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Abstract  \Weshow that the Schwinger functions associated with the in-
finite lattice correlation functions of the periodic two-dimensional
Ising model can be represented by a Feynmann-Kac (F-K) formula in a
Fermion Fock space #. The energy-momentum and field operators are ex-
pressed in terms of two sets of canonical Fermion free field operator-
~-valued distributions acting in H. These two sets are related by a
proper linear canonical transformation (pclit), i.e. there is a unitary
operator U which implements the transformation. Series representation
for the Schwinger functions are obtained by substituting the spectral
representations of the energy-momentum operators in the F-K formula.
Below the critical temperature Py = (I*U)/2 are commuting orthogonal
projections which reduce the algebra of observables andgive anexplicit
decomposition of the periodic statesinto two,translationally invariant,

pure states.

1. INTRODUCTION

Much attention has been devoted to the theoretical soluticn of
the finite and infinite lattice two dimensional Ising model of nearest
neighbor interacting spins (see [1—7]). Also the time- continuum and
scaling limits of this model have been studied (see [8-11]). In ref. 4
for finite volume and periodic boundary conditions an efficient method
for handling the algebraic complexity is developed which employs two
finite auxiliary sets of operators, {Ek,EZ’{‘} and {EZ,EE} (the {k} and {2}
are wavenumbers belonging to distinct sets) which satisfy anticommuta-
tion relations. All the eigenvalues and eigenfunctions of the transfer
matrix are obtained explicitly. tn ref, 7 a linear relation between
the {Ek,«%’;} and {Sz,iz} operators is exploited to obtain a series re-
presentation for the n-point spin correlation functions, for finite

and infinite volume.



Revista Brasileira de Ffsica, Voi. 16, n® 1, 1986

Here we construct the infinite lattice quantum field theory of
this model starting from the LMS* solution (which is reviewed in sec-
tion 2) preserving as much of the algebraic structure as possible. tn
section 3 for the infinite volume theory we introduce two sets of
auxiliary free Fermion operator-valued distributions {£(k),£*(k)})} and
{ E(k) ,E*(k)}, ke[-w,7] acting in the Fermionic Fock space H. As in
the finite volume case the ~ and ~ operators are not independent but
are shown to be related by a proper linear canonical transformation
(plct), J , i.e. the transformation is implemented by a unitary opera-
tor U acting on H and have vacuum vectors $ and $ = Ul}A), respectively.
Also energy-momentum and spin or field operators are defined. AFeynman
-Kac formula is obtained for the infinite volume Schwinger functions in
section 4 and an infinite series expansion results by inserting the
spectral representations of the energy-momentum operators. Using the
explicit form of 117 as given by the theory of plct (see Berezin'?) eva-
luation of the series is in principle reduced to an application of
Wick's theorem. However, in ref.18 a generalization of Wick's theorem
is proved and used to evaluate the terms of the series; this same ex-
pansion has been obtained by Abraham’ using infinite systems of in-
tegral equations. The inverse of the plct, J, is J which implies that
U can be chosen to satisfy U =| so that U”' = U* = U, In section 5
we show that below the critical temperature the periodic state ({,.J)
V) T U2 (o, w)
into the two translationally invariant states (¥ ,.0,) where v, = V2
P, b= @+P)/VZ and P_ = (I+U)/2 are orthogonal projections satisfy-
ing P+P_ =0 P reduce the algebra of observables. This decomposition

. . 15-17
has also been considered in

admits a non-trivial decomposition (§,.9) = 1/2 (¥

A proof of the convergence of the correlation function for all
temperatures is given in appendix A. The operator U and vacuum vector
¥ are constructed explicitly in appendix B. In appendix C its is shown
that the decomposition of the periodic state is non-trivial by showing

that the magnetization is non-zero,

2. REVIEW NF THE LIEB-MATTIS-SCHULTZ SOLUTION OF THE TWO-DIMENSIONAL
ISING MODEL
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The partition function, ZIV M for the periodic Ising model with

nearest neighbor spin interactions wrapped on a NxM torus is taken to

be

M V-1
=) exp[z ( } kolnm)o(n+t,m) + Ko(W,n)o(1,n))
m

Z
M 16y b R

N M-1
+ ) () Koln,m)o(nmel) + Ko(n,M)o(n,I)}
n=1 n=1 _

! > 0 with J>0, a constant, and T the tempeirature.

where K = J T~
oln,m) is the spin variable at the lattice point ny which takes values

* 1 and C is the sum over all M spin configurations.

{o}
Letting
7 = (? (]]), Y = (g -oi , % = ((]) _?) = 2T+T_-I,‘Ei=%(’[x:5i'l'y)
we define
T;‘=]®-..@Ti®...® y L =X, Y, B, ty, =,

. +
where 1% occurs in the mth factor from the left. The Tr;l obey a mixed

set of commutation, anti-commutation relations

+ # - *

[, =0, mén; {o,r=1; (1)%=0,
% M
These operators act in the 2~ dimensional Hilbert space HM=mEl ® Hm
where H is the 2-dim. space generated by (é) and (?). In terms of T *
m
the partition function can be written as the trace of an operator which
we state as

u= w2y BV s

Theorem 2.1 (see Huang'®): Z X

v,
where

Y
v, = (2sinh2x)M/? exp[-2k* ] (1 T, - 1/2)]
m=1

and
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M - . :
=t - %
v, = exp[K mzl N m“)_‘ v Ty =T, and

tanh K* = e-ZK.
The critical temperature, Tc, is defined by K* = K or equivalently
sinh (2J/T ) = 1.
1
Let B,, = V>

M
formations BM can be written as

/ 1/2

2V1 V>" which is self-adjoint. By suitable trans-

M/2 e-HM

B, = (2 sinh 2K)

HNI is identified as the finite volume Hamiltonian,
The first transformation is a Jordan Wigner transformation. Let

m=1
. + - - -
c=expmz T.T.-)T 1 <m<Mi; ;e =1
" Log2y d adm? v
the inverse transformation is
_ m=1 + m=1
= A * = 3 * ec.)le*
T, [exp(m .2. ek Oj)Jcm b T [exp(ﬂ1 Z e’ cJ)-icm ,
J=1 J=1 -
thus
X mat X x
= 3 * = *
Ty [exp(ﬂv, jz] o cj):lcm , ¢, = o +ox .

The advantage of this transformation is that the °m obey anti- commu-

i i * — = * * -
tation relations such as {c .ct) = 8 ot {cm,cm,} {cm,cm,} 0. The
vector

Q=(?)®...®(?)5HM

with M factors has the property h R =0 for all m A basis for HM is
Q;{C;Q};{Gg‘u ek, QY ,ompo<my, ...{0’1"..-0&9}.
He(o) denotes the subspace generated -by the vectors with an even {odd)

number of cm's, the subspace corresponding to the eigenvalue 1 (-1) of

the operator
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1 ete) I o) -1
N = exp(mi e*c ) = exp(nt T 1) = -t7) .
mey MM m=) MM m=1

Secondly, a linear canonical transformation is defined by

- M—l/z . Z Jtam n o = e-7,1T/’-I

c K) 3
p q

m

- +
q € stors , but not both, where §~ are the M element sets

ST ={qg = & =+*u/M, *3u/M, ...t (M-1) n/M}

s k=0, *2n/M, ... % (M-2)m/M,7 }

[}
m

{q

and ¥ is assumed to be even. Throughout this section the letter g(k)

will refer to elements of §* (s7),
Finally, we make the linear canonical Valatin-~Bogoliubov trans-
formation

