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Abstract \\¢ investigate, within the semiclassical approach, the high
ternperature behaviour of the decay rate (I') of the metastable vacuum in

Field Theory. W exhibit some exactly soluble (1+1) and (3+1) dimen-
sional examples and develop a formal expression for I' in the high tem-

perature limit.

1. INTRODUCTION

Theories in which the symmetry is spontaneously broken might
have this symmetry restored when the temperature exceeds a critical one!
(Tc). The system described by such a theory is then supposed to undergo
a phase transition if the temperature of the system reacties this
critical value.

As a result of our belief in the standard model, which makes
use of the spontaneous symmetry breaking mechanism, and due to the now
accepted picture of a hot early universe it follows a widespread belief
that the universe experienced phase transitions in the course of 1its
expansion and cooling. These phase transitions might have an essential
role in the evolution of the universe. In particular, issues |like the
flatness problem, the horizon problem and magnetic monopoles couid be
solved if the phase transition takes place with a large enough amount of
supercooling. The models that satisfy this condition are called in-
flationary models?.

In order to know the amount of supercooling underwent by the

system one must study the decay rate of the false vacuum T (ie , tun-
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neling probability per unit time). Having in hand this quantity we can

calculate the fraction of the universe in the new phase as a function
of time and consequently the amount of supercooling,

The study of the decay of the false vacuum in field theory has
been carried out by Coleman and callan®. Applying the Euclidean path in-
tegral technique and the semi-classical approximation these authors de-
veloped an expression for the decay rate of the false vacuum at zero
temperature.

One can very easily extend the formalism for finite tempera-
ture* since the quantum statistics of bosons (fermions) at finite tem-
perature T is formally equivalent to quantum field theory in Euclidean
space-time, periodic (anti-periodic) in the '"complex time"” direction
with period T_l.

In this paper we study how the '"'first quantum™ corrections to
I' depend on T and their importance in the high temperature limit. This
is done by studying (1+1) and (3+1) exactly solvable models and by the
use of a formal power series.

The outline of this paper is as follows: In section 2we review
the formalism used to calculate T. In the following section we analyze
some exaclty soluble models in (1+1) dimensions. Section 4 gontains the
derivation of a formal expression for I' in the high temperature limit
and also a (3+1) dimensional example. Finally, section 5 summarizes the

results and gives our conclusions.

2. REVIEW OF THE FORMALISM AT FINITE TEMPERATURE

W are going to review briefly the functional integration for-
malism applied to quantum field theory at finite temperature. Al} the
information about a system in thermal equilibrium at a temperature*

B_l is contained in the partition function which is given by
Z = tr[e-sﬁ] (2.1)

where # is the Hamiltonian of the system. The Helmoltz free energy {(4)

can be obtained from Z

* Our system of units is such that kg =% =c =1,
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A=-8"10q 2 . (2.2)

Supposing that the system under study is described by a scalar
field ¢ and by a set of fields X, which can be either boson or fermion

fields, one can write a path integral representation for 2 5

z = f opx] 5(0:8) (2.3)

where $(¢,%) is the Euclidean action of the system and the integration
is carried over periodic (anti-periodic), in the "complex time™ direc-
tion, field configuration for bosonic (fermionic) fields = that jg,
4)(0,;) = ¢(B,§) for bosonic fields and 11)(0,5) = -y(B,x) for fermionic
fields.

One can integrate out the X fields in (2.3), and write?®

=S . (9)
7 = f ae S, (2.4)

where S is the effective action of the field ¢.

eff
At this point one can perform the "canonical’ approximation®

and write*
=) 2
Serr =5 (3,0)7 + V(@) (2.5)
- that is, Seff is replaced by the first term of its low momentum® ex-
pansion.

The approximation (2.5) is very good in the high temperatures

limitsince the leading terms (in T) of Seff areexactly theones that

7
eff *
Now one usually performs the semiclassical approximationin or-

come from the zero momentum terms of S

der to obtain a closed expression for I'/V. In the semiclassical limit,
the leading contributions to Z, given by (2.4) and (2.5), come from
the field configurations which minimize the effective action and there-

fore obey the Euler-Lagrange equation

D 3%
C_ o (2.6)
C —== Veff(cbc)

i-i Bmi2

*
The effective potential here contains internal lines of the X fields

only since we have only performed the [DXJ integration of (2.3).
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where ¢C satisfies

8,(0,2) = ¢,(8,3) .

It is easy to prove that for high temperatures the relevant

field configurations are those independent of the Euclidean time?*.

