energy separatiors between the lowest subband and the lowest few ex-
cited subbands are compared with those obtained numerically. As onesees,
the experimental results are well fitted by the calculation.

The most striking feature of this system is the experimental

. . 2
accessible range of electron densities n ~ 10% - 10% em™, As the

2D Fermi energy is given by
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Fig.2 - Frequencies for the transitions 1 +~ 2 and 1 » 3
as a function of external field. The crosses are the
experimental results of arimes et aZ,'® while the dashed
curves are their model calculation. The solid curvesare
the results of Hipdlito et aZ.!® based on the exactly
soluble model potential given by eq. (2.6).

B, = (72 /m)n (2.8)

then EF << kBT for temperatures above a few millikelvins, Indeed, the
electron system behaves like a non-degenerate plasma described by a two
-dimensional Boltzmann distribution as a 1imit of the Fermi distribution
at experimental densities and temperatures. 1n this way, the system can
be characterized by a plasma parameter T defined as the ratio between

the averages of potential and kinetic energies,

pasex et (2.9)
K> 7 ‘
(T in energy units}., For small values of | the Coulomb interaction is

less important and we have a dilute system at high temperature. At jn-

termediate densities, 1 < T < 100, the system becomes highly correlated,
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or liquid-like. At high densities and low temperature, a phase-tran-
sition to an ordered state, the classical Wigner crystal, is expected
to occur. In fact, one of the most important development in this field
has been the observation of the crystalization of electrons by Grimes
and Adams!’? at r, = 137, This result is consistent with calculations

18 and Monte Carlo!® computer simu=

carried out using molecular dynamics
lations, We shall come back to this point in section 6 in the contextof
the helium films.

The simplest approximation to treat a 2D classical plasma with
particles interacting via a pair potential ¢(») = e*?/p, is the Random
-Phase Approximation (RPA). The effects of the helium substrate are in-
cluded into the renormalized electron charge e* = (2/I+€)1/2 e, In some
sense, this approximation is equivalent to the Debye-Hickel method and
it is known to be valid in the low density regime. in the dielectric
formulation of the many-body problem, the dielectric function e(g,w) is

related to the density-density response function X(Z,w) by
0/e@w] -1 = 0@ x(q,w (2.10)

where ¢{q) is the Fouriei transform of the bare potential. The dielec-
tric response function in RPA is usually calculated on the basis of the
Vlasov equation and will be derived in a more general context in section

L, tn RPA the dielectric function turns out to be
elq,w) =1 - ¢(q) x,(q,0) (2.11)

where xo(—qr,a)) is the density-density response function of the ideal gas,

given by
X, (@) = - (/T)W(z) (2.12)

where z = (w/q) (m/T)l/z. Here, W(z) is the plasma dispersion furiction

written as

|
(2m)2

de X e

oz -3 -1n

W(z) =

J*‘” -x2/2
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The static structure factor S(?f) is related to the imaginary
part of the density-density response function of the system through the
well-known fluctuation-dissipation theorem

+®

5(g) = - 2 J dw Im x(g,m) coth [%} (2.13)
2m  f_

In the classical limit Aw << T, this function can be written by means

of the Kramers-Kronig relation as

SRPA(q) = q/(q+kD)A (2.14)

where kD = 2mme’/T is the Debye wavevector.
The pair correlation function g(z), which represents the prop-
ability of finding one particle at a distance r from another one, is

obtained from the inverse Fourier transform as
glr) =1 + (1/2mm) rkdk Jolkr) [5(R)-T] - (2.15)
0
fn RPA, g(r) is given by?°

gRPA(r) =1 - Ulp)/T (2.16)

with
U(z) = (e*/7) {l-(ﬂ/Z)kDr[_l?o(kDr)-Yo (k)]

where f]o(x) and Yo(x) are respectively the zero-order Struve and Bessel
functions of second kind. So, the pair correlation function diverges as
-e%/Tr near the origin, contrary to the exponential 3D behavior. This
divergence is strongly manifested in the correlation energy E’c agiven by

E /nT =7 f rdr $(r) [glr)-1] (2.17)

which diverges logaritmically. This is a manifestation of the failure

of the RPA in describing the features of the 20 electron plasma even
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for small values of T'. So, we cannot use this approximation intheshort
-range domain r £ e?/T, where the electrons are strongly correlated,
suggesting the importance of the short-range correlations ina 2D sys-
tem. Furtherrnore, thepair correlation function which must be positive
definite for all separations takes on negative values in this region,
In 3D, a similar failure has less significant effects on the corre-
lation energy, because the short-range domain does not contribute to its
leading terms. Then, the inadequacy of RPA is much more significant in
two than three-dimensional system,

