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Abstract “Exact'' rnicroscopic methods like the RGM (Resonating Group
Method) and the GCM (Generator Coordinate Method) and approxirnate methods
like the OCM (Orthogonality Condition Model) are used to study the ef-
fects of Pauli's Principle in the a-'%0 elastic scattering. A method to
derive ''exact'' effective potentials for the OCM is introduced, These
potentials, derived from RGM wave functions, make the OCM identical to
the RGM and they have the advantage of being free from poles associated
to the forbidden states. Numerical calculations are made with V2 and Bl
nucleon-nucleon forces at energies in the range 0-30 MeV. The potentials
and the resulting phase-shifts are cornpared to those obtained from the
approxirnate rnethod suggested by Friedrich and Canto. The problem of
searching for local, state independent, potentials for the OCM is dis-
cussed.

1. INTRODUCTION

In recent times, the microscopic treatment of elastic scat-
tering between light nuclei has gone through considerable progress in
two ways mainly: first, exact microscopic theories like the RGM' and
the GCM? became more treatable by the development of new methods®’* of
attacking the crucial problem of these theories, vis, the calculation
of their kernels; second, approximate methods which avoid kernel calcu-
lation, like the O0CM®, became more sophisticated andare being applieds-a
to a great number of systems.

The present work studies some aspects of the OCM inconnection
with the a+'%0 system. In an earlier Workg we applied the microscopic
method of ref. 7 to a-'%0 scattering, using a Volkov'? V2 nucleon=-nu-
cleon interaction. Here, we develop a method to derive local effective
potentials directly frorn RGM wave functions, and apply it to the a-1%0
system, cornparing the results to those of ref. 9. This method has the
advantage of allowing the elimination of poles in the potential arising
from the orthogonality of the RGM wave function to the resundand states.

Such comparison may guide the effort to find a simple potential that,
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being local, represent the interaction between nuclei in the best poss-
ible way.

In section 2 we show how to derive our ''exact'' effective po-
tentials, and discuss the problems related to them. In section 3 we use
the method of section 2 to calculate effective potentials for the a-%0
system. In section 4 we compare phase-shifts obtained with '"exact'" and
approximate effective potentials in Saito's OCM equation and discuss
possible ways to improve the approximate method. Finally, the con-

clusions of the present work are presented in section 5.

2. DERIVATION OF EFFECTIVE POTENTIALS FOR SAITOS EQUATION
Saito's OCM equation,
ASL(TJL+VD)X£,(P) = EXZ(P) (1)

furnishes a wave function XIL(P) which gives an approximate description
of the relative motion of the nuclear fragments. E is the energy of the

relative motion of the fragments and TJL is the kinetic energy operator

_ »2) [42 _2(8+1) .
To = {'Zu} [sz 22 ] ’ @
AQ is the operator
=1 - 0 0
AIQ =1 ;% M)?’l,l) <¢n,2| ’ (3)

which eliminates from the wave functions any components in the siibspace
spanned by the forbidden states l¢:z,l>’ eigenstates of AQ with null
eigenvalues.

As it was discussed in refs. 6,9, Saito's equation becomes
equivalent to the R when one replaces the direct RV potential VD by
a properly chosen effective potential Vef' Along these lines Friedrich
and Canto7 proposed a simple method to derive a local, state independent,

approximation for Ve In their method the effective potential is par-

fr
ametrized in a simple form and the parameters are determined by fitting

a fundamental relation involving Vef and CGM Kernels. Their method was

. 7=1 . ; . . .
applied ® to the scattering of light nuclei up to “8Ca with variable
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degrees of success. In some of these cases angular momentum® or par-~
ity9’1° dependence was introduced in Vef for the sake of obtaining more
realistic results.