Now one makes a functional Taylor expansion of Seff around ¢C
and keeps only the quadratic terms in n = d=¢c
(1) Serelop) 17 i ‘L
7z = -< , — R 2 2 ”
e ,( [on]  exp ,( Z |3 iz] (8,7 + 51 Veff(¢0)n_JJ :
(2.7

The gaussian integral in (2.7) is easy to performs_5 and one

gets formally
(1) _ Bers®d 2 2, -
Z =e det }- 2 i+ v (o) . (2.8)
L 4=] *~ el pg

This expression gives the contribution of just one bounce solution.

Using the dilute gas approximation one obtains

Zl
72 =z° exp[—-—-J ,

0
where z
=S el ap) " D
0 _ eff TVAC -1/2 2 "
2% = e det [ P 37 +Veff(¢vAc):‘I ) (2.9)
=1
and ¢VAC is the false vacuum of the theory.
Defining the transition probability3’1° as T = -2 Im A one ob-

tains. by'treating separately the zero eigenvalues:

r Bope @72 et (0% + vr_(6) 7]/

_ eff ' "C eff 'C

Foom (_ P exp = Sepe(0p)
2 det(-5% + Veff(¢VAC)

(2.10)
where the prime indicates that the zero eigenvalues of = 3% + V;’Ff(q)(,)
must be omitted from the determinant and Z is the number of these eigen-

values. This is essentially the result contained in ref. 4,
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After some algebra (see appendix A) one can write I'/V as

r 2 7%t [Seff(¢c)]z’2 B (. .V ¢
== -S . .($) |:—[z A.-z"x.H
Vo sinBYy 7 ) PP Eerr ) * |3 LAg-Ety

b - - I ] - .

+ [7. og e : og[ e J—Jf (2.11)

where

{ DN CHEE Vé’ff(%Ac)]nj = (A;)2 n; (2.12)

spatial i .

- (5.)2 ” L o= C 2 .
Lpagia] (3,02 + veff(cpc)] PEERCHEE W (2.13)

the negative eigenvalue (which is assumed to be unique) in (2.13) s

written as
(Af)2 = = ? (2.14)

and the double prime indicates that the negative and zero -eigenvalues

must be omitted from the summation.

3. ONE DIMENSIONAL EXAMPLES

Now we are going to analyze some specific examples in order to

get the asymptotic behaviour of the decay rate at high temperatures.

3~A. An "Inverted' A¢* potential

The Lagrangian density for this first example is given by

Leff —% (3T¢)2 +';- (Bx(b)z + Veff(¢) ' (3.1)
where
y
Vops(0) =-;- m? ¢2 - 3-?}— , (3.2)

where ¥ and X are positive functions of the temperature. The expression

(3.2) for V .. looks like the usual approximation*’® used for vff when
e

£f
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¢;, which is the solution to Veff(fa]se) = Veff(¢1)' is much smaller
than the true vacuurn.

Clearly, the state ¢=0is metastable, Weshall calculate its decay
rate per unit volume at high temperatures*, First of all,we have to

obtain a static solution to

L m?o + Ad* =0 . (3.3)
A solution to (3.3) is

- = VZ/A m sech(mx) . (3.4)

The Euclidean action of this solution is given by

3
S (3.5)
T

Ser 0

The eigenvalues of the operator -|:|+Vé'”(¢p)

}'- D + Vé'ff(d)c)]n = [— BTT - Bm + m? - 6m? sech? (mx)]n = €n (3.6)
are well known'®
- 3m?
- Ly (3.7)
] k2t m?
where »n is an integer.
For periodic boundary conditions in a box of side L

k'L + 8(k') = 2mn!

where n' is an integer and §{k') is the phase-shift

I'
§k) = - 2 arctanl»--———g-k]—n——‘l . (3.8)
m zmz - 7(2

*
In order to the semiclassical approximation be applicable, one must

have the following necessary condition satisfied: AT, A>>1.
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ratio (=

have:

action

we have,

E2

In order to evaluate the imaginary part of the determinant

R), which is given by (A.6) we recall that ¢VAC = 0. Then we

imR = I exp %— D( k2 4 m?- ¥ k'2+m2‘:l

+|] tog {1 - e'B'/kz'_“’”? -7 log |1 - e'B’/k—'?*_’”? ]-(3.9)
k L Ii

The above expression contains a divergent part given by

El =%—7§ /izmz -

Y vk (3.10)
k'

Nof —~

For large L this expression becomes!!