E_ = cos n + sin n*
¢4 q ¢q =

q q

where
E E + -
tan¢ =Cl(e -4 ) = (e 9-B)/C , q €S us /{o,m,
4 q 4 4 4

or tan 2¢ = 2¢ /(B -A ) and we require = -¢ ¢ %0 for : 0.
4 g 44 a 2 A 7

For g = 0 we set ¢, =0 for T > Te; for T < Tc, b, = 1/2, &, = n¥, and

forq =T, ¢1r = 0. The choice cbo =7/2 for 1T« Tc differs from that of

i}

IMS* and is made to simplify the expression for H, in Thm.1l.3, i.e,

€, 2 0. Aq’ Bq’ Cq’ and €4 are given by Y
A4 = e 2%* (cosh K + sinh X cos @+ e (sinh Kk sin )2,
Bq “2K* (sinh K sin Q?+ 2K (cosh X = sinh X cos g)?2,
Cq = (2sinh Ksin q) (cosh 2K* coshK - sinh 2k* sinhKcos q),

cosh E4 = cosh 2K* cosh 2K - sinh 2k* sinh 2K cos q, E_ > 0,

q
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It is to be noted that for T < Tz, ¢ _is discontinuous at g=0;
for r>71 , ¢q is continuous. 0 (e*9) = e~ 2% admits an analytic con-
q

tinuation in the variable z = ¢ which is

(1-27'2) (-2 ) T2
-z for T<’.7’c ,

(1- 27’27 (1-zp2) |

#

olz)

- - /2
(V- 13) -2 'z -;1
1 2 (1w, 2) for T>T_,

154
-1 -1 -1 -1
(V-2 )(l-x, = J

where @, = ctnh K* ctnh K > 1, &, = (ctnh X/ctnh X*) 21 for TETC and
the phase angle in each factor of 0(z) is taken to be in (-’-2’,’5’ ). The
winding number of ©(3) is +1(0) for T< T, (T > Tn). Even though
does not have a simple expression in terms of Eq, cm+cr*r‘] does, and W’g
find
. , - . - 1/2
¢+ c* = (ocZeiqmel‘ng +a2e7'qme1¢QE*)M1/
m q q q q
+ -

where g E S or S but not both.

In terms of the Eq operators we have:

Thm. 2.3.

M = i+ mm 0 Ha(-) =HMr fe (o)

+
0 = e (E* £, - 1/2)
M Résﬁ 2 2 22

Y £ (&; g - 1/2)

H- =
M s

The sets {EZ}ZGS+ and {Ek}kes' obey anti-commutations re-

lations, However they are not independent; from

e = M_I/2 a I + A Ny
m 265

- M--l/2 o3 ezkm n
kes
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/Al

upon multiplying by o e-zk " summing over ¥ and replacing k' withk we

obtain

which upon substituting in

Ek = cos ¢k N, + sin ¢k nfk

gives
1 —~(%k-2) - {k-4)
g =t g, + ¢t g == L {(2 /(l-e ))
k 1k% ~% 2Kk 74 MILES+
. (cos (y-0,)&, + sin(¢,-¢,) ex) by
a linear canonical transformation between {ER}%S+ and {gk}kes' ] If

T> TC the same relation holds with k and % interchanged. But for T<TC:

g, =1 7 [Zei(k-“ ][ (6,-0,)E, + sin(b,-¢,)E%]
- ——— coS - + sin -

2 Mkes- ]_ei(k"ﬁ) g "k’7k g Tk -k
_'2/

— cos ¢ E;

I—e-ig :

+
X~

=S, kb *S k%

+, - i i + - =
. . The vacuum vectors \[)S (s7) which satisfy 5q ll)S g 0for all
q € 8 (s ) are given by

I, (cos ¢, + sin ¢, n*, n¥)Q
5 ILGS+ L 2 -2 e

<
+
]

*
Y- T _ n (cos ¢, + sin ¢, *, n*)Q T<T
8 0<k€S <7 0 k kook Tk ' ¢

M _ (cos ¢, +sind, n*, n¥Q , T>T
s x r Mo R e

so that Y.+ € He and Y- € Ho(e) for T<T, (7 > Tc)'
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. + . 1 - 1
The lowest eigenvalue of HM is- 7 ,QCEZ and of |—|M is 7 iek.

By the unitary transforrnation,

M R
U=s T U, U =~—( ),
- Y

we have

- -1 _ Y L -1 B
UTmU— T,UTmU L UTmU T

-H
-1 . .
and Ue M U har positive matrix elements. By the Perron-Frobenius
theorem the eigenspace associated with the largest eigenvalue of
-f

-1 :
Ue M U  is one-dimensional and the corresponding eigenvector, &', can

be chosen to have strictly positive components which irnplies <I>‘8UHe=He’.
Thus, the eigenvector associated with the lowest eigenvalue
of HM is wS"’ € He'
In terms of the 5q operators, the momenturn operator, PM’ is

given in

Thm, 2.4.%°

- _ *
P rRE G
and the equations
1P, -1P
eMTxe M=’L‘x y 2<m< M
m=1
eLPM . e-LPM _ =
M

are satisfied.

The finite volume correlation functions are given by

Thm. 2.5, If 1 €0y € 7,000 €1y € N then
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<o(ny,m).eoln, m)>y

; -HMn, z ’HM(”Z“”x) x " —HM(IV-nk)
r(e T, © Ty 0 Ty €

- =

Tr(e

Let HM = HM— inf spec HM and HM+(-) = HM [‘ He(O)' Letting N»» we ob-

tain the finite volume Feynman-Kac formula as

Corollary 2.5.1. If 1 =n < ... ¢ ) then

Sy = <o(n,m ). c(nk,mk)>M

-F (n,-n,)
_ x M2 x x
= (g*, Tm, © Ty, ka Vg )
-H (n,n,) -iP;(m,-m,)
= (¢S+, T:f e M e U T:f
_f\;;(na-nz) -iP:;(ma-mz) -gﬂ;(nk-nk-l) -iP;l(mk-mk_l) "
e e N e Ty Vgt )

Remark: By making a 1-1 correspondence between S+ and S Berezin's
theory of plct'? gives a unitary Uy, such that &, = Uy€y U;. Knowing
the null space of ¢t , y and UM1 are given explicitly in terms of {ER}
so that the energy-momentum factors with #,,, PM can be expressed in
terms of only the one set of fermions {E;Z}.

A series representation for SMk is obtained by inserting the

spectral representation of H and P, For T > Tc,

* - * * Ik - * *
gkl ’J’S > gkl gk2£k3 ws ,.-.,Ekl... ng.-] lps_ and
* * * * *
ws+ ’ 521 69’2 ws+’ AL 1 ggl glz v e ESLM lrbs+

generate HO and He, respectively. Thus we have

Corollary 2.5.2.
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=Y, =Y
2 oy x 81
S = L Wghs Ty @ 0 Xy ) (g W Ta @ 0 Xgy Dot
18240 .Otk_]

-,
tFe 1y N

( , X
XBk-—] k=1 O’

. . - S ¢ .
where y. '(YB') is the eigenvalue of HM+ thy (8, + zPM)correspondlng
to the eigenvector x_ .{X,.) with

aj "8j

—1/2 *
= (n! S - a., =n odd
X (n) &, x Vs

XBj = (n!)-l/2 g;,] v gzn IPS'*' B n even .

The Olg.(B.) are multi-indices taking odd (even) values. A similar ex-

pansion holds for T < Tc where
- - * * -
UJS s gzl E]tz IPS s vy Ekl Ekz cer EZ lPS and

LOEY Y+ R
bt Gy B Vgt e, B CﬁM gt
generate Hy and He , respectively.