The starting point of our method to derive an ''exact'' effec-

tive potential is the basic relation®’®

_,1/2 1/2
H=A (T+Vef)A s (%)

where H is the RGM Hamiltonian Kernel for the relative motion of the

1/2
fragments and 4 / is the Hermitian ''square root' of the RGM overlap

Kernel, determined by the operators equation
Al/z A1/2 -4 (5)

Equation (4) determines a family of potentials which makes
the OCM exactly equivalent to the RGM. The potentials have, in principle,
complicated non-local forms. If we wish to keep, however, the spirit
of the OCM, we must look for the best local approximation for Vef'

Within this perspective we use RGM wave functions in the "in-
verse direction™, that is, we calculate effective potencials from RGM
"exact'' wave functions gﬁl,e obtained from an RGM/GCM code'!. W build
the renormalized RGM wave function

1/2

Xg,e S40 9y (6)

and assume that it is an exact solution of Saito’s equation. Using (6)
and the explicit form of the projector Az in Saito's equation we get
i

ne-
Vet ~ V’L,e(x) - [(S_Tﬁ)xl,e(x) * nzo (b:z,ﬁ?,(x) ) dn,SLJ/XSL,e(x) ! (7)

where ¢:L jL(.vc) are the forbidden states wave functions. The coefficients
b

dn,@ are formally given by

— 0
dy g = by 1Ty Xy > (8)

but they are in fact arbitrary since the projector ASL in equation (1)
annihilates the corresponding term in the product VSL E(x).xz S(nc). As
> b

the number of nodes arising from the orthogonality of ¥ to the for-
%,&
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bidden states is equal to the number of coefficients dn 0’ these coef-
b

ficients can be chosen so that the numerator in the right hand side of

(7) vanishes at these nodes.

With this procedureall polesof Ve resulting from the or-

thogonality of x to the forbidden states c:fm be eliminated. On the
other hand, other poles associated to oscillations of the asymptotic
wave function will remain.

W should have in mind that the local form of Vef may be
rather artificial, since it was imposed "a priori'. If that is the case,
the non-local nature of the potential emerges as a strong dependence on
the RGM wave function used in its determination- Thus, we can learn
about residual effects of the antisymmetrization by investigating the
state dependence of Vef'
3. CALCULATION OF EFFECTIVE POTENTIALS. APPLICATION TO & -0 SCATTERING

W have calculated the effective potentials established in
section 2 for a-'%0 scattering, using two nucleon-nucleon interactions:
the Volkov force V2'2 and the Brink-Boeker force B1'®, Single particle
orbitals were described by harmonic oscillator wave functions with os-
cillator lengths b = 1.62 fmand b = 1.77 fm, in the V2 and Bl cases,
respectively. In what follows we will give only the nuclear part of the
effective potentials. This is done approximatelyg by subtracting the
direct RGM Coulomb Kernel from the total effective potential.

Effective potentials were calculated using eq. 7 at the ener-
gies E = 3 MeV, 9 MeV, 15 MeV, 21 MeV for values of angular monentum
% =20,1,...,9. Table 1 illustrates the behaviour of the potentials for
some partial waves. For both interactions one notices a pronounced de-
pendente on parity and a weaker dependence on energy and angular mo-
mentum among states of the same parity. These facts suggest the setting
up of potentials f(t)(z’) representing, on the average. the potentials
of table 1 for the parities (+) and (-). These potentials are repre-
sented in fig. 1 by dashed lines.

A special situation occurs at resonance energies or bound
states of the system. In such cases, the wave function has a very large

amplitude in the inner region, and the matching to its appropriate
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Table la - Nuclear part of the effective potentials
(in MeV) for the o -'%0 system with a V2 interaction
at center-of-mass energies: a) 9 MeV, b) 15 MeV and
c) 21 MeV. Inaccurate values of the potential near
poles are replaced by an asterisk.