El =

. |
3/2?+[ K BR) fr G.an
P {2m)

-0

E1 can made finite by adding the counterterm to the effective

40 o
m=”dx[¢g—ﬂax3xf dk) ! (3.12)

Whitting

exp{BE, + BCT + E,} , (3.13)

for L going to infinity,

+c0
—af2
m=J dk db -eSk*Mz] (3.14)

'-2—1}- Zz_log []

Defining a new variable y = 8k we can write

3

+00
ij fei T -"u2+82m2}[ b, 2 :l (3.15)

5 og[l -e
u2+1+62m2 u2+32m2
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The behaviour of g2 in the high temperature timit can be found

in the literature'? and is
E2 = constant x B x log(fm) . (3.16)

Thus, for 8 > 0 we have

2 L3y 1/2 2 ’
r._2° an ‘] exp|mB(constant %- + constant’ log 8m)| .
z V3m|  \3mAZY = x °
sin{-z——)

3.7

In this case we see explicitly that in the high temperature
limit the contribution from the determinant ratio (constant' log (8m))
may give a non negligible correction to the exponential factor (B con-

stant) depending on the values of 8, m and A.

3-B. Spontaneously broken A¢* with a source term

Nowwearegoing toconsider Veff(cb), whichappears in (3.1),
of the form
__ 1 2.0 A
Voep(9) = = 5 m*6" + ——+ ¢ (3.18)
where mz, X, and E are positive and temperature dependent. (3.18) re-
sembles the effective potential of the (1+1) dirnensional scalar elec-
trodynamics in the high temperatures 1imit®.
We will consider the case e<<1 - that is, we will perform a
thin wali approximation.
The relative minima ¢_ (= M+ -E) is metastable and it decays

o & Yhoom?
to ¢, {= - /5\_+—2-) with a decay rate per unit length I'/Z. We Wl ob-
m
tain T/L to the leading order in E.

For high temperatures[ﬂ the static classical solution must

satisfy

3 0. = GV'

e 00 = 55 = - Wi, + A+ e . (3.19)
[6=0,
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W can expand (bc in powers of E as follows
_ n
oo= L € ¢, . (3.20)

Plugging (3.20) into (3.19) and solving the resulting equation

for 4)0 we get

¢, = 'j‘_'_‘tanh (%] . (3.21)
)

Next we need to solve the following eigenvalue problern

[— 3% + ngf(%):lnj =o.mn. . (3.22)

Again we also expand nj and Ocj in powers of €

ng= o, (3.23)
n=0 !

oaj =y e (xj " . (3.24)
n=0 !

We can calculate explicitly the eigenvalues to zero order in €

and the result is

0
a = [ig.’i]z +<(—2_~m2 (3.25)

k% + 2m® (for the continuous spectrum)

W are going to assume the existence of just one negative
eigenvalue and that it is at least of order e(aneg = - v%), Having the
eigenvalues, we can calculate the pre-exponential factor, given by (A.6),

to the lowest order in E

Im R = i exp 8 EA- f dk »/£2+2m2 -7 Vi 2v2m? - /372 MJ
. k

2 (27
sin (-EY—,_]-,-] '
SeZrom?! o120 2] B/j m
- 2 2 — [ RV
+ I:—ZI:JT-T' J[ dk 1og(1 - e Bk +2m )~z log(1-¢e BYk " +am Y-tog(l-e ° ):]
kl

(3.26)
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The two first factors appearing in the above exponential are

divergent. In order to render these contributions finite we must

renormalize them by adding the counterterm

+eo 2 f+°o 1. N
CTz_‘z_ dx[q)é-_”}';__} X 3\ J % . (3.27)
) - ~00 /k2+2m2

In the limit of L going to infinity, weobtain

400
lmR=__1_1_._ expj[-g-zlﬁjlmdké(k)% 2y m® 4 BCT

sin {
+% 3,2
-BY = m ]
dk d8 -BVi 2 2m? /3“ 8 _ (_ 2 ]
'[ -Z—TY'HEIOQ[] e } -2-771-2— logl e J>-
-00
(3.28)
In the high temperature limit, the behaviour of Im R is given
by
im R = ——ro exp{C'lm8+ C, log Bm)} ,
. [gl]
SII’\[2
where G and G are numerical constants. Therefore, we have
1/2
2 2,3/2 2y3/2 ]
%= 27 Ij(Z'ﬂ) Jexp{__(im_.)__ +Cl%+ CZ ]Qg(Bm)>,
. {BY] 6TAT 3AT J
sin|—=
(3.29)

From (3.29) we can see again that the pre-exponential factor may give a
non negligible correction to T', in the high temperature limit, depending

on the values of B, m and A.