Remarks: 1. As noted by Abraham’ by using the expression for TIX in
terms of the g 's and the linear relations ‘52 = 8191 Ek + So0k 5}; ,

« Corollary 2,5.,2 reduces the determination of
tﬁe cor%la%mn ?u%cuons to the determination of a generic matrix el-

ement

Wgr B +oe & V¥

or

R L EX
since F’R ws+ =0 and gk Yo = 0.

2. By Berezin's!? theory of plct if we know the null space

of ¢, or s, then we have explicit formulas for \DS- and terms of { £ }

1
and ¢S+ and the above matrix elements can be obtained py applying

Wick's theorem.
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This can also be done in the infinite lattice case but in*®
a generalization of Wick's theorem is proved and used to obtain the

matrix elements.

3. CONSTRUCTION OF INFINITE VOLUME OPERATORS AND THEIR PROPERTIES

In this section we+define infinite volume analogs of the op-
.+.
T x x :
erators Ek’ EQ‘, nk, nz, HM' PM’ cm Tm of section 2 andstudy
their properties. The theory of proper (improper) linear canonical

12

transformations plct (i1ct) as developed in Berezin*“ enters in an

essential way. For relevant definitions, results and proofs we refer

12 In section 4 these operators will be used to define

the reader to
the infinite volume correlation functions as a Feynmann-Kac foi-mula.
Let H be the anti-symmetric Fock space over L?(-m,m)=7 and
let g(k), g*(k) be the usual Fock annihilation and creation operator-
-valued distributions satisfying the canonical anti- commutation re-

lations

{E(x), E(KN} = {Ex(k), Ex(xN} =0, {EK), g*(k')} = §(k-k")

A~

and let J denote the vacuum vector, i.e. E(f)t[) = for allf €r.
We define the Hilbert transform, H, as the Lz(-ﬂ,’lT) closure

of Hc where
T

A=t (-F%Dy e g
-
fec [—w,ﬂ.Hsatisfies |H| =1 ag_g H® =1 . For any bounded operator on
(-m,m) define 4 by (Af) (k) = (4F) (k) and A’ = Z* = ¥, Thus H* = H.
Also define the operator V by (vf) (k) = f(-k). Thus ¥ = V = y* = pr,
E(Q) and £*(q), qgE [:-'rr,ﬂ, the analogs of Ejk and Eif, are
defined by

E(f) = E(T,f) + E*(1op) (2.1a)

g*(f) = g(Tzf) + g*(ﬂf) , {2.1b)

11
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f €L% 7,7, are the L closures of Ty, Ty, where

(r, ) (k) = ntp f“ (l-ei(k_q))-l cos(¢q~¢k)f(q)dq (2.2)
-1

AP [“ (1-etlirg) )1 sin(ra)Fa)da | (2.3)
-7

fec [—W,Tr], and P denotes the principal value. Some of the properties

of T, and T, are given by

(7, £ (%)

Thm. 3.1,
i) T, = costlicosp + sinpBsing = 271 (%0 ™0 4 .70y t0)
ii) T, = cos¢VHsing + sindVHcosp = (22) 7" (ei¢VHe7’.¢ - e—wVHe-w)

i) 7y =T, 7, =Ty , T, # T,

iv) 7] =T, =TF , T, #7,

2 2 2
v) T'T + T'T =0
1 2 21
vi) T+ 7)T, = |

vii) dim ker T, = 1(0) for T<T, (r>1)
= index O(z).

Prf, of Thm 3.1:

i) - iv) follow from the definitions of 7; and T,.

v) is proved by direct calculation. We have

TIT, + TIT, = (cos¢VHVcosd + sindVAVsing)
(cosdVHsind + sindVHcosd) +

(cos¢VHsing + singVHcosd)

(cos¢Hcosd + sindAsing) =

= cosPVH (Vcos?p ¥ + sin®p)Hsing +

singVH(Vsin?¢V + cos’¢)Hcosd +

cosdVH (Vcos?sind¥ + sindcosd)Hcosd +

singVH (Vsin®cosqV + cosdsing)Hsing

12
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The last two terms vanish since sindcosd is odd. Since sin2¢ and cosz¢

are even and #2 = | the right side becomes
cospVsing + sindVcosd = V(cosdsind - sinpcosd) = 0

vi) is proved in a similar way. vii) is proved by ob-
serving 7 f = 0 iffHOg + ©Hg = 0 where g = e7’¢f and O = e-zw,
Abraharn has shown that the kernel of HO + OH obeys the statement of vii).

Concerning the operators E(f), E*(f) defined by eq. (2.1a,b)

we have
Thm. 3.2,
i) E(f), E*(H) satisfy CACR
ii) egs. (2.1a.b) hold with ~ and ~ interchanged.
iii> the transformation (2.la,b) is a plct, i.e. there exists
a unique (up to a constant A, |A] = 1) unitary U such that for all feL

ER) =V EPU , B = v B

and ¥ = U is the vacuum vector for E(f), i.e. E(f) ¢ =10 for all
feL.
iv) the U of iii) satisfies V> = «I, || =1, Uand ¢ can be

redef ined so that U = U* and ¥ = Uy,

Remarks:

1. In the sequel we take U = U*; this choice plays an impor-
tant role in the 'one-Fermion' Schwinger functions (see Theorem 4. 2)
and in the decomposition of the periodic state in section 5.

2. Formulas for U and § are given in Appendix B in terms of

E(k), E*(k) and V.

Prf. of Thm. 3.2: i) Follows from v) and vi) of Thm. 3.1. ii). W see
that

E(Tlf) E(lef) + g*(Tlef) ’
£X(T,f) = é(f’z'fzf) + g*(f’xTof)-

13
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From Thm, 3.1 vi), T/T, + 74T, =1 or T, + 7,7, =1 (since P! o= 7

- 1
and 7§ =T, ). Thus 7,2 + 7, = 1. From Thm. 3.1 v), T)T +T!T, =0
or 7,7 + T 7 =0, Thus

1]

E(T,f) + E*(1,£) = E((T2 + T,7,)F) + EX((T,T, +T,7,)f) =E(f).

Similarly one shows £* (r) = g(i’zf) + g*(f’lf).

iii) From*?, i) and ii) it is sufficient to show that Ty has property A

and that T, is Hilbert-Schmidt. As T, is self-adjoint it has property

A. T,(k,q), the kernel of T, is given by
Tolk,q) = * sin(y s,) (1-e”! (ketq)y =1

Since T,(k,q) is bounded and piecewise continuous on [-Tr,vr] x [‘",TT]

it is in Z%{(-m,m) x (~w,m)), thus it is Hilbert-Schmidt,

iv) By ii) and iii):

VEP U™ = U(E(T, ) + EX(T,,))U " =

= E(T,f) + EX(7,0) = E(p) = U E(AU

or V2E(F) = E(f) Wsor all ferL. similarly VREHF) = B (F)U2,  Thus U?
comutes with all E(f), E*(f) which (see ref.12) implies U% = X1, |A|=1,

This result also follows abstractly from the following group property ;

¥y
3y

with the transformation of egs. {2.la,b). The Ict form a group (success-

associate the matrix

ive transformations corresponding to matrix multiplication of the as-

sociated matrices) and the inverse transformation has the matrix
N % AN]
zH* (1))

(r3)  (T9)* J

=1

By Thm. 3.1 iii) and iv) Tf Ty and T3 = T, so that Ft=J3or 3721,
As the unitaries which implement the transformations form a ray rep-

resentation of the Ict group we have U? = Al, lk[ =1,

14
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It is always possible to redefine U and J) = UII) such that U? =
=I', Indeed, for the new U take the operetor 4 - v with u? = 'l(lul-t)
and for the new lp the vector wn = uw Thus U =1, V = U* and tpn—Vnw

Let # ¢(o) e the subspace of H wnth an even (odd) number of
E particles, More precisely A (Ho) is the eigenspace of exp(m % N) as-

sociated with the eigenvalue +I( 1) where

-

'n
b =f E* (k)€ (k) dk
T
Similarly define ﬁe(o)' V& have

Thm, 3.3.

