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Abstract A sinple derivation of the VIasov-Maxwel|l system of equations
is presented using Darwin's approxi mation for the el ectromagnetic in-
teraction. The one-particle averages are calculated directly from the
expressions for the mcroscopic electric and magnetic field as opposed
to working with the scalar and vector potentials. This formulation
brings out an interesting property of the Vlasov equation according to
which tine derivatives of average fields can be evaluated using the
Hei senberg or the Schrbdinger picture.

1. INTRODUCTION

The parwin nodel for the electromagnetic interaction consists
in neglecting the transverse part of the displacement current in
in Ampére's law!* 2% This is a self-consistent nodel that is
correct to order (v/e)?, where V is a characteristic velocity of par-
ticles or waves and ¢ is the speed of light. Athough electromagnetic
radiation is not included in this nodel, it has been found to be quite
useful to describe lowest-order relativistic effects in atomc physics
calculations® and in particule sinulation of low~frequency wave phenom-
ena in plasmas®*®, in particular, in the latter application Darwi n's
nmodel allows the inclusion of the self-consistent magnetic field gen-
erated by plasma .currents W thout the requirenment of using very small
time steps to follow high-frequency electromagnetic phenomena.

To conpare the results of numerical particle sinulations with
approxi mate anal ytical results, one usual ly uses the Vlasov- Maxwel|
system of equations dropping the transverse part of the displacement
current from Ampére's |aw, However, there is a subtle point in this
procedure that is not fully recognized. Froma kinetic point of view,
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the electric and magnetic fields in Darwin's model are '"microscopic"
fields®. On the other hand, the fields that appear inVlasov's equation
are ""macroscopic’ fields obtained from averaging over all two-particle
interaction processes. Thus, to fully justify the procedureofdropping
the transverse part of the displacement current from the Vlasov-Maxwell
system, one has to demonstrate that in Darwin's model the average
fields also satisfy Faraday's law and the approximate form of Ampére's
law.

It is interesting to notice that although there are many bocks
in Plasma Physics, we could find only the one of Gartenhaus that ex-
plicitly deals with this point . In this reference the author derives
the average equations using the scalar and vector potentials. Although
this procedure is straighforward, it obscures the link between the
microscopic and macroscopic fields and the role of time derivatives in
the averaging process. In this paper we carry out an equivalent calcu-
lation working directly with the electric and magnetic fields. 1In our
derivation, the problem of commuting time derivatives with the aver-
aging operator appears explicitly and brings out an interesting prop-
erty of the Vlasov equation. Namely, for calculating the time deriva-
tive of average fields, the Heisenberg picture of classical nonequilib-
rium statitiscal mechanics is equivalent to the Schrb'dinger picture s,
This property is not only of academic relevance, but it also allows
more flexibility when applying quantum-mechanical methods to solve the
Vlasov equationg.

In the next section we briefly recall the basic procedure for

10511 1 gec-

" deriving the Vlasov equation from the Liouville equation
tion 3 we derive the Vlasov-Maxwell system for the average field using
the Darwin model. Finally, in section 4 we conclude by pointing out the
analogy between Quantum Mechanics and Plasma Kinetic Theory with re-
spect to the pictures of Heisenberg and Schr'édinger to calculate time

derivatives of average quantities.

2. THE VLASOV EQUATION

Classical statistical mechanics of many-body systems is rig-
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orously based upon the Liouville equation for the probability density
D(E,,«Ez,...,EN;t) in the 6N-dimensional space, where N is the number of
particles in the system and 5i = (;:,2,3.7), are the coordinates of a point
in the phase space of the ith
defined such that D(Ex,iz,...,E,'N;t)dil...dF,N is the probability of

finding a given system in the volume dEldaz...dim. The Liouville

particle!?. The propability density is

equation can be written in the form!!