3-C, The Birula Mycielski model®3*!*

Now we are going to repeat the calculation of 3-A-8 for the

Lagrangian density

1 1
L=t (BTCP)Z + 7 (3,9) + Voee(9) (3.30)
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where

_ m2¢2 _ 2

For high temperatures (T > m/TV2) the relevant static classical

solution is

o = C/e—exp[- mzzxz] . (3.32)

The effective action associated to this field configuration is

Soss(00) =G om . (3.33)

In order to calculate the determinant of the fluctuati'ons we

need to know the eigenvalues of -9% 4 V"(¢C)
2 iz _ (- _ 4.2 a2
[-32 + Vef(?c)]”=€” = (-3 - 3+ m'z? - 3m)n . (3.34)
It is easy to check that €, 9 is given by

27n

€0 p = [1_]2\» am?(2-1) (3.35)

|
(=]
i+
—
I+
N
4+
AV3

where n =
2=0 1, 2 ...

2

H V" = m*. -e. -
We are going to assume that ef(\@VAC) So the pre-exponen

tial factor for this system is given by

{
T o
im R = — X exp<’§ [2 Vit - 1 Yam*(2-1) J
sinlm ] l K T2
27T

- 81/ kz +m2 3 o

+ [z log[l -e OJ - ,QZZ ]og[l - e-B/Z_mD'

(3.36)
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The first term between bracketsin the exponential corresponds

to the zero-point energy and due to that it will be neglected. Then
[ +oo _8/k2+ 2 oo 3
T ( ™) S -B/zmzw-nw
ImR =———(-——exp<[ dk log\l-e - ) log|l-e i
sin-lL) - £=2 J
L‘/i‘ TJ

in the high temperature 1limit, we have

o0
+2 -, _6424_’”2
0

Jf dk ]og[l - e ) 267" Jr du log(l - e ")

e

- 0
and
o / 2 t -2 (™ _
) log{l -,e_B 2n (Q_I)] = L[du W log(l - e M.
2=2 m?
0
Finally we obtain:
I: ( ¢ 1/2 —2-7r% l J7 Cm +
L by T sz] sin——m-—] exp <= &
' 2
VBT 1 T
r’ -u r’ |
+——;qu u logll - e )+2T) du' log(l - ¢ " )>.(3.37)
m 0 0

This example shows again that the preexponential factor might

give non negligible contributions in the high temperature limit.

4. FORMAL HIGH-TEMPERATURE EXPANSION OF I'/V

We shall develop a formal expansion for the ratio of determi-
nants (R) which appears in (2.10) that will be useful in order to ex-
tract the dependence of Hon T at high temperatures. R can be written

as

R = exp -—;— tr log[-DE+ngf(¢C)] - tr 109(- DE + Vé’ff(¢VAC)}}'

(4.1)
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Then, from (4,1), it is easy to see thatR canbe written under

the forrn
] 1 " - "
R =exp - -i-{tr log[l + . (Ve (00 Veff(q‘)VAc))]}
- ({4
Ur o Ve Gyac)
where
1
=G
B8

- Up + 7eee(ouad)

————y

is just the free propagator at finite temperafure, with mass /—ff(q’VAC)

If we expand the log above in powers of

] "
[V eel0c) - eff(d)VAC)] '
U + Vere(Gynd)

we get formally

1 " -
tr log{l + [Veff(ibc) Veff(q)VAC)]
' SO+ v (o)

QO+ OO+ e

where the dashed lines correspondto the 'background field" (ng-f(¢p) -

_
Veff(

VAC))’ and the internal lines denote propagators GG‘
It is shown in appendix B that the first term of this series
gives the leading contribution for B going to zero when the space-time

dirnension is four. Then, we have:

R=ep - gtr - [eff(%) gff(q)VAC)] (4.3)
“Ur+ Teee Gy

for B > 0 (7o),
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V¢ need to be careful when using (4.3). The formal manipu-
lations that we made in order to get (4,3) work just for theeingenvalues
belonging to the continuurn, Then, negative and zero eigenvalues can be

treated as we did in appendix A and the result for ImR is

Z

_ T
Im R = —-——-—-B-Sin 7(1-) exp - -;— tr{{Gs[Véff(%) - ngf(q)VAC)]} (4.4)

We expect this expression to hold for high temperatures. Lets
find out the dependence on T of the exponent in (k.4) for the usualfour
dimensional space in this limit. We denote this exponent by o- that is,

o 7 triG [V"ff(d)c - ngf(¢VAC)]} (4.5)

The reason why a does not control the high temperature behaviour of the
pre-exponential factor for 1 and two spatial dimensions is given in ap-
pendix B.