From the zeros of the dielectric function one can determine the
collective excitations of the system. In the long-wavelength limit and
for small Landau damping, the plasma dispersion relation can be written

as?!
w = mp + 1Y
with
2 _ 2mne? 3q
wp = { — q)[l +kD (2.18)
and
. 1/2 kD 1/2 kD 3
'YL = [-8-] [TZ—) exp[- ?C.[- ‘7:| wp (2-]9)
This two-dimensional plasmon is very interesting because its
dispersion and damping reflect the incomplete screening in 2D, Physi-

cally, plasmons are plane density waves propagating like lines of charge
in 2D and sheets of charge in 3D, While the electric field required to
restore charge uniformity is independent of the wavelength X in 3D, it
falls off as A\~ in 2D. This gives a plasmon frequency which is inde-

pendent of q in 3D and behaves like eq. (2.18) in 2D,

3. ELECTRONS ON THE SURFACE OF HELIUM FILMS

The spectrum of bound states changes significantly ifelectrons
are put on a helium film covering a solid substrate with a dielectric
constant Eg» as shown in fig. 3. In this case, the substrate induces
alterations in the image forces and one modifies the electronic states

by varying only the thickness EZ. of the film. The image potential can be
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ELECTRON LAYER

d HELIUI\é FILM
XY AN N >§
SUBSTRATE Fig.3 - Schernatic illustration of the
s geometric arrangement for the surface
) /</ ’ /§<; electrons on film of liquid helium ad-
\8\ { sorbeb on a substrate,

written as

© -1
Qe? 2 (~a) (3.1
v T eme— - Q e
(2) 3 ' QZO 2 + 2d
where Q, = €8/(e+1)? and a = 4Q8,with & = (ES-E)/(€S+€).Since the series

is rapidly convergent, one can retain only the first term.
A detailed analysis of the spectrum of the electronic stateson
a helium film adsorved on a metal (8=1) was given by Gabovich et aZ.?3
For thick films, the condition <z>n << d is satisfied and one can expand
V(z) as
V(z) = - Qe®/z - qe%/d + q e®a/d” (3.2)

So, in this limit, the substrate acts as an external pressing electric
field Fd - 1/d*. The presence of a large constant negative contribution
Qlez/d to the potential energy of the electron greatly increases the
binding energy of electrons (11.6 meV for d = 300 R) as compared with
the bindingenergy of electronson bulk helium (0,7 mev), Due to the
effective electric field Ql;e/d2 and the van der Waals forces coming
from the substrate which stabilize the electron-film system (see section
6) the maximum density to which the surface can be charged increases
drastically“.

The correction to the spectrum of electrons on bulk helium (eq.

2.4) is given by

e @ - -4 [1-3224] (3.3)
e (@ = - - n 3.3
" —EerZ d
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which corresponds to a first-order Stark effect of the clamping field
Fd'

For thin films, one can neglect the image forces in the helium
film and the spectrum is determined by the image contribution of the
substrate. In this situation the electron potential turns out to be the
same as given by eq. (2.6) with Q and B replaced by @, and d respec-
tively. So, the energy levels differ markedly from the hydrogeniic spec-

trum and are given approximatedly by

1/2_=1/2
N 2
En:mez[n_%+_71_r(2dne ) :l (3.4)
8Q17’L U op?
for d > a and high quantum numbers.
It is obvious that the substrate will also affect appreciably

the magnitude and nature of the interaction between the electrors in the
plane. The bare potential between the electrons can now be found from

the identity

! - rJO(qr) ezl g

(r2+32)1/2 0

with appropriate boundary conditions for the potential and electric

field®®. The result, in g-space, is

b(q) = ‘”;fz Flqd) (3.5)

where
_ s,"2qd
Flgd) = - e (3.6)
{14€) - (1-€)8 e 2ad

with 6 defined through eq. (3,1), For electrons on the bulk helium

(d+°) we recover the usual poteritial for electrons confined in a plane
2me*?
¢(q) = = (3.7)

q

In the Timit of thin helium films (¢d << 1), F(qd) assumes the form
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F(dg) = —— + = qd (3.8)
T+e €(1+es)2

For a metal substrate, one obtains a potential wnich does not depend on

q, that is

hyre?

¢(q) = d (3.9)
3

Then, in this case the interaction between electrons is strictly di-

polar, since in real space one can write

o w1 e
r

|
[r2+1+d2:]1/2 7 p?

We rnust note the drastic screening of the Coulcinb interaction coming

(3.10)

from the substrate.
For a substrat'e with large dielectric constant € >> E, for

example a semimetal, F{gd) assumes the form

v od
€+eqd

F(qd) = (3.11)

€€
a

As one can see, this system constitutes an excellentlaboratory
to test many-body theories, since, by varying the film thickness and the
particle density which are the experimentally accessible pararneters, one
can change the nature of the bare interaction between the particles and

the plasma parameter.