I
I
X
~
€
o}
I
b=~}
—
(o]
=
-
A
3
o)
>
o

Prf. of Thm. 3.3, Follows from the form of q} given in Appendix B.

In analogy with the finite lattice case we define infinite

volume energy and momentum operators H and P, respectively, by

Bl A e(k) E*(RERK)ak | A
B} H, = S e(k)EXq)E(q)dg | A,
P} F{e =/ k ExR)E(R)dxK | H
PMH, = s q ExE@dg} F,

for T < Tc and for 7T > Tc
2} H, =/ e@EWE@R A
B} Hy = 1 el@E*(g)Elq)dg } T,
PMA, =Sk EREREK] H,
PMHy =S q E*@EQdg] o

It is interesting to note

15
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Thm 3.4. Let

ﬁ(q) cos¢q Eq) - sin¢>q E*(-q) ,

cosd, Elg) - sing, E*(-q) .

n{q)

These transformations are inproper |inear canonical transformations, i
e. there does not exist a unitary ¢ which inplements the transform-
ation. Furthermoren(f) = n(af).

Prf. of Thm 3.4 Wite n(f) = £(5,) + E*(f,) for ez and

Hi
L}

FL&) = (8,) (k) = cos¢, f (k)

Falk) = (521) (k) = sing, Fi-%) .

By direct calculation we find

0
I

SI'SZ + SZ'SI

813, + 813,

and as in the proof of Thm 3.3 the lct is invertible,

2P =nisiP) - n* (520

and (n(k), n*(k)) satisfy canonical anti-commutation rel ations. The
transformation is improper, i.e. not proper, since S, is not a Hlbert
-Schmidt operator.

n(f) = n(af) follows from the explicit eval uati on of

n(f) = £(5,7) + E*(5,1)
E((1,8, + F,8,)F) + E*((T,5, + T15,)f)

#

ﬁ((SlTISI + 85,7585 - 5,728, - 525’152);” +

n* (317281 + 51T1Ss - SaT1S1 = 527252)F) .

We now define
- _a [ Zqgm-1)
cm_Z'rrJe nlg)dg, mzx1 and

16



Revista Brasileira de Fisica, Vol. 16, n? 1, 1988

- o m=1) -~ -im/h
cm=%Jetq(m”n(q)dq,'mzl, @ =t

We have

Thm. 35. ¢ =¢ , mx1.
m m

Prf. of Thm. 3.5: Follows from H ¢*?" = (sgn m)etq’". Since there is
no distinction between Em and Em we denote these operators by cm. We

define the field operators, o’; , by

!

2 S _ Tt .
e g [ fae B s e B )] ag
and ’
& = o ~tPm & JLPm
m

where ¢ = c_ + c.
m m m

W believe, but have been unable to prove that linear combi-
nations of vectors of the forms
bij -H!nil P, .
e e Gaf)lb
=1

are dense in H. Assuming this result, we have
. x o X1 _
Thm. 3.6: [0, o,] = 0.

Proof: 1t is sufficient to show
N -H|n.| iPm, _ . !
((nNe *“ e *“®, C&F(n e
. 1 mn .
7=1 J=1

-H|n!t| iPm! -
I e 9N

is symmetric inm, N. But this follows from the Feynmann-Kac formula
(whose proof will be given in sec. 4) which relates the above inner-
-product to an N + ¥’ + 2 = point correlation function of the periodic

Ising model,

4. INFINITE VOLUME SCHWINGER FUNCTIONS AND THEIR REPRESENTATION

In terms of the vectors and operators introduced in section
3, define the k-point Schwinger function, Sk’ as

17
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“H(ny,~n,) -iP(my-m,)

S, = (v, o7 e e o) ...
-H(n,-n, ) =iP(m, -m ) .
e k k=1 e k Tkl o ¥) (4.1)
where 7 € 77 a0 € nk' W have

Thm. 4.1, Sk of eq. (4.1) is indeed the k— point correlation function of

the periodic Ising medel, i.e.

= lim (S

S
Moo Mk

X = <o(ny,m) .. ;o(nk,mk)>M) =<o(ny,my).. .c(nk,mk)>.

W defer the proof of Thm.4k.1 to the end of this section.

From the definition of H and P in section 3 we see that the
“ or " operators occur in H or P depending on the parity of the vector
on which it acts. However, Sk of eq. (4.1) can be expressed in terms of

the ~ operators only as seen in
Thm. 4.2. Let

™
2(8) =J c(k) (1) E*(E(R)dk and o, = U, o
-

and U being expressed in terms of the ~ operators. Then Oy = v! cf and

“Hlny-ny) -P(my-m,)

Sy =(&, o, e e Op vee
-H n,-n, ,) -iZ;(m -m, ) .
i L e k k'] e k k"l 00 w) .
Proof of Thm. 4.2, Let H(P)
i
#(P) ( e(k) (REXREWR)dK .
=T

Then eq. (4.1) can be written as

x -ﬁ(nz-nl) _iP(mz-ml) x “ﬁ(n3-n2) 'il‘;(ma-mz)

S = (xﬁ,ol e e oy é e
-H(n,~ ) -2P(m,-m, ) ~
..e k k-1 e k k-1 O,T w) ]
Substituting - operators by -~ operators according to Thm.3.2iii gives

18
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. “B(n,-ny) =~iB(m,-m,) o x -B(n,-n,) ~iP(m,-m,)
e

5, = W0V e e U'de

-i8n,-n, .} =-<Blm -m, .) -
e KT T e

. -1 ) -
The theorem follows since U o;f = o‘qf using Thm. 3.5 and U = U* = U r
Remark: If we are considering vacuum expectation values of Heisenberg
operators (replace nj by -i t3.) then the energy-momentum operators canbe

incorporated in UTU by using the relation
e o = eif(k)é(k)
and its adjoint where

T
F= ( 7lq) E*(Q)E(q)dg,

-1
T real.
An infinite series representation for Sk is obtained by in-

serting the spectral representation of H and P in eq. (4.1). W have
Thm 43, For T > Tc

E* (£, 00,0, EX(F, )on BX(S, )0,... n odd
and "

U, uee, é*(fil)"' g*(fi YP,... n even

n

generate Qo and fqe, respectively, where {fi} is a complete orthonormal

set in L. Thus

ay 8 Cpiy,~ Y,
Sp = 1 qu qu‘...[qu'(w,c”fe %y, )
1
(1182--c8k_2uk_]
=,

-y o )
B x kﬁ] T
(o, o7 e Tixg) o (xg, , o1 @ Xa‘-i)(xak-i’of v)

19
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where

n n
Yo‘j(YBj) = (izl S(qi))("jﬂ'"j) + ’b(izl qi)(mjn'mj) for o; = n (B,=n)

and

=<
|

y = (ocj!)’l/z g*(ql)..,g*(qaj)qj , oy odd
(le)‘l/z g*(ql)...é*(qs.)q‘, , Bj even ,
J

and the integral f dg* (f qu) extends over the ¢ (B) q variables oc-
curing in Xoc and Xg:*
Similar results hold for T < Tc where
Vo eee s EX(F ) L 5*(fi ) ¥, ...7n even
and ' "

Yy vev g*(fiz) e é*(fil)...g*(fin)lﬁ,...n even

~ -~

generate fi; and He, respectively.