(a)
x/b g=0| 1 2 3 4 5
0.5 (-137.61~130.0|-137.3|-128.4] -136.4| -126.0
1.5 -89.8, -87.3) -89.5, -86.2) -88.8) -B84.2
2.5 * -26. * -25.7 * -25.0
3.5 -h.0| -4, 4.2, -4.8 -boh -5.3
(b)
x/b L =0 1 2 3 b 5
0.5 |-136.2(-132.5|-137.8|-131.1] -137.0] -129.1
1.5 -92.7| -88.4| -89.6] -87.6| -89.2| -86.0
2.5 * -26.9| -28.8{ -26.5! -28.5| -25.7
3.5 * -4, -6.5 -4.6 * -4.7
(c)
z/b £ =0 1 2 3 k 5
0.5 {-138.2(-134.0(-138.0(-133.0{ -137.2( ~i31.0
1.5 -89.4) -88.7| -89.3; -88.2) -89.1) -87.1
2.5 -29.0| -20. -28.8; -27.0 -28.4 -26.1
3.5 -5.11 -3, -5.2{ -4, -5.2 -4.5
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Table Ib - The same as la for Bl interaction.
(a)
x/b L = 1 2 3 b 5
0.5 -83. -71.3| -84.0| -71.6| -86.9] -71.7
1.5 ~53.9| -47.3| -53.7| -46.4) -53.7| -45.4
2.5 -15. ~15.7( -15.2| -15.4; -14.8]| -14.9
3.5 | 2. * -2.8 * -3.1 ~2.1
(b)
z/b L = ] 2 3 L 5
0.5 -84.2{ -74.3| -85.0] -7h4.1| -86.8 -74.1
1.5 ~55.71 -51.71 -55.9] -51.1} -56.5] -51.1
2.5 -16.1y -16.6} -15.8] -16.2] -15.3} -15.8
3.5 -2, -2.77 -2.4) -2.8) -2.4 -3
(c)
x/b L = ] 2 3 L 5
0.5 -84.5| -76.8} -85.5| -78.4| -87.7| -77.6
1.5 ~56, -51.6/ -56.1} -50.1{ -56.5} -51.9
2.5 * -17.6 * -17.3 * -16.6
3.5 * -2.8 * * * -2.8
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Fig.la - Effective potentials for
system using a V2 interaction. The full, das
and dotted lines are, respectively, V

and T/D potentials.

the a-1%0
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Fig.lb - The same as la for ¥V
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asymptotic form pushes, the Coulomb nodes away to large values of the sep-
aration coordinate. The effective potential is then free from any kind
of poles in the range of the nuclear forces. The second important: charac-
teristic of such effective potentials can be seen in table 2, which shows
results for the V2 interaction (the Bl interaction does not produce
sharp resonances or bound states in the a-%0 system) . As in table 1 an
appreciable parity dependence is still present. But, within the same
parity, the dependence on angular momentum and energy is much weaker,
being less than 1.5% in the most unfavgurable cases. The solid lines in

fig. 1 represent typical potentials, Vres’ from table 2, for each parity.
Notice that these potentials are slightly (a few MeV) shallower than the

- (*

corresponding V ) at the tail region.

Table 2 - Effective potentials (in MeV) for type V2 nuclear interaction
in the resonant and bound states energies of a-'%0 system.

/b | e 3.7 -1.?4 2 56 8.%9 0038 | 1.3

0.5 ~134.7 -134.5 -134.4 -134.2 -133.6 -124.7 =124 .1
1.0 | 166 | -ni6h [ 1160 [ s | o150 | -nizz |-
1.5 | -86.5 | -86.4 | -86.2 | -86.1 | -85.8 | -83.2 | -82.9
2.0 | -50.0 | -51.0 | -51.1 | -51.2 | -51.3 | -h8.0 | -48.h
2.5 | -22.9 | -22.9 | -22.9 | -22.9 | -23.0 | -24.3 | -24.2
3.0 | -8.1| -8.2 8.4 | -8.7 8.9 | -9.4 -9.6
3.5 =34 -3.b 3.5 | -3.6 3.7 | -h.0 4.1
4.0 | 1.2 - 2| -1.3 1.4 - 1.2

(¥)

The existence of potentials Vres with their own peculiarities
suggests that parity is not the only relevant property of the RGH quan-
tum states for the derivation of the effective potential. The necessity
of working with four different potentials, V(i) and Vr(:i will be
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stressed in the next section, when we compare phase-shifts derived from

different effective potentials.

A DETERMINATION OF PHASESHIFTS. RESULTS AND DISCUSSION

(%)

res

-(+
In this section we use the potentials V(") and V in eq.{(1)

and examine phase-shifts resulting from the obtained wave function
Xy (2) .

When a given effective potential VSL,e is obtained from a re-
normalized RGM wave function XSL,e’ solving the OCM problem with that
potential is equivalent to solving the RGM equation. Nevertheless, this
equivalence is lost if one uses the same potential at 2'#% or €'#c. The
use of a single, local, state independent potential, Vef’ in the OCM
equation will be, however, a good approximation in the description of a

set of ROV states Xgr e when
’

VexV

ef ‘o',

for any &' and E' in this set.