4. CORRELATIONS IN THE 2D CLASSICAL ELECTRON PLASMA

The static and dynamic properties of electrons on the surface
of Tiquid helium were studied in references 26-28, As discussed in sec-
tion 2, the short-range correlations are quite important in this system,
so that an improvement of RPA is necessary. The calculations have been
carried out on the basis of a kind of generalized random-phase approxi-
mation, the self-consistent-field method {SCFA) developed by Singwi and
collaborators!?,

We start with the Liouville equation for the N-particle dis-
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>
tribution function fy (7, 51... ;IV' ENIT‘:),

f y LA
PRI EE .1)

g4 r 3 N
where the operator Q(r7.,pi) is defined as

> > > 3 9 > 3 1 3 > >
Q(Z’.p,) = D, e— e [ (p,’t).._.+._. 2 ___Q)(yw'..p_).__._ (4.2)
1T T N7 2 ext 1 - 2 5. N T °F &
or, or, ap,; 147 or, o,
and V (;.,t) is an external potential. Integrating the Liouville

ext 2
equation with respect to the coordinates and rnomenta of #-1 particles,

one obtains the equation of motion for the one-particle distribution
> >
function fl(r,p,t)

of 3f
——i + ;' -—_;1— - i_; Vext(;’t) . —l-
?t ar or ap
of
R > > 2
- J dr'dp' — ¢(r-r') s == =0 (4.3)
or op
where fz(;,g,;' ,5' {% is the two-particle distribution function. The

equation of motion for f, contains, in turn, the three-particle distri-
bution function and so on. In the SCFA,this infinite hierarchy of equa-
tions is truncated by decoupling the two-particle distribution function
through the ansatz

f2 (;’;!;' ’5' It) = fl (;vgvt)fl (;l ’E' |t)g(;';') (L'-l")

where g(—rt——zt') is the static pair correlation function, With this ansatz
the short-range correlations are included, in an approximate way, thraugh
g(;—;') which gives a measure of the probability of finding a second
particle at a position ;} when the first one is at ? Assuming g(?) =1
for all » in eq. (4.4) is equivalentto the decoupling of f, in RPA and
leads to the Vlasov equation.

We assume now that
fl (;n;vt) = fo (g) + 5f(;:g;t) (L‘-S)
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wherefo(p)is the equilibrium distribution function and 8 f represents
the deviation of f; induced by the weak external potential. Using egs.
(4.4) and (4.5) one linearizes the equation of motion. Proceeding in the
standard way, one obtains the induced particle density in Fourier space

as

sn(q,w) = (4,07 __ (7,0 (4.6)

ext(
-
where ¥{g,w) is the density-density response function given by

xo(g,w)

X(q,0) =
1= W@, (0

The effective potential ¥(q) is related to the structure factor S(g},

the Fourier transform of g(z), through the expression

5 co@ + 1 [ LR @ saa - 1] & 4.8
b3 ¢(q>+njq2¢<>[s(q> IRy (4.8)

The second term of eq. (4.8) is responsible for the local field effects
due to short-range correlations neglected in RPA, which is recovered
by setting V() = $(2) in eq. (4.7). In this sense RPA is a trivial
special case of the SCFA

As before, the fluctuation-dissipation theorem (eq, (2.13)) and
Kramers-Krgnig relation put together allow us to write the density-

-density response function at zero frequency as

-
x(q,0} = - (wT)s(@) (4.9)
so that the structure factor turns out to be

5(3) = m———— (4.10)
1+ (;-)w@)

This completes the SCFA scheme. The equations (4.2) and (4.4)

have to be solved numerically in a self-consistent way. From S(E;), the

208



Revista Brasileira de F(sica, Vol 16, nQ 2, 1986

pair correlation can be evaluated simply by a Fourier transformation op-

eration,
For the electron gas on bulk helium, we can write

the self-consistent equations in a similar way to the 3D classical elec-

tron .plasma, i.e.

5(q) = —————de— (4h.11)
ky+q - G(q)

where G(g) is the local field function defined by the relation

V(g) = ¢l [ - ¢()] (4.,12)

such that

q o \
f kdk €% BE)-1] +q J dk[{l - &-) K@)
0 q q qz

. [’;_2.} e(%)] B - 1]} (4.13)

where K(z) and E(xz) are the complete elliptic integrals of the First and

a(q>=--;-{

Tn

second kind respectively.

The self-consistent solution is obtained by the standard method
of iteration. With a reasonable input S(gq}, the effective potential (g
is calculateci and from it a new S{q) is obtained. The procedure is re-
peated until self-consistency in S{g) is achieved.

For the bulk helium case the pair correlation function is plot=~
ted in fig. 4 for several values of the plasma parameter T'. The results
agree satisfactorily with those obtained from Monte Carlo simulations?® ,
Note that, contrary to RPA results, our glr) is positive for all sep-
arations.

