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Abstract Different variational approaches for the problemof collisional
transport in a magnetically confined magnetoplasma are discussed, and
approximate methods of solution are pointed out. tn particular, an ap-
proach analogous to the well known Rayleigh-Ritz method is proposed,
yielding an energy-convergent approximate solution for the relevant
drift Fokker-Planck equation. Selected applications totheinvestigation
of magnetoplasmas of arbitrary degree of collisionality are briefly
discussed.

1. INTRODUCTION

Variational approaches for the study of the Boltzmann and
Fokker-Planck kinetic equations corresponding to prescribed initial and
boundary conditions have been investigated by several authors both in
the context of rarified gas dynamics® ~* and plasma dynamics" %, Their
main interest lies in the possibility of adopting simple numerical
methods which enable the direct. determination of relevant macroscopic
physical quantities in terms of appropriate approximate solutions or
even of the so-called trial-functions (i.e., polynomial functions con-
taining undetermined constants which are then chosen in sych a way as to
extremize the relevant variational functional) . In fact, even in linear
problems (i.e., for which it sufficies to consider linearized approxi-
mations of the previous kinetic equations) , the application of direct
solution methods as, for example, expansions in a complete basis of
orthonormal pelynomials leads to unsatisfactory results due to
the slow convergence of the approximate solution and the consequentpoor
accuracy in estimating the physically relevant dynamical variables. 1In
addition, it should be noted that in many cases such as the macroscopic

description of a dynamical system, which is the case of a magnetoplasma,

Based on a seminar delivered at Instituto de Estudos Avancados, Cen-
tro Técnico Aeroespacial, Sao José dos Campos, Sdo Paulo, on August

28, 1984.
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we need much less than the precise knowledge of the solutions of the
kinetic equation (distribution function) . For example, in the case of a
quiescent magnetoplasma, i.e. a plasma magnetically confined in which
turbulence is negligible, the relevant macroscopic quantities are the
t'radial' material fluxes (i.e., the particle and kinetic energy fluxes
across an isobaric surface) .

It is well-known that variational methods are particularly
convenient when the variational functional itself can be expressed in
terms of such macroscopic dynamical variables. In such cases, in fact,
an error of order 0(8) in estimating the solution of the kinetic equa-
tion leads to an error of higher-order (0(§%) for the variational func-
tional.

Approaches of this kind have been previously developed by sev-
eral authors in kinetic theory'™!°. As far as what concerns specific
applications to plasma dynamics, variational methods have been adopted
to investigate both collisional transport problems in quiescent sys-

tems* ™8 10

and linear stability problems in weakly turbulent systems®
Up to now, for the first class of problems, variational ap-
proaches have been developed systematically only for the so-called
Vs,eff/
/wb’s << 1 (where \)s,eff is an effective collision frequency defined in

weakly-collisional plasmas, that is, subject to the assumption

Appendix A, and Wy g = @ ds/{\),,l)'1 is the bounce or transit frequency

which characterizes the unperturbed particle motion along a magnetic

flux line; C is a closed unperturbed particle orbit) and for *"symmetric

hydromignetic equilibria" (i.e., assuming that the confining magnetic
B i

field B is spatially symmetric) 8. Such theories fall essentially in

two classes: a) asymptotic theories, based on an asymptotic expansion
for the trial function obtained in the limit 610 where 6 is given by:

= - 1/2
§ =<1 B/Bmax) >o <<

(Brnax is theabsolutemaximumof Bona given isobaric surface S; the
brackets '« >S“ denote an appropriately weighted average taken on the
same surface) , corrections of order 0% or higher to the variational

1578 were neglected; b) perturbative theories, based on a

functiona
perturbative expansion for the determination of an approximate solution'®
which allows for the investigation of hydromagnetic equilibria with'ar-

bitrary' magnetic field. For this case, in particular, the previous
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asymptotic condition 6 << 1 does not need to be invoked (here a per-
turbative expansion is performed in terms of the adimensional parameters
A= 68[1-8|%.

Similar techniques, on the other hand, have been developed for
weak-turbulence problems, and in particular for the investigation of
linear stability of magnetoplasmas subject to linear dissipative
perturbations of the drift typeg-lo. In this case, a variational for-
mulation was obtained only by adopting a simplified collision operator
model for the Fokker-Planck kinetic equation (the so-called pitch-angle
-scattering approximation for the Fokker-Planck collision operator) .