Our study of several VSL,E potentials in the previous section
suggested that the space of RGM states should be splitted in four parts.
For these parts the local, state independent, effective potentials V(i
and Vézl were determined.

The use of these potentials in the OCM equation stresses the
differences among them, showing that each one can predict the proper-
ties of those RGM states in the subspace to which it is associated, but
gives bad descriptions of other ROV states.

o, 1)
onances of the system in the respective parity but they give poor ap-
proxirnations for the phase-shifts. To illustrate this fact we show re-

sults obtained from the solutions of the OCM equation with several ef-

and Vf;i .are able to locate accurately the sharp res-

fective potentials. in table 3, we give resonance energies for the par-
tial waves 2=3,...,8, and in fig. 2 we plot 2=6 phase-shifts, a typical
value of the angular momentum. While all sharp resonances are predicted
to an accuracy better than 0.5 MeV, the R=6 phase-shifts at E 2 10 MeV
are appreciably different from those of the RGM On the other hand, the
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Table 3 - Energy values (in MeV) of the sharp resonances of the «-!%0
system, V2 interaction; E are exact energie values coming from GCM, E
53, I%v and Eg are, respectively, energies ol_n%a'j'ned with the potentials:
aIi Vr’ég, with the corresponding parity; b) 7 with the corresponding
parity; c) Vaps d) V-

2 E Ea E'b Ee Ed
3 1.6 1.9 <0.2 1.2 0.2
5 5.3 5.7 3.3 4.5 b
6 2.8 2.7 <0.1 1.2 3.0
8 8.1 7.8 2.5 7.2 10.4

10 20 30 EgyiMev)
- .

Fig.2 - Phase-shifts for the 2=6 partial wave, V2 in-
teraction, calcylated through the use in Saito's
equation of Vﬁgq (dashed-dotted line), Vyp (dashed
line) and v, (dotted line). The full lineindicates
exact values.
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potentials v

ponding parity to a good apprcximation, while they are
the calculation of resonance energies. This is illustrated in

(£)

and figures 3 and 4.
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Fig.3 - Phase-shifts for even waves in a+'®0
system, V2 interaction, Representation is
made so that 82>0 inthe high energy limit".
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and the exact curves.

reproduce phase-shifts of partial waves of the

corr

inaccurate

table

es-
for
3



Revista Brasileira de Fisica, Vd. 16, n? 1, 1986

S 285 int B

° ~—— Exact

& - OCM with Vap

3 e OCM with VP
- OCM with ¥

Fig.h = Phase-shifts for
even eaves of a-'%0 sys-
tem, Bl interaction. The
representation is the same
as fig. 3.

o I
10 20 30 ECN{Me\I)

The above results may be analysed in cornparison to those ob-
tained with a single effective potential Vap’ derived bytheapproximate
method of ref. 7. Dashed lines in figs. 3 and 4 represent, respectively,
phase-shifts for such potentials with a V2 interaction and with a Bl
interaction. The latter is, by itself, an irnportant result, since it
shows that the approximate method works well in a-1%0 systern with a B}
interaction, where the conventional OCM, with VD (dotted lines in figs
3 and 4), fails completely. A similar situation occurs in the a-+a sys-
tem’, showing that in both cases those antisymmetrization effects ig-
nored in the OCM approximation are much stronger for the Bl interaction.
This result can also be seen comparing the RGM direct potentials to the
effective potentials. While they are rather similar in calculations

with a V2 interaction, they differ drastically7 for the interaction 8l.
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An overall examnation of figs. 3 and 4 reveals that although
the approxi mat e potenti al Vap cannot do specific tasks with the sane
efficiency as the appropriated ‘'specialized" potential (f/", v, Ve OF
V;es)’ it is globally better than each one of themal one.

In spite of the overall success of Va we shoul d not di sregard
the possibility of inproving the calculation of this potential. A natu-
ra step in this direction is the introduction of parity projection in
eg. (4). This would lead to different potentials for each parity, as it
is suggested in our study of VIL,e‘ This was, however, done in ref. 9
wi thout any significant inprovenent of the results.