The influence of the film thickness on the self-consistent
structure factor for two different substrates (metal and glass) is shown
in fig. 5 and 6. In these figures, the film thickness is in unitsof the
core radius a = (vm)-llz. For d > 100, S(g) is independent of the nature

of the substrate and similar to that of the strictly 2D electren gas.
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(Tn)"r
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Fig. 4 - Pair correlation functipn g(») as a
function of r in units of {mn)~¥Y2forseveral
values of theplasma parameter, Thepoints
are the Monte Carlo results.

For 1 < 4 < 100, the differences in 5(q) for the two substrates are

found only for small 4.
From S(gq) obtained self-consistently, the correlation energy

can be evaluated as

00O

E, = (n/km) J kdk ¢(k) [S(k) - 1] (4.14)

0

In fig. 7, we present the results for the correlation energy

density EC/nT as a function of the film thickness for a metal substrate.
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qa

Fig. 5 - Structure factor S{(g) in both
Self-Consistent-Field- Approximation
(SCFA) and Random-Phase- Approximation
(RPA) for several values of the film
thickness (d: = 0.01, d, = 0.1,d;3=1.0,
and 4, = 100) and plasma parameteri' =3,
for a metal substrate.

The value dc = 100 is our estimate of the critical thickness, above

which the results turn out to be the same as in the bulk helium case.
From the poles of the density-density response function, one

can get the dispersion relation for the plasmons. In the long wave-

length Timit and for weak damping,

w= (n/m) q* viq) [ + 37/n v(q)] (4.15)

In fig. 8, we show the results of the plasma dispersion re-

lation for T = 3 and a metal substrate. !n the limit of thin films, we
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10

Fig.6 - Structure factor 5(3)
for a glass substrate. The par-
arneters are the same as those
in fig. 5.

qo

observe an unusual acoustical rmode wP = cq with
e =c, (1 2
e, (1 + 3T/2mco) (k.16)

where ¢, = (a/2)1/2- Jpe Here a :H—S(OE/S(O) is the fractional devi-
ation of the constant ${g) and VT = (ZT/m)l/z is the thermal electron
s aRPA = ZKDd/S.

Increasing the film thickness, the long range interactioncomes

velocity. In RPA30
to be quite important until the bulk Timit is reached, with
wp = (Z'rmezq/m)‘/2 D + (3/2 ~ Y)q] (45.17)

where Y = (I/#vn)fooo dk (5(k)-1] is the correction to RPA due to short-

-range effects.
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Fig.8 = Long- Wavelength disper-
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5. POLARONIC EFFECTS

The quantum electronic states described in previous sections
are formed by assuming a planar liquid boundary. However, a perturbation
of the surface profile, due to the presence of the normal modes of os-
cillation of the liquid surface, modifies the form of the wave equation
[eq. (2.2)] governing the motion of electrons. We will describe now the
electron interaction with these excitations, called ripplons, which are
the quantized capillary-gravity waves of the helium surface. First, we
consider a single electron picture for the electron-ripplon coupling,
disregarding the electron-electron interaction, Later, the Coulornb in-
teraction between localized electrons over the deformed surface will be
introduced.

The ripplons are bosons with a dispersion given by
wf = [g'q + (0/0)¢°] tanh qd (5.1)

where q is the ripplon wave vector, a the surface tension, p the density
of liquid helium. The van der Waals acceleration g' = g+f, where g is
the acceleration of gravity and f = 30/pd*, with a the van der Waals
constant responsible for the attractive forces exerted on the helium
atom from the side of the substrate.

In terms of the ripplon creation and annihilation operator a

and aq, the displacement of the helium surface u(;) can be written as
-1/2 + 7B
u(® =4 YA (@ +a)et” (5.2)
q q q q

where
A = (hg tanh qd)/Zpu)r

The treatment of electron-ripplon scattering based on the Born
-Oppenheimer adiabatic principle, which takes into account the adjust-
ment of the electronic states to the long wavelength oscillation of the
liquid, has been discussed in detail by Shikin and Monarkha??,

The electron-ripplon iriteraction potential can be written in
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the following form

ey
y =472 I (@ +a_ )V (2)e" 07 (5.3)
q
where
V(@) = A [-qe?/a® + qe’qk, (q2) /2 + Q,e%/(z+d)® t eF| (5.4)

and X,(z2) is the nodified Bessel function of second kind. A Tow tem
perature and high external electric fields, the electron-ripplon inter-
action can induce a self-localized el ectronic surface state. The el ec-
tron deforns the hel ium surface forning a smal 1 dimple in which it
localizes itself®!*3%, This electron-ripplon bound conplex is cal led a
pol aron.