Remark: Using the explicit form of ¥ in terms of £, £% and § the above
rnatrix can in principle be evaluated by applying Wick's theorem.However

in ref.18 a generalization of Wick's theorem is proved and used to

evaluate (x_, oF XB)'

Proof of Thm. 4.1: The proof is given for the two-point function. A
similar argument holds for the k * 2 point functions, W begin by show-
ing that both systems of point functions can be expressed in termsofan

infinite set

foe]

(Flkyyoi sk )Y g s

(o]

n=0 "

{e(ryyen k)3

the first set for the Schwinger functions, the second for the corre-
lation functions. The functions within each set will be shown tosatisfy
a set of coupled integral equations identical in form tothose described
in”. This will imply that the two expectations, call thern <+*>; and <*>,

are related by <*>; = ¢<*>,; ¢ = 1 follows from <0ici>‘ = <Gi0i>2 = 1.

20
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We establish a useful representation of the two-point func-
tion of the periodic state as in’. From Cor. 2.5.1, assuming np 3 "1,
and inserting a complete set of energy-momentum eigenvectors in SMZ we

have
(a) T < T,
Sp= I L 6%, B LB U2
" neven kiGS . : 1 n
n n
expl-( } (k) +8,) (nam1) -2 ] k.)lmzom)
j=l J j:] J

(b) T > T,

SMZ = (same as above with n odd) .

In these formulas,

1 _
<S=—-[Z £ -2_s_l+o as M +» »,
M2 Logst ¥ rgs” KA

The last assertion follows from

1
M
lim ( - f (q) dg) =0 .
Mo zés*(kes') EION T “

Let, as in’,
_ 2 -inu/l . T - &
Fi;((k)"n) = 1‘[1 e exP(’LjZ‘ (kj ¢kj))(ws-,gkn'.‘gklrlws.'-)

and

AR, ) = Y2 Y ot T (ko ) Wiy B Ygh).
M 1,n) g=1 7 %5 n 1

Following Abraham’ we use the notation Avll"'iﬂ(k)l n L0 mean the set
o 14

(Kyyerisk YK, ook, b
n %1 ’LJL

- 2’
Theorem 4.4, Ref.7 If 8(¢ k) =e o then

21
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ik
FZ((k)l,n) =i, és_e(e 0) F((®)g ) =

0 .
- |k. -1
03T ee I E0 0, )

M~ =) —

Jg=1

Pf: Follows imediately fromthe representation

, -1 {k+d,)
& ooy +eur/lle k Ei:]

t kes”

. 7 (k+d,)
x -1/2 z [e-z'rr/h R k gk

Theorem4. 5. Let

1i1) = 200 TER T (0 Fh T aetH) - )

Then

. 2 (k,~2) - kg 20 -1
M ) FM((k)O,n)(e DT+ ele Nee ) ) =

g

; N Rk 0 B0 )

1

Prf: From
(\PS',Ek ,-«-,g EK\PS&) = 0
n k,

together with the relation (T < 7.)

£y = Sk * Soubk

we have
il (k) "
0= ) gs_ M e (1-e ) COS(¢SL-¢ko)(wS—’Ekn"'gkowS"
0
. o ctlkerR) o -tlk+8) .
ROZS- w e (1-e sin(0yaty ) (g1 By B UgH)

After =limnating 57:0 in the second termusing anti-commtation the re-
sult follows by direct substitution. For T > TC the relation between Ez

22
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and gk does not contain the last term involving E: but still the above

formula is obtained.
'
1t has been argued in” that the functions FM and F;l have

limiting values F and Flt, respectively, as M—»>~, satisfying

1 f iko
Py ) = (m™ | dk 0le P, ) +
n : ik, _,
+ ) (=177 e(e ) FQa (k) ), nx1 (4.2)
F=1 J g
and
2 ko) ik .
PLa, mlw, e 0T el o™ -
n j']
= Z (-1) h(kj,Q)F(Aj(k)"n), nxl . (4.3)

In addition, the two-point function can be written as

(a) T < 7,
<g(n,,mo(n, m)>= 1lim S
1 1 2 2 M.)co Mz
= 7 (Zﬂn!)-nf f |Fw((k)] n)lz exp {-(n,~n,).
n even '

n n
(] ek)) - 2lmy=m))( }
. J =

4 kj)} k..o dk, (4.5)

1

(b) T> Tc' the sum on the RHS above is now over odd #'s,

Since we have not been able to confirm the argument in ref,7
a proof of the above facts is presented in Appendix A.
Remarks: 1. Assume T<T,. The n=O term in (4.4) is [F%(¢)]2,
where F’C(cb) = IiMm (ws-, T)l( ¢S+) = m*, Eq, (4.2) is replaced by
zk

(2m) ™ j dk, 0le F(K,) = m* (1.5)

23
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The functions F’”((k ) for m > 1 are determned through (4.2) once
we know the set {F((k) )} for odd n. These obey the systern

n 1
Y, (R ) = J_Z] (1777 Ak, ) F(L(R)) )

where ¥ r*(-m,m = L?*(-7,m) is the bounded operator given by
@ =L [ @ r@ @D (v seeE™ . we

It has heen shown in’ that dinker v = 1 if 7 < T,and =0 if T>TC. in
addition, it has been proved that the system(4.3) has a unique anti-
synetric solution once F(k) is given. This function satisfies YF=0 and
therefore is therefore is uniquely specified except for a constant,
which is then fixed by (4.5).

2, T>7T,. Inthis case, <o(ny,m)o(n,,m,)> is deternined
from {F’r((k) RS n odd, or {F({k), )} with even n. Since now dimker
Y=0, these funct| ons are uni quely speC|f|ed onte F(¢) is given. It is
easy to show that the appropriate value is 7($) = limn (ygo=,y+).

To show t hat M

8, = <o(ny,m)oln, ,my)>

we proceed as fol | ows:

(8 T« T, Inserting a conplete set of energy-nmomentum
ei genvect ors

8, = | G0 9% + 2

(e +e(k Nn,=n,) =2k, +k,) (m,-m,)
dekdke ! 2"2"127'1'*’ "2
1@ EWER) 0T 912 4

by 7>r
c

~e (k) (n,~n,)  -ik(m,-m;)

=fﬂe ¢ 0, (0% ]2 +

Let
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n
: (o6 ) o
Fl), ) = ™2 e I e ). Bk, D)
n
e : (E )
(), ) = @2 o BT ) L B GT 9).
Theorem 4.6.

ik
G ((k) 2 = (2m) f 8(e O)G((k)o’n)dko

n - ik, |

+ ) 9 ee 9T oaal(r), ) .
. J I,m
g=1

Prf: Follows from direct substitution of o’f = E*(g) + £(g) , where

glk) = ST/ Y%/5%F in the expression for Gx((k)‘ n)'

Theorem 4,7.

i(ky-2) |

_—
L z)j,dko 00 6, Y0 (e et

n .
= _1yd=t
jzl (-1) h(kj,Z)G(Aj(k)l,n)

Pri: Let g 4uciey g,, be arbitrary L functions and f E C such that et?

