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Abstract We discuss the phase transition of a version of the spherical
model with anticommuting variables. As with the usual spherical model
it exhibits a phase transition with long range order and spontaneous
magnetization for dimension v z 3.

1. INTRODUCTION

There has been great interest in the study of the statisti-
cal mechanics of Grassmann variables. In fact these systems appear nat-
urally in several situations in theoretical physics, for instance inthe
study of disordered systemsl’z’a, in the euclidean formulation of field
theories involving fermions®’®, etc.

In this note we introduce and discuss the properties of a
model similar to the usual {mean)~-spherical model®’’. The main differ-
ence is that at each lattice site x we have a pair of anticommutating
variables {j}(x), Y{x) instead of the usual spin variables. The spherical
constraint is introduced in its average version , which in the usual
model is equivalent (via a change of ensemble) to the original Kac-
-Berlin model. Due to the Gaussian nature of the Grassmann algebra in-
tegrations, the model cam be explicitly solved and its most striking
feature is that as in the usual model the system exhibits a phase tran-
sition with long range order and spontaneous magnetization for v 2 3,
with no phase transition for v £ 2. Apart from its intrinsic interest,

9

this model, as discussed in° (whose notation and language we follow

closely), should be the prototype of phase transition for a class models
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with Grassmann variables satisfying Infrared Bounds and Sun Rules (that
might be dynamically generated). In fact, the nature of the phase tran-
sition is that of a Bose-Einstein condensation of ''spin''-waves.

2. THE MODEL

Let Abe a finite subset of ZV'. At each lattice site x we
have the anticommuting variables wa(x), @B(x), i.e. we consider the
Grassmann algebra a , generated by {ﬁd(x), d}s(y); x,y 6 A, aB =1, ..,
n}, with

T, @0 () + Vg, (@) = 0
Vo @) + ¥oly)y (z) =0 (1
U @) u) + ¥ )P, @) =0

V¢ define the integration on Grassmann algebra as usual®
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The interaction is given by the Hamiltonian kh €

*

3 - 3
=E @, HH—E m} ) (3)
with the notation
(f.g) = :x_'ZIA Foelg (@ (4)
a=l,...,n
(Buf') (x) = f(x+eu) - flx)

(5)
(B}F) (&) = flame,) - F)

where eu is the unit vector in the p~th direction. in eq. (3) we use
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periodic boundary condition on A = {—2N,+2N}\) , N€Z.
The expectation value of an observablef € aA, at finite tem-

perature 8, is defined by

! Bl
gty jng Tl ) dy) 5 e (6)
with
BHA
7 =j 1T di, (@) av_ (@) e 7
xEA a=1

The model is defined choosing the parameter My which plays
the role of a chemical potential, in such way that

g <tl)d(::c)li)m(x)>6 s ] (8)
which by translation invariance amounts to
LR _

'y <(\P,1P)>B ,A =1 (9)

The "sum rule'' (9) is the analogue of the spherical con-
straint in the mean spherical model”*® . It amounts to a change of
ensemble in the original Kac-Berlin model.

W first remark that the "spherical condition' can always be
met be an unique choice of mA. In fact, introducing the Fourier trans-

formed variables

Uy ) =—/_: L &P § )
Ay =
00 == § Ty () (10)
/TA] =€ @

™ i _ _TL A\
p € A* = {-7, -(2m5-1) 55 '71"]‘ s 0’_2-ZV ey (25-1) N ’ﬂ}

we have
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n - v
Hy= } b ) (p)m,+ ] senp ) (11)
A pea oy PP L W
Therefore
<p_(p)¥, (p)> =-——i(-’§-—— (12)
TR gtmy v D))
where
v
D(p) = ) sen P,
u=1
and
L@y p=gq I ———— =g fHlm) 03
A 8, pEA* mA+D(p)

The function (.) has the following properties
A

a) it is monotonic in x € (+v,*°)

b) 1im f,(x) ==
Ty fA
c) lim fA(x) =0

from a), b) and ¢) we conclude that there exists one and only

mp(B) E (v,@) s.t. -Bl—fA(mA) = 1.