A possi bl e way to inprove the derivation of Vap without in-
troducing further conpl ications is to include off-diagonal GOM Kernel s*
B(@,d) in the mesh to which eq. (&) is fitted This can be done rather
easily if we keep E parallel to 3. Ve followed this procedure and the
resulting effective potentials showed an appreci abl e dependence on the
choi ce of the nesh. The nesh of table 4, for exanple, led to the poten-
tiat shown in fig. 5 and to the phase-shifts of fig. 6. This particul ar
nesh is very favourable for the description of RO but it gets pro-
gressively worse for higher partial waves. Choosing ot her of f-di agonal
meshes woul d inprove the description of the other waves and gi ve poorer
g-wave phase-shifts. In conclusion we should say that the overall agree-
nment with the RGV phase-shift: is not significantly inproved.

It should al so be pointed out that although thetwo potentials
of fig. 5 are rather different at small separations they are rather
simlar at the tail, where they are also close to e

Table & = Mesh used in non-diagonal GOM kernel elenents. Values are in

fm
a1 12.0 lz.o 2.0 z.o\u.o w0l b0l 4.0 ...‘s.o s.0l8.0f8.0
O 2.0 525 3.0 3.51“4.0 5.016.0{7.0 '80 IU.OLIZ.O 4.0

* Notice that eq. (4) is transformed’ into the GIM space before the ef-
fective potential is determ ned as to fit it in a nesh of diagonal

values.
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° |'0 e’o 3'0 x/p
-50
100,
{a) . . .

Fig.5 -Effective potentials
obtained by the approximate
method for V2 interaction,

150, . using GCM kernel elements:

A a) only diagonals; b) in-

E’ cluding non-diagonais given

s by the mesh of table 4.

3.

5. CONCLUSION

V¢ have studied the effects of the Pauli principle in a-%0
scattering with the help of the OCM and the RGM. A rnethod to derive ef-
fective potentials for the OCM from RGM wave functions was developed,
and a technique to eliminate poles associated to the orthogonality to
forbidden states was introduced.

This method was applied to a~'%0 scattering with V2 and Bl nu-
cleon-nucleon interactions. The resulting effective potentials showed a
pronounced dependence On parity and a weak dependence on energy and an-
gular momentum in potentials for the same parity. It was also show that
effective potentials derived from RGM resonant or bound states are 4p-
preciably different. On the basis of these results the introduction of
four different effective potentials, I_/(i) and V'(,:l
phase-rhifts with I-/(i) and Vril were calculated and the results were

was suggested. OoCM

comparec to exact RGM phase-shifts and to OCM phase-shifts obtained
from the zzoroximate potential V. of ref. 7.
ap ={x

A though the "specialized" potentials V  and Vﬁ%_z, were more

efficient for specific tasks {like resonance energy or phase-shift cal-
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88

. —

0 20 30 Ecpy

fig.6 - Comparison between phase-shifts obtained
with the "diagonal™ potential (dashed lines) and
the "non-diagonal’ one (dashed-dotted lines) for
the waves: (a) 2=0; (b) %=6.Full lines represent
exact values.
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culations for a given parity), Vap was shown to have the best overall

performance.
Further investigations involving the approximate method for

deriving effective potentials and studies of heavier systems are in

progress.
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Resumo

Métodos microscopicos "exatos'™ como o RGM (Método do  Grupo
Ressonante) e o GCM (Método da Coordenada Geradora) e métodos aproxima-
dos como o M (Modelo da Condicdo de Ortogonalidade) sdo empregados pa-
ra se estudar os efeitos do Principio de Pauli no espalhamento eldstico
a-1%0, Un método de se obter potenciais efetivos *exatos™ para o OCM €
criado. Esses potenciais, obtidos da funcdo de onda do RGV tornam o OCM
idéntico ao RGM e tém a vantagem de serem livres de polos associados
aos estados proibidos. Usando forgas nucleon-nucleon V2 e Bl cdlculos
numéricos sao feitos na faixa de energias 0-30 MeV. Os potenciais e as
defasagens resultantes sdo comparados aos cbtidos do método aproximado
sugerido por Friedrich e Canto. O problema de se procurar un potencial
local, independente de estado, para o OCM € discutido.
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