!n the long wavel ength timt where experiments have been per-
formed, the nmotions parallel and perpendicular to the surface can be
separated, and the polaron is described by a Frohlich type Haniltoni an

as

a2 + -1/2 + 9.7
H = (p%/2m) +§hwp z aq+A qu(aq+a_q)e (5.5)
q q
with
v, = (eF + 8 e?/d?) (5.6)

The path-integral formalism, as introduced by Feynman for the
pol aron probl em was first worked out by Farias®?® and later by Hipolito
et a13* in order to evaluate the ground-state energy and effective nass
of the polaron,

The appl ication of the Feynnman theory to this specific probl em
was notivated by the fact that Feynman's treatnent isthenost successful
overall theory of the optical polaron, giving the |owest upper bound to
the ground state energy, In this nethod, the ripplon coordinates are
exactly elimnated in favor of a non-linear retarded interaction of the
electron with itself, The physical neaning of this interaction with the
past is that the perturbation caused by the noving el ectron spend tine
to propagate in the medium,

215



Revista Brasileira de Fisica, Vol. 16, n? 2, 1986

The path integral arises in the calculation of the propagator

(or the partition function for finite temperature)
K = j p(t)e’ (5.7)

which is the probability amplitude for the dynamical evolution of the
system, If we know KK, the eigenvalues and eigenfunctions of the
Hamiltonian would be, in principle, determined. If we let the "time' B3«

-8E
K-~-e 9 (5.8)

where Eg is the ground state energy.
The action S, corresponding to the polaron Hamiltonian, is
given by
B 2 2 B
s=—-H dt [%":-) +'7Jii-2-lv Pf dr
0 (2m) q

0

T ->
| @ explru, (r-a)] expliF. Gr) (1)) (5.9)
0

Obviously the functional integral, being intractable, must be
replaced by a simple exactly soluble functional S, The use of Jensen's

inequality
<f> 3 o (5.10)

allows us to obtain a variational upper bound on the ground state energy

E € E, - lim <5-5,> (5.11)
g oo
S
where E, = log / Dr(t)e | and <...> means average with weigth e,

Feynman was able to choose a model to calculate S, which contains the
physical significance of the true action S. In this model, the so-called
two-parameter model , instead of the electron being coupled to the normal
modes of the medium, it interacts with a single fictitious particle via

a spring, and the pair of particles are free to wander, The mass of the
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extra particle and the spring constant are the variational parameters.
After eliminating the coordinates of the fictitious particles, thetrial

action assumes the form

g a2 8 T N
Sy = - -;- Jodr [%?} - -gL dr jo ds . exp[-Q(t-8)] [P(1)-7(s)]%  (5.12)

For our specific electron-ripplon complex,

2 -Ww U 2 2
E <l way? - fi.ez_ 7 |2 fdue P P/t (g
g v (27‘,)2 q
where 2 2
Fla) = 225 (1 - &) 4 0% (5.14)

and v is defined in terms of the variational paraméter C and € as

2 _ o2 ke
v° =0 + o (5.15)

The variational parameters  and C are determinedby minimizing
the expression for the energy. The numerical calculations for the ground
state energy of the polaron for films on a metal are shown in fig.9, as
a function of the film thickness and for two values of the external elec-
tric field, The energies for films deposited on othersubstrates were
also calculated and the result is that the influence of the substrate
is significant only for d § 500 R. When the film thickness 1is of the
order of 50 R the contribution of the substrate to the electric field
totally dominates the external electric field, The main result is that
in the 1limit of zero external electric field (F=0), the polaron energy
in a metal substrate is greater than in any other substrate.

Similar calculations have been made by Jackson and Platzman 35
for one particular thickness of the film {(d = 100 8). In order to get
analitycal results in the strong coupling and weak coupling timits they
introduced a cutoff kC = (pg'/(s)l/2 (a being the capillary constant), in
the electron-ripplon interaction and approximated the ripplondispersion
[eq.(S.l)] by a sound like dispersion for q < kc. They found a phase-
-transition like behavior from an electronic delocalized state to a
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self-trapped one at a critical value of the electron-ripplon coupling
constant. This "localization' transition refered here is not tobe taken
literally, but rather in terms of the rapidity and magnitude of the
change of the effective mass of the polaron over a narrow range of the
coupling constant. Our numerical calculations using the path-integral
formal ism were performed in terms of the experimental accessible
variables, the external electric field and film thickness, and do not
include any kind of approximation in the electron-ripplon interaction
or ripplon dispersion.