It is the purpose of this paper to address the problem of a
variational formulation for the linearized Fokker-Planck equation which
occurs in problems of collisional transport under standard assumptions
(i.e., a so-called "small-Larmor-radius' ordering!!’!'® and which, in
general, also refers to "collisional™ or ''strongly collisional™ plasmas,
in the sense that 0(08) ~ o(l) or O(ps) >> 1 (with s = Vg, eff / mb,s)
respectively.

A basic feature of the relevant boundary-value problem associ-
ated with such an equation is that the equation itself is non-self-
-adjoint while the (linear) operator therein defined is not positive
definite.

In the sequel we intend to discuss various possible vari-
ational formulations for the given problem, and, in particular, a so-
-called "constrained variational formulation'' recently proposed by the
author'®, where the class of admissible variations is constrained ap-
propriately 'a priori*.

We intend to show that the variational functional may indeed
be chosen in such a way as to be a physically meaningful quantity (re-
lated, in fact, to the surface-average of the local entropy production
rate} which turns out to be bilinear with respect to the material fluxes
and the thermodynamic forces to be later defined.

Finally, an approximate solution method which is, in a sense,
a general ization of the well-known Rayleigh-Ritz direct variational
solution method is discussed. We are able to prove that the approxi-
mate solution obtained in the form of an expansion in terms of a basis
of coordinate functions which are both orthonormal and complete in en-

ergy, i.e., with respect to the symmetric and positive-definite part of
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the linear operator appearing in the kinetic equation, converges weakly

in the sense of energy convergence.

2. BASIC EQUATIONS

Let us briefiy recall the matheniatical model®’!®. we shall
consider a magnetoplasma embedded in a spatially symmetric magnetic
field (in the sequel we shall limit our analysis to the <case of
toroidal axisymmetry as in ref. 8), and subject to the so-called "'small
-Larmor-radius' ordering® (known as '"necclassical' ordering for such
a type of hydromagnetic equilibria’®), i.e. a perturbative scheme in
terms of an adimensional parameter Eg << I (where €y = rS/L isthe ratio
between the Larmor radius L /9, with v the thermal vel-
ocity and {4 the Larmor frequency S’& =%e B/m e, ah'cgi L is the smallest
characteristic scale length of the * eqUIIIbrlum dynamical variables to
be defined appropriately). Expanding all the physically relevant quan-
tities in power series of € and in particular the one-particle distri-
bution function fs(;,g,t) (the index s denotes the particle species,
and the leading-order contribution with respect to € for a given dy-
namical variable is denote as its ''equilibrium' part), one is left
with a hierarchy of perturbative kinetic equations which are coupled
to Maxwell's equations for the electromagnetic field (which is obvi-
ously dependent on the plasma dynamics) .

For the investigation of most of the transport problems it is
sufficient to solve only the first two perturbative equations, deter-
mining both the 'equilibrium' distribution functions f (r 2,8 and
their first order perturbation f, (r 2,1 (heref (r 5, t) denotes
the perturbatlon of order 0Ofe ) for 2=0,1,..0%. . Assuming for
Fo s(r v t} a local maxwelllan distribution constant ona givenisobaric
surface (i.e., such that 7. Vfo, = 0 being 7 = vers{B }) with vanishing
mass velocity and subject to the so-called condition of temperature
equilibrium (To,k = To,k forallspeciesandgivenby:

_ 3 2 > >
=/ dvmp f'o,s (r,v,t)/BIVo’s
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and
: , R
W, o =1 df, @5,9)),

one obtains for £ :
1,8

fl,s =}‘1,3*‘7“1,3 ()
where
¥ =Avr /M @)
f1,s—vn’ fo,s 0,8 ;
(with Qo,s = eSBO/msc) and f1,s is the solution of the so-called drift
Fokker-Planck equation:
L () =F, 3)

where LS is the linear operator given by:
L,GF) = 0d9f, = ¢, (F,lF) (4)

and FS is the source term:

e

- -7 8 rot
Fs = vD,s'Vfo,s + To - ,,B), fo,s (5)
’

Here the notation is standard (seeref.8,11). Thus, Cs(fo|f1) is the lin~
earized Fokker-Planck collision operator in the Landau form recalled in

Appendix A, ;D s is thediamagnetic drift velocity and —ﬁrOt is the
H4

inductive part of the electric field. Furthermore, we have denoted

v,, = v.n and Er.Ot = gt 7, Eq. (3) implies, upon averaging on an iso~

baric surface, the integral equation:

e
<%T"{-1;D,s'vfo,s . T"% v"'E'r'Otfo,s + 0, (foiil)bS()\) =0 ©)
where S(A}) = S is the subdomain of S in which v,, is real.
We immediately notice that while Eq. (6) is self-adjoint, Eq.
(3} is nat. Such equations are supplemented by standard boundary and
regularity conditions™"; the boundary conditions being obtained by re-
questing j-‘l’s(;,g,t) to be periodic on a given isobaric surface.
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In the asymptotic limit, where pq->0, it has been' previously

shown for both symmetric®’?