4-A. (3+1) dimensional space formal expression

For (3+1) dimensional space we have, from (4.5) :

1

OP%n,ck (B + & 2BLJd2 [eeta) Taretayp0]

(4.6)

2 _ "
wherem? = Veff(¢VAC) .
Performing the »n summation and taking into account that for high
temperatures the relevant classical solution in independent of the

Euclidean time, we can further simplify (4.6)

=5 |2l (4,(2)) - m?] 8 8
d e @ | Aram? [oBVHE]

(4.7)

The first integral in dk is infinity and must be renormalized.

For a renormalizable theory, they way we get rid of thesedivergences is
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very simple. W just add to the Lagrangian the usual counterterrns de-

1 . .
*3 These counterterms, for renorinal izable

fined in perturbation theory
theories, cancels the divergences which appear in the formal expansions
and.in particular, cancels the divergent piece in (k.7),

Therefore, in the high temperature limit, the main contri-

bution to ¢ is given by

1 f 3 [ B
o= -3 & [ (60m7] Cw.8)
i NI —r .
L J

Then, in the high temperature limit, O behaves as

0 = AXT (4.9)
where
4= - ]5 f d’x (V0 c(9,)-m?) f d 23 ——71—— : (4.10)
€ (2m)° k(e™-1)
Therefore
7+ S (001272
L- 2 { eff 0} exP<(--‘;i+AT} (4.11)
sin[gﬂ] 2 {
2
where B =g (¢.)
T eff "¢’

Let us make SOMe comments on (4.11). V& have to keep inmind that
for obtaining (4.11) we have used the semiclassical approxirnation and
the high temperature 1imit, So,when employing (4.1 1), we have to verify
if the temperature we are working allows us to make use of these ap-

proximations.

4-B, Soluble (3+1) dimensional example

The (3+1) dimensional system, that we are going to consider, is

described by the effective Lagrangian density

17 2 2, M
Leff=-2-izl (5,0)% + e - T 0% + S (4.12)
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where E, m% and A are positive and E is much less than 1.

We will proceed like we did in another example - that is, we
are going to calculate I'/V to the lowest order in E.

Expanding d)C in powers of € like in (3.20) and substituting
into the classical equations of motion we obtain

m me
= — nmmna— . l*.
b, . tanh{ /2.) (4.13)

¢, describes a domain wall (Bloch wall) in three spatial dimensions'®.
Although ¢,,given by (4.13) depends on just one spatial vari-
able, one can show that it describes some important features of the

19 Although this bounce solution will give T ident-

bounce solution
ically zero in the thermodynamic limit, it is useful for one can check
in this example whether (4.11) works well.

The eigenvalues of -3% + V"(d)C) to the lowest order in E are

given by

0
z 3

o = (T] + ka? + ky? + 5m (4.14)
k

It is possible to prove the existence® of a negative eigenvalue
which we will denote by -w? and assume that is unique,

After using (A.6) and renormalizing,the result we obtain inthe

high temperature 1imit!® is
3y3/2 3
T_ o [/Tm L enp _WZTA  TAm L )
v {2M3AT sin(_@_@] 3T 22
2/3 .
where A = V , and Vis the volume of the space.

This example shows that our formal expression (4.11) works, as

it should, in four dimensional problems.

5. CONCLUSIONS

As pointed out in the introduction, it has been proposed that

some aspects on the evolution of the early universe should be strongly
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dependent on the decay rate of the false vacuum. Phenomenological im-
plications such as monopole density in the early universe and the Great
Supercool ing that the universe underwent are among the consequences of
the vacuum decay process

Some conclusions were drawn based on a fairly simple para-

29k 7

metrization for the decay rate , hamely

-SC/T SC 3/2

7= " lmm| (5-1)
The expression (5.1} obviously does not take into account, in
a proper way, the contribution coming from the determinant i-atios in

(2.10) since (5.1) is basically given by zero loop contributions,

We have devised a method which allows us to inferthe high tem-
perature behaviour of the determinant ratios in (2.10) without solving
the complete eigenvalue problem. The method relies on a simple graphical
expansion which allows us to get the proper asymptotic behaviour as well
as to perform the renormalizatéon of the determinant in a straight-
forward way.