3. PHASE TRANSITION - LONG RANGE ORDER

In the following we consider # = 1 but all results can be
easily extended to any value of n.
For v= 1,2 there exists a@) > v such that mA(B) 2 a(B). This
follows from the fact that
1 ] . 4"
lim 1imw ) —————— = lim — 4P  -w
N pEA* (x + D(p)) 248 (2m" [_‘ﬂ 1T:[\) {x + D(p))

(14)

(the first equality follows from the dominated convergence theorem).
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This implies m(B) = lim m,(B) (where the limit does exist
along a convenient subsequencé—so?

Consequently, there is no long-range order since the two point

function
- i ip (z-y) v
Gl = —Ls | a
(2m) m + D{p)
(v = 1,2) decays exponentially with jz~y|. Again the existence of the

thermodynamic limit for the correlation functions

| ¢ Aip(x-y)dp
—, (15)

<P y)>, = lim <U(x)Ply)>, , =————
g A""’" 8,1 (emY J

vyt D{p)
=T,
follows from the dominated convergence theorem.

For v £ 3 the system will exhibit long-range order provided

A%

B>8 =— j —d4dp (16)
¢ (zmV Ton ﬂ]v v + D(p)

To prove this we first show that, if B > 3c then
R R P AT
Pz = [im g W) U)o > 0 ()
This follows from the sum rule
i = ~ ! - _
Kpg[\* Gplp)>g y = g 326 Dlelpla)>g =1 (18)

in fact, since mA(B)> v, and tim m,(B) =m(B) 2 v,(the Vimit
Ao A
taken along a convenient ,subsequence) , the dominated convergence the-

orem gives for v 2 3

.1 | 1 d
]im" z = J "——L—— (]9)
fowo & pEp mp (8} + Dp) = (amyV v m8) + D(p)
p# "% [‘TT,"]
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‘ J d\)p < B
(2m” ,m® + o) ¢
Ty T

therefore

lim7‘Y ) —_ -
Ao pEA* mA(B) + D(p)
pt (20)

_ 1
Pons2 =B

1 f _d 0 i B>8,
(2m)” v m(B) + D(p)
["“:“]

From the Riemann-Lebesgue lemma we have

wf -

lim  <D@Y(y)>g =P ) (21)

SR

concluding the proof.

4. SPONTANEOUSBREAKDOWN OF SYMMETRY

The model has an antiferromagnetic nature as suggested by the
condensate at pi =-n/2,4 = 1,...,v. Therefore we introduce an exter-

nal staggered anticommuting source

_ ) i3 p) ¢ gple)

By = W.dm, (B1) + D) + 2k Y e ple) +x Je V()
x€A xEA

(22)

where
(G -3) v

D = 2 S S and p(x) = 2 x,
u=l 27 =1 7

Here we are consider'ing an enlarged Grassmann algebra generated by
W) wly) hhx, y €A}, with mA(B,A) being again uniquely defined by
the spherical constraint
1 - - 2
7\' <(KP,4’)>B’A’>‘ 1 ( 3)
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An explicit computation shows that

SO My a h? hh |
V-9 V) g 00 ~ BB v T Bm (B0 (24)

i SN _ 1
A VBN 4 = BT T OGN (25)
and
A VEA R
G-Iy S /S -
2UBAA T @) -
(26)
o VE )\ R
<u)(- L }> = ———
2 B,A,)\ mA(B,)\) -V
The sum rule (23) reads then
2 >
1 + AR oA , B_]A' Z i -
BA m,(B,2)  Blm, (B,) - V) pEA*  m, (B,2) + D(p)
pt -5
(27)

Therefore for A # 0 there exists a{(B,A) > v such that mA(B,A) > alB,n),
V A, and so

m(B,A) = Tim my (8,1) > a(B,}A) (28)

Qoo

From this and the dominates convergence theorem it follows that

- 1 1 d”
<P(0)>, , <P(0)> =1 -, 14 (29)
8,2 B, B mV ) me,n) + Dip)
for B > Bc, YXi#£ 0.
Therefore
- B,
<¢(0)>B,>\ . <\u(0)>8,>\ > 1 - = (30)
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Since the r.h.s, of (31) is independent of X, in particular we

have

i

>
>
B 0

Tim <p(0)> .<xp(o)>6’./\ 21 -

AY0 B,A

ifBg> Bc, that is, the symmetry is spontaneously broken.
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Resumo

Discute-se. uma versao do modelo esférico com variadveis
grassmannianas. Assim como no modelo esférico usual esse sistema apre-
senta uma transicdo de fase com ordem de longo alcance e quebra exponta=
nea de simetria para dimensdo v 2 3
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