(o)
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where féo) is the external force on the particle (i), 2’1 is the force
on particle (Z) due to particle (j), and m is the mass oJf the particle
(here we are considering a plasma made of electrons with a uniform
backqround of neutralizing ions). The Vlasov equation is derived via
the BBGKY hierarchy of equations as an approximation to the Liouville

equation’??!3*1% 1t can be written in the form

ED L, ) [ff") n [ 3 " 3 (£,)
+ 9 . — +--fF'12 F(E,3t)dE,|. —=0,
3t o mooom - e,

(2)
where f{&€,) denotes the one-particle distribution function, normalized
such that nSf (£;£)dE = N, where n is the average particle density.

The quantity
P =n j B f(E,)dE, (3)

gives the average force on particle 1 due to the remaining particles in
the plasma. In the sequel, we shall employ the following convenient

notation for averages:

<Hifs = n f R(EE D FE 0 ()

where £ = &; and &' = &;. Using eq. (3), the Vlasov equation can be

simply written as

g%+$.?i+§.3§=o, (5)

.
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where 3 = (?(o) + <?’>>)/m denotes the average acceleration of each par-
ticle. Thus, the Vlasov equation describes the interaction between
psrticles through only an average field, neglecting contributions from
close encounters. This point is already well known and it is clearly
discussed in standard textbooks!?,

To calculate the average force, eq. (3)sit is necessary to
specify 27)12, i.e., the expression for the force between two particles
in the plasma. In this paper we assume that this force is derived from
the Darwin approximate electromagnetic potentials, as described in the

next section,

3. DARWIN’'S APPROXIMATION

Let us consider a particle of charge q moving with velocity
1-;‘ through the plasma. We assume that its acceleration is so mild that
radiative effects are negligible. In this case, the electromagnetic
field produced by the particle can be obtained from the scalar poten-
tial

6@t = 2 ! " (6)

Mo 2 (t) |

and the approximate vector potential

> > ¥,q D1(¢t)

u
alz,t) = 2y g-t FRUDY (7)

T eare)] o

introduced by Darwin®, These potentials belong to the Coulomb gauge so
that
> >
V-a(-’c,t) = 0.

This means that the expansion for d)(;,t) would be the correct one even
if fully relativistic effects were included. However, eq. (7) for ais
an approximate one and eqgs. (6) and (7) cannot be rewritten in the form
of the proper Liénard-Wiechert potentials. The "microscopic™ fields are

given by the usual expressions

2@,t) = - v - %;i (8)
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and
B(x,t) = va (9)

and the force on another particle of charge q {unprimed) is simply given
by

->

Fr2(E,E'58) = qe(®,t) + b (=,8) (10)

Ve have to keep in mind that in egs. (7) and (8) the obser-
vation point Z- is assumed fixed. Thus, the time derivative in these
equations and in the ones following from them apply only tothe variables
z'(¢) and 7'(t) referring to the source. Calculating the average of eq.

(10), we obtain

<> = qu(EE,t) + q%’x§p(55,t) , ()
where
(3,8 = - e U <ok /f>
p KTTEO l;-;'(t)l
™ol 5 r(z)
< /f> (12)
LT ot g_;'(t)l f
Moq 92 > >,
e v <;2— Jx-z (£) | />
and
> uonq ;I(t) X
B (z,t) = ~%r vV x R /> (13)
p m |z-z" (£) |

-> >

The field equations, relating theaverage fields E_. and B
and the sources can be calculated directly from egs. (12) and (135).
In particular, it is straightforward to obtain Poisson's equation by

calculating the divergence of eq. (12), i.e.,

v.ip(x,t) = %a; f f@,0;t)d% . (14)

The derivatipn of Faraday's law is, however, more involved. Taking the

curl of eq. (12}, we obtain
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BB @) = - et g d B0, £> (15)
X, = —_— .