f is smooth. Then
0= W,Eg,)...Elg)EGN) =
= f g, (k) oo ugy (R (T, F) () (D,E(k,) oo E(ky) D) dR, ... dE,

s 5 o(end (j (k) (T, F) (k.)dk.)
Lt AN AR A

n ~
(1 (x,)), T E(k)INT dq,)
9=y 22772 kég Y g R
[P
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Wsing the definitionof g, together wth

¢ - . . . . 20
e k(Tlf)(k) =(2n) " P f (l-et(u k)) 1(1+6(e$u)6(e1k)-1)(ez % or(u))du

and

¢z, 1) (%) =

. o . Y
=)t e j (1-8(e“) 7 6(eP%) ") (1-e TN (T o))

one gets

(kq=u)

i
) 1600 Dole ) )=

¢ 3
J dule ™ £) PJ ;% dk, G((k)o,n)(i-et
n - ¢ fun -1 tk, ~tlutk)
L3 ate ¥ s amee™ ™ ol HTH0me 9
g

x 6,0 )

"
The t heorem follows,

Assume T < T, The function G(k) satisfies YG= 0 and (2r) ',

fs<eik)a(k)dk = (§.,6% §)
This implies
6T ((k), : (@,Gf k . n)/m*’ (n even)

and therefore

s, = | (¥,07 ) /m* |2 <o(ny,m,)oln,,m,)>

8y evaluating the correlation functions at coinci dent points We con-=
clude

F,079) /m* |2 =1,
hence
So = <0‘(?21,ﬂ71)0'(n2,m2)> .

A simlar argunent mﬂ$forT>'L.

26
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5. DECWPOSITION OF THE PERIODIC STATE
in addition to properties iii) and iv) of Thrm. 3.2  enjoyed
by v we have
Thm. 5.1, sz'f.U] =0and forT <7,
-1 imH
7 = [0 = o,
Prf. of Tm 5.1.: As oy =¢, +cf it follows from Tm. 3.5 that

v vt =df or [T, U] =0.

If (for T < Tc) o

then
&5 = explin S q E*()E(g)d)X -

Furthermore, if

_ow -
X = z g*(fi)WEHe

=1

then

Ut TPy g = U ey = U explin S g EX@)E(@)da)x

explin [ q E*(QE(Qdpx = ™™ X .

Thus we have shwn that
-1 ImP -nf _ tmPn
v UTHH, = e [ M
and similary one shows the equality for ﬁo so that [eW,U] = 0. Sub-
stituting H for P in the above arguments shows that [emH, )= 0.

Since U® = I and thus U* = U,p, = L‘—-'%—L-J are orthogonal pro-

jections and P P_ = 0. Thus for T < T, the subspace H, = P_H reduce 0‘?.
HLMP “mH

and ¢ . V& have

Thm. 5.2. Let T< 7, and ¥, = vZP, ¢ =""(§ {) sothat Jy.| = 1.

L
vz
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(l‘ﬁ, O y) admits the decomposition
@0 9) =5 (yr 00) +5 W_,09)

where 0 is a generic product

-Bln,| -iPm.
0 =IIO"fe I e J
7
and (v, . wi) are translationally invariant states. Furthermore, the
deconposi tion is non-trivial since (¢+, o, w+) =-(@_, 0, ¥) #£0 if

0 has an even nunber of factors

{, 09

L}

W, 00) =W ,0v) =@, 09

and for an odd nunber

@, 09 =0, @,0¥)=0,00=007.

(14)+,.tp+) and (p_, . ) have the clustering property; thus they are in-
deconposabl e.

Renarks :

|. By redefining J), i f necessary, (zp+,a, w+)=(zf;,olu~;) can be taken tobe
positive and is usually called the spontaneous nagnetization.

2. Let H denote the closure of the subspace of H generated by applying

polynomals in I D.i (finite product), where Z is the set of in-

1¢2

tegers and ~H|n.| dm.p ~im P
7 1 7

y = € € G, ¢ ,
to ¥. Let H" be the physical H Ibert space obtai ned fromthe GNS con-
struction appl ied to the state (§, . $). W expect, but have been unable

to show that H' = Hor H' = H

Prf.. V& have, using P,P_ = [P, 0] =0,

W,00) = ((p, + 2, 0B, + P V)

(P,¥,0P0) + (P, 0P

it

1 1
'2" (¢+a0¢+) + f ('\U_»OIP_)

28
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which shows the decomposition. If 0 has an even number of factors then
0. Re - Qe and Ro" ﬁo so that

(0,,09,) =5 (G =D, G2 =5 [3,0D+@,00]

F,0 %) =@, 0w,

1¥ 0 has an odd number of factors then
(W, 00,) = %5 [3,09) + 3,00 = 0,00 ,

since
b, 09) = Wb, 0v-" ) =@, v'0 v 9 =000 =00

1
pendix C which implies that the m states are distinct. The clustering

1f 0 = ¢ then w,, cgf $,) = t(@,o‘qf ¥) is shown to be non-zero in Ap-

of these states is a consequence of the uniqueness of the vacuum in
Hi = PiH (which follows from the known double degeneracy of the ground
state of (#,P)).

APPENDIX A: THERMODYNAMIC LIMIT

W remark that it can be shown that, for high temperatures,

the sequence {SM7<} converges to S,, given by (4.1). For all tempera-

,
tures compactness can be used to e7><<tract a convergent subsequence. In
this appendix we show that any subsequence of {SMZ} where M is of the
for 2n contains a convergent subsequence with limit given by (4.4) if
T < Tc or the appropriately modified (4.4) for T > TC where 7~ is given
by (4.2) and F satisfies (4.3). The idea of the proof is to show that
the sequence {FM} is a normal family of analytic functions in thevari-
able z=¢'% ina neighborhood (independent of &) of |z] = 1. Then, we
show that the limit F of any convergent subsequence satisfies (4.3) and
in addition the same subsequence of correlation functions converges to
(4.4). Ve will assume T<TC but similar arguments apply for T>TC and
k > 2.
Recall the definition
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_ 1/2
FM(k) =M

e-iw/h exp(Z (k—¢k)) (lbs- .akws»r)

Thm,A.1. FM as a function of z = ezk extends as an analytic
function in an annulus, independent of M but dependent on T , around
[z] =1 and is uniformly (in M) bounded on compact subsets.

Proof: Using the relationship between gk and gR we write

. ) TO,) o -
G Y e Flemet Y e T a7

F (z) =e
M ks

*
(ws_. £, ws+) .

Let the annulus of analyticity be described by r < ]z} <R, with r<i
and B > 1. The function (6™ @) - 8 *(z))/(zw) is analytic in both
variables in r<|z|, |w| < R and therefore uniformly bounded in
r< r'<|z], |wj $R' <R, with n'< 1 andR' > 1 independent of M.
Let C be the bound. Then for r* £ }z| < R',

=172 , 2y 1/2
[FM(z)| < R'M ¢ Qéf [ We-y %, b)| < CR (zés*‘ (g, BX Wst) %)

Since the set

(f vgtlyes® » T8, B, BF, Yoty et

2, <2, <2, <. form an orthogonal basis in He’ we have
] = - - =
(KPS ,ws)
i
= VW g* w2 e L [ 8% BR EY W)+l
kst 15T TS 37 zies’" 5750, R, PR, 7S
It follows that |F,(z){ < CR'.
A similar result holds for {FM(z P JRT Thus, any,

subsequence of M contains a subsequence for which FM(ZI,.. "32n+]) con-
verges uniformly oncornpact subsets of »< ]z,b| < R, For notational
convenience, we still call the converging subsequence {FM} and call the
limit F(zl,.‘.,zznﬂ). W next show that F satisfies (4.3). Since M has
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the form 2" this implies 5, C Sy, if M' > M. Let B = Us™  and let
h(z) be an arbitrary analytic function on r < |z|<R. If

g0 = 2 7 e ENT (hee™) 0, ke B,
2€8
then
Lemma A.2.