The properties of this polaron in high magnetic field havebeen
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investigated by Saitoh with the use of path-integral methods *®,

Very recently Degani and Hipé\ito37 have studied in detail the
ground state properties with emphasis on this novel and interesting po-
laronic phase transition, They used a simple unitary-transformation for-
malism, based on a generalization of the variational approximation of
Lee, Low and Pines, which was previously applied to the study of the
surface polaron by de Bodas and Hipélito”. The advontage of this method
is the great flexibility for applications to Hamiltonians similar to
(5.5) with several kinds of interacticn potential and appropriate dis-
persion relation, It was demonstrated that this approximation gives the
same results as Feynman's formalism in strong-coupling and weak-coupling
limits for other types of polarons. Furthermore, this unitary-transfor-
mation method has been used in the study of the polaron phase transition

For the electron-ripplon ground state, the variational wave-
function |1p> is postulated as a product of an electron wavefunction and
a coherent ripplon state, This surface state is not an eigenstate of
the total parallel momentum operator Bt '

>

p,=p+Llhria a (5.16)

aq

Q¢

Whereg is the electron momentum.
The minimization of the energy should be performed by cons-

training the operator ‘p’t so that
§(<y| (B-1.p,) [¥>) = 0 (5.17)

where ﬁ is the Lagrange multiplier (which ends up as the polaron vel-
ocity) introduced to keep the expectation value of the total momentum
equal to a given constant,

The method consists first in subjecting the Hamiltonian

> > . .
H=H- u-pt to a canonical transformation Sl,

5, = exp(-in | g a; a) (5.18)

q
where n Is a variational parameter which recovers the weak-coupling ap-
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proximation as n=1 and gives the strong-coupling theory in the limit
n > 0.
Next the expectation value of the resulting Hamiltonian iscal-

culated by choosing a variational wave function with the following form
ly> = (ma/m) 272 exp(;m)\rz/zﬁ)exp[—i(mA/Zh)1/230,;JSZ‘|0> (5.19)

where IO> is the rippion ground-state wave function, obtained from
a4|0> =0 and <0 | 0> =1, h and 50 are variational parameters and 52

is the well-known second Lee-Low-Pines canonical transformation given by
. +
s =expl) (5,4 - & a)] (5.20)

4
and EZ'is a variational function to be determined,

Minimizing the energy with respect to the variational par-

+ +

ameters A and Py» up to second order in the velocity u, we finally ob-
tain the expressions for the ground-stete energy and effective mass given
by

[V |%exp[=(1-n) 2aq?/2m)]
BA q

By =) —— (5.21)
3 hwr + nNhqc/2m
and
a*|7, [*exp - (1-n) *n*q* /2mA]
m* = m(l + A? X (5.22)
7 (Pus, + n2h2q?/2m)®

This calculation formally reproduces the path-integral results
provided one introduces the upper cut-off kc = V/pg'/G into the inte-
gration over qin eq. (5.13),

By analogy with the polaron problem we define a coupling con-

stant a as

o = melF?/hnt2 K2
T c
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where FT =Ft Qle/dz. In the weak-coupling approximation a is small
and n = 1, In this limit it is clear from eq. (5.17) that a minimum of

E_occurs at A = 0. Then, for the energy and effective mass we obtain

Egc =-2ya , Y= 2m/g'3/?2kc (5.23a)

m*/m 1 (5.23b)

In the strong-coupling limit, corresponding to large values of
a, n* 0, the energy behaves like

E;C.—T-u+/&'+... (5.2k4a)

and the effective mass goes like

e

m*/m =1 + 20/y2 - oy o+ ... (5.24b)

in general, the energy, defined in eq. (5.17), is miriimized
with respect to the variational parameters A and n. Hence, with the best
-fit values of those parameters the ground-state energy and the effec-
tive mass are obtained. In figs. 10 and 11 the results are plotted
against the external electric field for various values of the thickness
of the helium film adsorbed in solid neon (and k_ = 1.45 10%/d2 cem™1),
As we see from fig. 10, for each thickness of the helium layer the en-
ergy has two distinct branches corresponding to the stable solutions of
eq. (5.21). The first branch, representing the weak-coupling (n =1)
regime, crosses the second one which corresponds to the strong-coupling,
at a certain critical value of the clamping electric field Fc. At this
crossing point there is a discontinuous change in the slope of the en-
ergy, characterizing a first-order phase-transitions behavior in which
the polaron state transforms from a nearly-free to a localized state
type. The extremely rapid variation at the critical point is more dra-
matically seen in fig. 11, where the effective mass, in units of the
electron mass, changes by several orders of magnitude.

y

Recent experimental measurements by Andrei'® appear to corrob-

orate this theoretical prediction by observing the localization of the
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Fig, 10 = Ground-state energy as function of the
clamping external field for three values of the
film thickness in the case where the substrate is
solid neon (e = 1.24), Points are numerical re-
sults and linds are only guides to the eye.

electron as a polaronic state for 4 < 1000 R and 0.4 < T< 1K iIn her
experiments Andrei makes measurements of the mobitity and effectivemass
of electrons on a helium film, She found that at certain critical point
a sharp 14,]; order of magnitude drop in the mobility occurs, The elec~
tronic effective mass on the other hand increases by 8 orders of mag-~
nitude, characterizing the observation for the first time, of the tran-
sition to a surface polaron state as predicted by a single electron
theory, Although the experimental measurements support the basic polaron
model ideas, many electrons are present in the experimental situation,
suggesting that Coulomb interaction between electrons playsan important
role, introducing then a new scale of energy into the problem (the

polaron state, with binding energy of the order of milikelvins, as we
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Fig.11 - Effective mass in units of the free electron
mass as function of the external electric field for
three values of the film thickness in the case where
the substrate is solid neon. Points are numerical re-
sults and lines are guides to the eye.

have calculated before, is far too low to be observable at the experi-
mental temperatures 0.4 K< T < 1 K).