and non-symmetric hydromagnetic equilibria
that it is actually sufficient to determine only the general solution of
the integral equation (6) (in fact, denoting }'1’8=<f1’3>s-+ f{’s, one
can verify that fi,s/<fl,s>s N O(ps)) . However, if O(ps) ~0(1) or even
if O(QS) >>1 (for the case of a collisional or a strongly collisional
plasmarespectively) thenthesolutionof Eq.(3) isrequired. Thus,
while previous variational theories® ° concerning weakly- collisional
plasmas have dealt only with the self-adjoint Eq. (6), in general, one
needs to obtain a variational formulation for a non-self-adjoint
equation of type (3), supplemented with the appropriate boundary and

regularity conditions.

3. VARIATIONAL FORMULATIONS FOR THE DRIFT FOKKERPLANCK EQUATION

Here, we wish to give the previous boundary-value problems a
variational formulation, i.e. we look for a functional, ¥(# |), bi-
linear in ?l,s (s = 1,r;is the number of particle species present in
thesystem, »>2 inthecaseofamulticomponenteplasma), real and
irreducible in the sense that if W(f|g) = 0 for an arbitrary choice of
the function 9e in an appropriate functional class, then, fs = 0 ident~
ically. Furthermore, we require 8% (f,|f)) = <Lf |8f,>, i.e., the oper-
ator L = {Ll,...,Lr} must coincide with the Euler operator associated
to the functional W(F,|f,), where *§"" denotes the usual variational
differentiation and the brackets ''<>'" an appropriate scalar product
on a domain to be defined.

Variational formulations of such a type wusually rely on the
self-adjointness of the equation, i.e., in the present case onrequiring
the linear operator Lto be symmetric in the usual sense, <f|Lg>=<Lflg>.
We recall, in fact, that, thanks to the Theorem of Volterra, anecessary
condition for the existence of a functional W(#,|f,) fulifilling the
previous condition @wW(f,|F,) = <Lf,[8F,>) is that the linear operator
L be symmetric with respect to the same scalar product. This condition
could also become sufficient only if the functional domain {f'l} (do-
main of definition of the operator L) is convex. Inpractice, this means
that one must look for an appropriate definition of the scalar prod-

uct, if there existsswhich fulfills such a condition of symmetry.Another
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possible approach consists in appropriately constraining the class{f_l}
in such a wayas to obtain anon-convex domain.|n this case, the previous
condition of symmetry is no longer a sufficient condition for the
existence of a variational formulation. Thus, one may look for a con-
strainedvariational formulation of a special nature, e.g., one for which
the constraints are such that the class of admissible variations is not
a convex domain. Here we shall give examples of both ‘types of vari-
ational formulations for the drift Fokker-Planck equation (3).

As an example of an application of the first method, we adopt
here an approach similar to that developed by Cercignani" in the case
of the linearized Boltzmann equation in problems of rarified gas
dynamics. Thus, denoting by P the parity operator in velocity space

which exchanges the sign of v,, i.e.,such that
> > > >
Pf(r,.’v_l)vll)t) = f(r_v'u)_}_'vll’t) 3

with 31 = 3—7751)“, we define the "inner' product of two arbitrary func-
tions g = {gl,...,gr} and h = {%,,...,h) belonging to {f;}and relative
to the domain 2 = RgXS (with R; the velocity space and S an isobaric

surface, i.e. a generic surface of equation m; = const. with

Ty = 3 zs=1,,r”o,sTo,s)

as: .
_ 3
<glh>[—’ - z:s=l,1r' <J d Vg Phs/fo,s>5’ 7)

where in the case of a toroidal axisymmetric hydromagnetic equilibrium

the surface average is defined as®:

<4>_, =0 dxB A/B_{Vx|/\ dx B/B,|Vx| ®)

S P P
c c

Here C is the projection of a magnetic flux line on a poloidal plane
(i.e. a plane belonging to the principal axis of the torus), y js a
curvilinear coordinate on C BP is the poloidal component of B (ie.,.
B = _é‘éX with EX = Vx/|¥x]) which is assumed always # 0 along C, and
A is a furiction integrable in X. It is obvious that such an' inner

product is not a scalar product in the standard sense, in fact it

exhibits all the correct properties, except that <g|g>P may have nega-
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tive values too. However, it is readily seen that the linearoperator L

is indeed symmetric with respect to sucha product; in fact,

<glvy, A.VR >, = <, n.Vg|h>,

(9)

sglew>, = <glw,

where we have introduced the notation Ck = {C (f0|h) ,...,Cr(f‘,lh) . on
the other hand, it is obvious that <gI'PLg> may take both positive and
negative values, hence,l is not positive (or negati‘ve) definite with
respect to such a product.