One can see from (4.11) that the contribution from the deter-
minant ratio makes the decay rate I' be bigger than the value given by
(5.1). This (’small) increase in T might have some consequences in the
inflationary scenario, and we will be concerned with these consequences
ina future publication.

V¢ also have studied some exactly soluble toy models in (1+1)
dimensions. From the solution of these problems we could extract anidea
of the order of magnitude of the pre-exponential contribution for T/V.
For instance, from (3.17) or (3.23), with a suitable choice for the par-
ameters and the temperature one can get an increase of I'/V by a few per-

cent.

Helpful conversations with J,E, Perez and I. Ventura are grate-
ful 1y acknowledged. We would like also to thank C. Aragac de Carvalho

and D. Bazeia for enlightening discussions and reading ofthemanuscript.
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APPENDIX A

Here we are going to obtain an expression for the imaginary
part of the determinant ratio that appears in (2.10). W assume that
- A+ Vé'ff(¢c) has only one negative (-w?) eigenvalue and that there
are g zero eigenvaiues [(-A +V"»(q'>c)nj = )\2741.7']

g m=1/2
7! (w? + 25
= (Bl M J (a.1)
R 7 ‘
T (0 + A%)
g N Jd
where “’721 = (2mn/B) 2.

It is easy to see that

. 14
A /2
y sinh 8 3/

Tr)\('jﬂ—v—
J J B Aj/Z

R = (A.2)
. S
g sinh B )xj/Z
R W -
i 7 S
B8 Aj/z
where we have used the identity
@ sinh
T (14z2/p?) = 22212 (A. 3)
=1 T 2

We notice that the negative eigenvalue makes R pure imaginary.

Analyzing {A,2) with care we get that

m sinh(8 AL/2)
2,2 J J
Im R = ('g) (A.4)
. Bw . e
sin T"T" sinh(B )\7./2)
J

where the double prime indicates that the negative and zero eigenvalue
are excluded from the product.

W can further transform (A.4) using that

log sinh(Bz/2) = £z log(l - e~82) - log 2 (A.5)
2
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in order to get

V4
Im R = £ exp{—g [g )\; - Z” Xi]
sin(%w-) J (A.6)
'BA? 1t -Bxi _|i
+[§ log(l - e ‘7)-2 log(l-e ¢ )I}?
- J =

APPENDIX B

In this appendix we will analyze the temperature dependence of
each term appearing in (4.2). First of all, we would like to point OUt
that each graphic appearing in (4.2) have zero external momentum’ - that

is, for high temperatures:

T l)j( y j] ;»
_ - ” - " -
3.2) = ) - 4 [eff(%') Veff(cbVAC)] B L.
x j dD ZD — ! 7 (8.1)
(2m) H'Z%EJ + Ve Ouae) + 22]
where D is the number of spatial dimensions,
Lets obtain the dependence with B of
; 1
I.=-é-2diZ - , (8.2)
J w (2m H%n_] ETIN m]J
2 _
where m~ = Veff(q)VAC)’ when 8-+0,
Performing the scaling %= 8% we can write
gt or) g [ P ) R

D -
o (2m ‘i(ZTm)2 + t? 4 mZBZJJ

Now it is easy to see that
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L - (-'1).7'-1 g2J - (D41) dﬂ'-_‘] £l (5.4)
-1 dx? e

where

Pt 1
£ = 1] — (8.5)
nd (2mDp [(2m)? + ¢% 4 2]
For D 2 3 we have that
Tim f(mzﬁz) = constant .
B+0
Then, for D 2 3, the term J=1 is the most important term of

(B.1) in the limit B~>0,
If we have D<3, f (x) diverges as = goes to zero due to the
infrared of the theory. For example for D=1

lim F(n8%)5 =
B0
Using (B,4) we get that is proportional to B-I.Since all terms
in the series (B,1) have the same temperature dependence with tempera~
ture, we have to sum the whole series then our formal expansion (4. 2)

(B,1) does not lead to a simple result to the determinant ratio.
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Resumo

Investigamos o comportamento de alta temperatura da taxa de de-

caimento (I') do vAcuo metaestavel an teoria de campos utilizando a apro-
ximacdo semiclassica. Exibimos exemplos sollGveis (na aproximagdo semi-
classica) en (1+1) e (3+1) dimensdes e desenvolvemos uma expressao for-
mal para T no limite de altas temperaturas.
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