With many electrons present, an instability of the chasged he-
lium surface can be generated by forming separate many-electron dimples
within an energy scale which might allow experimental observation.
Within the context of Andrei's experiment, we now describe the proper-
ties of an individual dimple filled with several electrons (¥ = 40 - 90)
trapped at the surface of a helium film adsorbed on solid sapphire®?,

Since the effective charge of the dimple (Ne) and the mass (Nm)
are large, the polaron coupling constant a becames proportional to the
fifth power of the number of electrons N. In this case, the polaron is
strongly bound to the surface even at zero external pressing electric
field. Thus, from the strong-coupling regime of our model, we can ob-
tain the total energy Eg associated with a many-electron dimple, justby

adding to the one-particle energy given by eq. (5.21) with nn =0 the
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energy of the Coulomb interaction Uc between electrons inside the dimple,
The total energy is then straightforward evaluated and, in units of
R*k%/2M, has the following form

Eg = a exp(1/A)BL(-1/2) + U () (5.25)

where EZ(x) is the Exponential Integral function and

_N%r fju@)|® e _ am2,2 1/2 42
v =5 J . dz/(hzkc/ZM) = MN2e? (T\/2) /ﬁkc (5.26)

Also, M = Nm is the dimple mass, and Y(r) is given by eq. (5.19).
Minimizing the ground state energy, given by eq. (5.25), with

respect to A we finally find the total energy of the system
E = -3.18 x 107° 8272 [log(F /m* ok ) - 1] ev (5.27)
g ' T T e :
and the Coulomb interaction energy

_ 2
U, = (NeFT) /hmo (5.28)

which is of the order of magnitude of Kelvins.

From eq. (5.27) we conclude that for a simple dimple it is
energetically advantageous (with EV < 0) to be locatized at the surface
of the helium film if £ > 1514 ok . For bulk helium (d>°) the mini-
mm external field necessary to localize a dimple is Fc = 3120 V/cm,
which is consistent with the experimental observation of Leiderer et
al.*?,

In fig. 12 we show the results for the total energy, given by
eq. (5.27), as function of the helium film thickness, for # = 80 V/cm
and for several values of the number of electrons inside the dimple.
Notice that, for each number of electrons in the dimple, there 1is a
critical thickness of the helium film above which the energy becomes
positive, and therefore, the dimple can not exist in a stable form. The
criterion for the stability of the charged surface is, on the otherhand,
related to the average density of charges above the surface, There is a

critical concentration nc of charges,
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n, = (kcoz/Zszezss) 12 (5.29)

above which the dimple is not stable. For n = nc the surface becomes
unstable at a wave vector kc = (3g'/0)1/2/d2. In fig. 13, the density
N is plotted as a function of film thickness, critical density N, and
the experimental concentration n = 10° em=2 recently used by Andreil®.
It is clear from our results that the appearance of a stable many-elec-
tron dimple is limited by film thickness as well as by the electron
density above the surface. From fig. 13, we note that, at experimental
densities, only dimples with more than ¥ = 40 electrons can be formed
on the surface of the helium film. W can also see the rapid increase of
the density with decreasing critical thickness, Consequently, at smaller

thickness the electrons become more concentrated at the center of the
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Fig.13 - Average electron density of a
single dimple as function of the film
thickness for an external electric field
F = 80 V/m, The curves are described in
the same way as in fig, 12,

dimple and the whole structure of the dimple becornes sharper, as can be

seen directly from the average radius R of the multi-electron dimple

R = J [0(x) [? rd?r = (2n°)1/2 O/Fzz, (5.30)

Finally, we can verify from egs. (5.27) and (5.30) that the
existence of a stable multi-electron dimple is possible under the con-
dition ch £ 1/2, This means that the size of the region containing the
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electrons is smaller than a typical ripplon wavelength, justifying the

validity of our model calculation.