(il . . , .
lim g, (k) = g(%) = 77" P [ 1™ (5D ) (e ™) ro et ) an, |
Moo -

uniformly in k E R-.

Proof: Write
gM(k) = ZM—I 2 . hl(eiﬁ') (ei(k"ﬁ,)_])'l
. 288
+ oy 2_,_ hz(eﬂ)(ei(k—m -7 . (A.Ij
2€3
where
‘3 . . . .
h(e"D) = ne™ and m (D) = 8! Rt |
Let +
B, = {2 E st w7 gy
Then,

™ 1. e E ey o
kés

2t 1 [ EP s PR 00 e
268, - |
k

Eh@i&%)_eﬁzhﬂgﬂvwﬂ/wdl_”.

3

-1
= 28}
€87

Consider the function of two variables

(zh1(wa)-n1lw/z))/(V-5) , =4) ;
- (h1) + whi@W)) , a=] .
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This is analytic inr < |w|, lz] <R, and in particular uniformly

continuous for jw| = |2] = 1. From this, it follows that

lim 20§ h () (F &2 Ly
Moo 2€3

~1
=7

r‘ﬂ' [67:2, hl (27: (l*‘k)) -~ hl (ei (k'/q/))dzj

]_e'z,JL

-
o (T .  tn. -1
e NG [ AR
-7
uniformly in k€ R-. The second term in (A.1) is treated similariy and

the proof is complete,
Thm.A.3:

il . . .
P @) =7 P f ak P € F Y 1) e85y s0(eP) = 0.

-
Proof: Since

. 1k
! PRy L8 e )y _ gy e st
kéS- M € + 6(@7'2)

we have, upon multiplying by ™ r() and summing over R € §° |

-1
2" ) _F (kg (k) =0 .

kes™ MM

Using the uniformity of convergence of FM and Iy it is easy to show

that

Vim 207§ P(Rg(R) =
Moo x€s

! f F(k)g(k)dk

]

0=1im 2"y _ F (Kg,l(k
jyns kés MTTEM

[}

V¢ see from Lemma A.2 that (7,74) = 0, where the operator Y is defined
by (¥f) = (¥YF). Wsing self-adjointness of Y and the fact that analytic
functions on a neighborhood of |z]| = I are dense in L? (torus) we con-

clude that YF = 0.
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Using the same argument,

m
-1

-1

)

J=1

first for all k,,.
we see that the set of limiting functions F satisfies (4.3).

7 [ R, )

i(ko-g

)—

0 (e oy (e*))ax, =

it is easy to show that

P-
(-1)? h(kj,Q)F(Aj(k)l,n)

Recall from section 4 that (7 < Tos M2 % ny)

where

P, ) =1

(see Thm. 4.4). From the results above we see that F~

S,..= 7
MZ 7 even

k,€S

_ z a
et 7 sM2°N1 M2y
»n

Lk
T el DR, ) -

ik

F o e 9
+ ) (D7 T ele ¥) Fy (8GR, )

J=1

formly in k. € R to

-l m
), )= e [ e

S

)

dJ

M

ko
(), ke +

(-nd-1 e(\eikj)'I F(A.(k), )
J Y

., k_ER and then for all k. by continuity, Thus,
n Z

converges uni-

This last formula allows a continuous extension of va to all kn.ef-ﬂ,ﬂ].

It follows that

lim M7
Moo k€5

n
x exp[-(n,~ny) ( I
J=1

T
= (2m™"

.
- i(mz"fm) (

d

oS

l

]I,

T

k)] dkyens dky

n
E(kj) ) =2 (ma-mm1) ( .Z

J=

n.

1

m
1w, )1 expl- i) €

kj)] e'ﬁM(nz‘m )

T

elk.))
J=1 J

(¢4
Nyna=ny mp=mi
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Thm.A.4. There exists a constant ¢ (independent of M) such

t hat

M n+] (n+5)/2
% 0,0 < e (nel) /mt .

Corollary A.5, 1im S = a
g o M2 p gven 7aM2 T 42T

Proof: Follows fromthe dom nated convergence theorem

Proof of Thm.A.4: Starting fromthe definition of FM(k)] ,,) we get
)

2 -7 2 _
Eyly = ¥ k.gs' |Fy®)y D 1* =
T

m

k .€S n
7

The right hand side can be cal culated by Wck's theorem Terns involv-
ing contractions like (bq+, gz' gjén, bt) or (b, €. Ek, Yo+) do not
contribute because of the summation over the k's. Thus we see that

- (WomE, .- 8, V) ]2 < (Wb, EF L Er B, Lo By Ut).
] - g K, Vs ' kigS' A A ARG

lF 2« 13 (—1)P(\vs+,gzl5i1 gt ws+,gzngkinws+)=

_ ) _det4
kieS per m .€

k .ES
1
where the self-adjoint nmatrix A has el enents
hig = s B G Vg
)

We calculate, using Ek = t]ngQ + tZklgz .

- (2-k.) -2 {2-k,) 2{2~%.) 2(8-k.) _
L=t Y e ¥ (1-e e I (1-e Iy
i 265"
x sin(¢, =~ ¢ )Ysin(p, - d,) .
ki ) kj L

Let ( )
S (k-2) | -1

o, = Isin(e,~¢,)/(1-e"" ") | <=

! o, ke[-m,7] kL

(c, independent of ). Then |4, < 4ei/# and by Hadamard's inequal ity
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/2 < (hcf)n nn/Z = c’; nn/Z

|det 4| < (4e2/m)". #*“ and therefore 17yl

?

where ¢, = 4e?. Now, majorizing 7, we have

IFE < (Cz(n+l)(n+])(n+])/2)1/2 + n(cin-l)(n_‘)(n-l)/Z)l/Z.

ly

This implies

(n+l)(n+])(n+l)/2 + c§n+l)(n+])(n+l)/2)‘ R

2 .
(F;;IM < 2(e, max{1,e,},

3
|F;l1‘24 < b{ns1)2 c3(n+l)(n+‘)(n+l)/2 < cn+l(n+])(n+5)/2 =k oy,

and completes the proof of the theorem.

APPENDIX B

The structure of U and ‘5 depends on the null space of T,
which in turn depends on the temperature by Thm. 3.1 vii, Let _rvo( , )
denote the normal ordering operation with the ¥ vacuum projection oc-

curing after the last creation operation. For 7 > TC we have
Thm.B.I.

2) ¥ = (et 720" exp(- 5 [ ErG 2

7Y (k,k")E* (k)
dk dr ")y (8.1)

and (5,1) = (det Trern)'/*

b) U = (det 7T 0 (exp {- -‘z-j E@), B 1),

- .
[Tz»’ N ] (k,k'){ £(&") } ak k') (B.2).
-7 7ty Ex(k')

c) U=V, vE He’ UHQ =H and UH, = H,.