P ; TR

From this equation and the expression for 3 , €q. {13}, we see that, to
obtain Faraday's law, we have to show that the time derivative can be
taken out of the averaging brackets. First we note that, if z#(£,5') does

not depend explicitly on time, it follows that
5 G)F> = <Z/3_> (16)

Since this is the case for h = v'/|z-2'(¢)|, we have to simply prove
that

3 v'(8) > _v'#)
< ——-——- /f> = / (17)
k3 [m-x’(t) | lm-x'(t) ( £

The left-hand side of this equation can be written as

gt“";—(f')—/ﬁ“-;g;'-@"' 18>+ D! “3:'—'1—'—' /f >, (18)
[z-2"(£) | |-z (£) | 3z’

where ;'(t) = 90'(£)/9¢ is the acceleration of the primed particle.
Using the identity 6{'7 = Bvé/Své, we can wrice g'f as 375(35'/au')f and
integrate by parts the velocity integral appearing in the first term in
the right-hand side of eq, (18). Then,we obtain

> - >
->+5'(t) / f>=—fd3x'd3v' L TR _)u_:(t) AR AN
z-z'(£) | |’ | ov' -z ' (£) ] !
(19)

The second term in the right-hand side of eq. (18) can also be easily
calculated by integration by parts with respect to the space coordinate.

Combining these results, we have

<aﬂ/f=-<&/ _f_.,.'_f) ., (20)
% B2 @] 221 T

If follows from Vlasov's equation, eq. (5), that the term in parenthesis
in the right-hand side of eq. (20) is just -38f/3t. Thus

112



Revista Brasileira de Ffsica, Vol. 16, nQ 1, 1986

3 31 (%) 3 (%) B (t) ;o
. < /f> = <gm e [f> = < =>. (21)
% - (s) i 12E(2) | l:c-x'( ) | /5%

Using egs. (13), (15), and (21), we finally obtain Faraday's law

5 o8
Ve » = = 3;2 . (22)
To obtain Ampere's law, we take the curl of eq. (13). Since

> . .
B! and ' are independent variables, it follows that

VxVx-:;):_;-(i)—— = v{%uv ! ] + lm;"ﬁ(;-;') . (23)
le=z ' (2) | Ix-x’(t)l

Substituting this expression into the curl of eq. (13), it follews that

Ampere's law can be written in the form

F, (& ,t)
VX§ (;,t) = uo:jt(;;,t) + Ug€gq Lat » (24)
p
where
7@,t) = ng } 2F(@,5:¢)d% (25)

is the plasma current density and

E (;,t) =-Y ‘i ng If(x ,v t) d3 ldS} (26)

L e, ]x-x'(t) |

is the longitudinal component of the electric field.

Equations (5), (14), (22), (24), (25), and (26) form the basic
set of equation for the Vlasov-Maxwell system in the Darwin model.
Clearly, the only approximation in this model is to neglect the trans-

verse part of the displacement current in Ampére's law.

4. THE HEISENBERG AND SCHRODINGER PICTURES

A basic point in the calculations just presented is the proof
that the time derivative commutes with the average over the one-par-
ticle phase space, as indicated in eq, (21). in analogy with Quantum
Mechanics, we can say that the first form of calculating the time de-

rivative of an average quantity corresponds to the Heisenberg picture,
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3 3h
— 2 < —
ot <h/f> Bt/ﬁ’
whereas the second form corresponds to the Schrodinger picture,

P 3
3z > = <higp> .

Actually, it can be rigorously shown that the Heisenberg and Schr8dinger
pictures of nanequilibrium statistical mechanics are equivalent at the
Jevel of Liouville's equation®. However, this is not necessarily true
at the kinetic level described by reduced distribution functions and
approximate equations. Since the Vlasov equation can be viewed as anone
-particle Liouville equation, one could suspect that the same property
would hold for that equation. in this paper we have shown that this is
indeed true and leads to a correct derivation of the equations relating

the average field quantities in the Darwin model.
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Resumo

0 sistema de equacdes de Vlasov e Maxwell € obtido de uma
maneira simples utilizando a aproximagdo de DParwin para a interagao
eletromagnética. As médias de uma particula sdo calculadas diretamente
das expressdes para 0os campos microscOpicos elétrico e magnético ao in-
ves de utilizar os potenciais escalar e vetorial. Esta formulacdo per-
mite realcar uma propriedade interessante de equacdo de Vlasov segundo
a qual as derivadas temporais de campos médios podem ser calculadas uti-
lizando o procedimento de Heisenberg ou o de Schrb’dinger.
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