6. THE PHASE-DIAGRAM

Very recently, the phase diagram of electrons on helium films
has been investigated®?. As we have discussed in section 2, a striking
feature of the behavior of these surface electrons is the possibility
that they can undergo a phase transition from a liquid phase tc an or-
dered state as one increases the density or lowers the temperature for
a fixed density, i.e.,, for large values of the plasma parameter T'. This
classical freezing transition has been observed for electrons on bulk

17 The mechanism of this transition has been proposed in a semi-

helium
nal paper of Kosterlitz and Thouless (KT)*2 and later elaborated on by
Halperin and Nelson (HN)*3. This classical transition occurs by unbinding
of dislocation pairs at I‘m to a new phase, a liquid-crystal phase, with
no long-range translational order but with bond orientational order. At

I’:l";l- the system undergoes another transition by wunbinding of
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disclination pairs to the usual liquid with no long order. The value of
I‘m is given, in the contex of KIHN theory as

|:\ - ]-1 (6.1)

where e, and e, are the transversal and longitudinal sound velocity of

the solid, These constants must be renormalized by taking into account

r -
m

onN l ﬁ-QN

il
%

the effects of creation of defects in the solid. Using zero temperature
values of ¢, and ¢, Thouless** found out a transition at T, - 79. More
refined numerical calculations by Morfle, who solved the renormalization
group equations of HN, raise the melting transition to I' ~ 125 which is
consistent with the experimental result.

On the other hand, there is a region of the phase diagram where
the Fermi energy is larger than the thermal energy, EF >> T, i.e,a low
temperature phase where the Fermi energy dominates the kinetics of the
electron system.

This region cannot be reached experimentally for electrons on
bulk helium, because an dectrohydrodynamic instability of the charged
surface occurs. This instability arises when one considerstheinfluence
of the electrons on the dispersion relation of ripplons. 1t is expected
that the frequency of ripplons with a wave vector around kc(theinverse
of the cappilary length) is considerably lowered as the electron den-
sity is increased. Indeed, for n > () the frequency becomes imaginary,
suggesting that the surface becomes unstable against deformations. For
bulk helium n, = (ng)l/“/(ZTreZ)‘/" = 10° em™? “%, However, for elec-
trons on helium films, the van der Waals helium-substrate interaction
is incorporated in the dispersion relation of ripplons and drastically
increases the critical density n,. Remember that, in this case g, the
gravitational constant, is replaced by g = 3a/pd*. For thin films n. is
given by eq. (5.29). So, the quantum region of the phase diagram can be
achieved for electrons on thin helium films. Indeed, a recent exper=
iment®® has demonstrated that electron densities up to 10! ecm~? above
saturated films on both insulating and conducting substrates are stable.
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Peeters and Platzman®® have proposed a phase diagram of elec-
trons on helium films by using a simple dimensional argument and KIHN
theory. According to them, the relation

<> /<K> = I‘m(d) (6.2)

must hold in the gas phase, where <¢>d is the potential energy given by
eq. (3.5). Now, the eq. (6.1) turns out to be

2 («) e2(a) ™!
t t
r(d) =T (o) 1 - 1 (6.3)

ct(d) c;(d)

where ct(d) and cQ,(d) are the zero-temperature sound velocities in a
solid formed by particles interacting via a potential ¢d, and I'm(°°) is
taken as the experimental result for electrons on bulk helium.The phase
diagram is displayed in fig. 14. These are qualitative results, because
they must take into account the values of sound velocities at finite
temperature, where the renormalization effects in these constants are
quite important. One important conclusion is that for a metal substrate
one finds a fluid-like region as n~+ 0 and T+ 0 for small fiim thick-
ness. At high densities thesolidmeltsagainatadensity n, where
the quantum transition occurs. These densities depend upon d in such a
way that for d ~ 70 R, the solid region shrinks to a point. This is an
effect of the dipolar interaction at small film thickness. 1t is very
interesting to analyse the quantum properties of a dipole gas of elec-
trons which, now, has a physical experimental realization. The study of

this system is in progress”.
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Resumo

Resul tados teoricos de.algumas propriedades do sistema formado
por elétrons bidimensionais sobre un filme de hélio liquido adsorvido
em un substrato s6lido sdo revistos neste trabalho. Descrevemos o0s es-
tados superficiais eletrénicos tanto para elétrons sobre hélio volumé-
trico quanto para elétrons sobre filmes de hélio. Propriedades tais co-
no o fator de estrutura e energia de correlagdo sao determinadas em fun-
¢do da largura do filme para diferentes tipos de substrato através de
uma Aproximacdo de Fases Aleatdérias Generalizada. Descrevemos também as
excitacoes coletivas deste sistema. Gs resultados para elétrons sobre
hélio volumétrico e filmes finos s&o facilmente obtidos. Examinamos a
interacao entre o elétron e as excitagoes da superficie do hélio 1fqui-
do resultando na formagdo de um novo estado polaronico, que foi observa
do recentemente. A energia do estado fundamental e a massa efetiva des-
te polaron séo determinadas pelo formalismo de integral de trajetdria e
método de transformacdo unitaria. Discutimos ainda algumas especulacfes
sobre o diagrama de fase dos elétrons sobre o filme de hélio.
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