=4

Remark: 1. By expanding the exponential in (B.2) we see that

WE®DERD W) /@) = (27 01) (k&) = (5,707 )% (k)
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and
(@G, UE*(R)D/ (0,) = 717" (q,k)

These functions are obtained explicitly in ref. 18 by Wiener-Hopf
methods .
2. With our convention for £{f) we associate the matrix

{ T! T} }
J:(Tg 7

[

with the transformation egs. (2.1a,b) which differs from that of ref.
12. Our operators are the transpose of those in ref. 12. 1f B , D are
matrices associated with pict then BD corresponds to the transforrnation
first C followed by B, and in terms of the corresponding unitaries UBD
= UBUD.

2

Proof: a),b) follow from'? since dim ker T; = 0.

) (747} )% =T, 77" and T = 7, imply U = U~
Take T < Tc in what follows.

Lemma 8.2. The matrix

I
Q_.,, pasiiy
associated with the plct of eqgs. (2.1a,b) is the product of the three
plctv, aand v, i.e.
[ XA root Tt
S mvgany = (2o, L Y (6.3)
'21'V2’w'V1’ vierv/ )
where

! 4 ’ r
\)1 = Vl 2 , a = (_IJ ? . \)2= VZ E
0 Vl' proo! 0 V2

and V1’ V2 are the unitary operators defined by

Vv, )& = vF e K 4(r) (B.4)

(v, (k) =& V2 9(-q) 7 TV () 5 (8.5)
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d is the integral operator

(0 )0) = 17" P [ (22 cos (kra)) /" clksalcos(o )0 (a1,
(8.6)

$=0*=3 , dim ker ¢ = |

AV
o

and y =V} T, V5, elx) =% | ifx

Proof:
Using the group property of plct and the fact that 7, can be

written as

(r, ) (k) =

-7 j 7 &L (22 coslkng)) T2 e(k-)cos (s -0 (0T ) r(@) g

= [ 1,000 710 @ = [ 1,09 70)ag

the decompositions for T, and J follow.
As @ = ¢* = & and dim ker & # 0 the plct a of Lemma B.2. s

a special case (dim ker & = 1) of a decomposable plct in the sense of

ref. 12:

1.L=1L, ® L, where L, = ker (O). L, are invariant under &, ¢, ¢, y*

thus ® = & ® &,, ¥ = ¥, ® y,, ¥, is unitary on L,. &' is boundedon

L,.

2. The transformation

b(9;) = ald0,) + a*(v,9,) (8.7a)

b*(d)i) a(’j)i(b,[/') + a*(57/¢,5) (B'7b)

1=1,2, ¢ = ¢; + ¢, is a plct in Hi’ the subspace of H generated by
a*(9), ¢ € L., with matrix _(-I-"L ‘g'b .
¢ T %i
Thm. B.3. Let ¢, =a, h, h =% E ker &, |2] = 1. Let F,(F) be
the vacuum vector for the a's (b's) of eq. (B.7a,b) satisfying |F| =

= |Fo| =1, and let ¥ be the unitary which implements a. Then
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a) ¥, ¢, =v$, with |y| =1,
b) F =R, R, Fy
where R, = a*(#) and RaFo is given by eq. (B.1) with @, ¥,, F,, a*(k)

replacing
Ty, 1), 0, N0

c) Let a, B satisfy la] = |B] =1, B =a v, then

W= W,
where W, = a(ak) + a*(8h) and ¥, is given by eq. (B.2) with =&,, -y,,
alq), a*(q) replacing 7!, T}, £(g),E*(q) and N, referring to the a's.

Proof: b) First we show b(¢) F = 0 for all ¢,

b(¢) = b{e1)+b(9,), B(d,) = a*(¥9,)=ya, a*(h)
so that b(¢,) F =0 since b(¢,) R, = 0. Now

b(¢,)F = =R, b(¢,)R,F, as {b(¢,), By} =0

and b(¢,)R,F  is zero by Thm. B.1. c). W, satisfies b(¢, )W, = ¥, a(¢,),
b*(¢,)W, = W,a*(¢,) and W, satisfies -b(¢,)W, = W,ald,), -b*(¢,) W, =

= W,a*(¢,) and as b($,)W, = -W1b {¢,) we have

b(d)W (b(¢1) + b(¢2))W1W2

Wl(a(¢1) = b(¢2))W2

]

B

Wy, (al9,) + ald,)) = Wald)

A similar argument shows that b*($)W =Wa*(d) .

Thm. B.4. Let Uy, U,, W, = Wa1 Wa,_’ U=1U,W, U be the uni-

taries corresponding to the plct v, Vv, a, J. Then

a) =W =U, R R ¥

and

U=U, W W U

1 2
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where U, , U, are the usual Fockified operators of \/ and V,; R , R,,

W, W areas in Thm. 8.3. with U, g(k)U:l, Ulé*(k)U:1 replacing a(k),
1 2

a*(k) and Wai replacing V\II

b) v E Hy, UH, = H, and UH, =H_.

Proof: a) Follows from Lemma 8.2 and Thm. 8.3 since the unitaries cor-
responding to the plct give a ray representation of the plct group. b)

Holds since U, : Al .y ~ He(o) and Wi H,\ > Ro(e)'

APPENDIX C: (V, 07 U) #0 for T <7T.
@ 9 = @, E@ + EED = G, ExmD

where 2k} = eiﬂ/h e-i¢k/2ﬂ. ¥ is given by Thm. B.k or ¢ = 5/l§| where
- * -
Q = ‘: é (C ) w 9
nodd ™ 7

é,((n) (cn) = J cn(ku"'kn) :]%' ¥ (x)... g*(kn)dkl...dkn .

and c, is an anti-symmetric LZ([-Tr,'nj ™) function.
E(F)2 =0 forall f€L implies (7,f,3,) =0,

or <-:, E ker Tx' and we have

- - - -1 f - ~ -
(B, 0T 9 = || ’} 5, (WA = (2] (e, .

Letting g = ew 51 the requirement that 51 € ker T, becomes

. -24¢ .
T (%) =1 (eg+oHg) =0, E=c *z ol

1

o}

or passing to Fourier coeficients

[o]
Z en-mgm=0 nz0,
n=0

(2]

g! =
n‘zo n-m 9~ (m+1) 0 n20,
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where
. ps inw B -1 (n-m)w 2w
g(ew)= 2 g, € ’Om=®n-m_Je O™ dw
n=-c
By using Wiener-Hopf factorization (see Krein'") we find
-1,1/2
(z - x,) /
1/2
(z - ;)
and it is confirmed that
'27:4)2
) = [g) e Pk 0

We thank Profs. B.Schroer and J.A.Swieca for many helpful con-

versations.
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Resumo

Mostramos neste trabalho que as fun¢des de Schwinger associa-
das as funcgbes correlacdo do modelo de Ising bidimensional com condi-
¢bes de fronteira periédicas no limite termodindmico podem ser repre-
sentadas por uma férmula de Feynmann - Kac (F-K) num espacgo de Fock fer-
mionico H. Gs operadores de campo e energia-momentum S&0 expressos am
termos de dois conjuntos de campos livres fermidnicos agindo en H. Es-
tes dois conjuntos estdo relacionados entre si por uma transformacao
linear canonica prépria (pclt), i.e. existe un operador unitario U que
implementa a transformac&do. Representacoes an séries para as funcgdes
de Schwinger sdo obtidas substituindo as representacdes espectrais dos
operadores de energia-momentum na férmula de F-K. Abaixo da temperatu-
ra critica P+ = (I*U)/2 séo projecBes ortogonais que comutam entre Si
e que reduzem a &lgebra de observaveis, fornecendo a decomposicdo ex-
plicita do estado periédico en dois estados puros, invariantes por
translacgéo.
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