Thanks to egs. (9) a variational principle can be constructed
without difficulty. In fact, defining the functional ¥, Gllfl):

Wl (.?1'?1) = <J;1’L}:1'2F>P (10)

we obtain a variational principle for the drift equation (3) if we

impose Euler's equation:
dswl (}‘-]lf}) =0 ( Vs = ],Y’) (]])
= (D) (p)

He?;)the variations are made viit.with respect to <Sf1-s and 6}‘1’3,
(f'i,s being the odd, and fl,s the even part of fl,s with respect
to v,) which are considered linearly independent ¥s = 1,r. Similarly,
a variational principle for the integral equation (6) is furnished by
eqg. (I1) by imposing, in addition, a constraint on the class of ad-
missible variations, i.e.:
V87, ,(g) =0
(12)
_ ﬁ.Vﬁfl,(? =0
Let us next consider a variational formulation of the second
type, i.e., a constrained variational formulation recently proposed by
the author’®. we define initially the scalar product:

<glw =1 ) dsvgshs/fo,;s (13)
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and we notice that by writing L =D-C (with C = {Cl,...,Cr} and
=V,,n.V) the linear operators D and C result antisymmetric and sk/m-
metric relative to such a product, respectively. The above statement

can be expressed as:

<glth > = - <Ig |h >

(14)
<glch > = <Cglh>
At thesame time, the operator ¢ is semi-negative definite, i.e.,
<g|cg> < 0, being = 0 when
2 -
g, = fo’s G, @) + v,,vo/vth’s) (15)
where
N T
_ 1,8 1 2 _ 3 -
G ) = 7=+ 5 G, -5 » 2, V/Vhe (16)
0,8 0,8
N T, v, are density, temperature and velocity perturbations to the

1,8 "1 >
maxwel lian distribution fo s(’r:,v,t) , respectively. Thus, the operator
’

C (or =€) is negative (positive) definite in an appropriate functional
class {f1}' from which functions of type (15) have been subtracted.

in order to construct a variational principle with such a defi-
nition of the scalar product we recal1®’!! that a variational formu-
lation for the integral Eq. (6) is provided by Euler's equation:

8 W, @, 17) =0 (s = 1,7 (17

where the functional W, G“l !}‘1) may be defined, for example, as:

W, (}‘ll }‘1) =zs=l,r <J-“1|CJ-01+2F> {18)

and the variations are performed with respect to 5}'1 ’(Is)) and ‘5?1(?3. and
are subject to the constraints (12). Thus, it is natural do attempt to
obtain, in analogy with the previous Eq. (11}, a variational principle
for the drift equation (3) in terms of Eq. (17) by appropriately con-
straining the class of admissible variations. It seems obvious that
the simplest constraints can be constructed in terms of Eq. (3) itself
since they are clearly fulfilled by its solutions. Thus, we require,

for example:

151



0 @17 = O 10F8 - 7P - FPs 2o (19)
0,F,17) = O F? - 78 -5 =g (20)
where F1(D)s and F1 (Z;) are the odd and even parts of F1 s with respect

to V,,, respectively.
It is immediate to prove that Eq. (17) with such constraints on

the class of variations (now it is sufficient to perform the variations

with respect to Gf(P) and 6f (P)I where f = <f + f ), is in-
’ ,S 1,8 ’s 1,8

deed a variational prlnciple for Eq. (3), and moreover, that it re-
sults in a minimum variational principle (see Appendix B . From Egs.
(17) and the constraints {19) and (20), it follows, in particular,
(obviously,

there is an infinity of them) is just:
v, IF) = - Fl6f,> - (18"

Thus, if f.s E {Fl}' (i.e. the functional class from whi-crl functions
of the type (15) have been excluded), the functional Wz(f}]fl) is, in
this case, positive definite. It is interesting to remark that the con-
strained variational principle (17) is analogous to that reported in
ref. 5, from which, however, it differs on the choice ©of the vari-

ational functional W,(f,|f,), which in their case is given by:

VFF) =y, 4 IR (21)
where
J, = ~<Ph |L@Oh + v, 6, BRE 4 g P>
J, = - <Ph|CPh>
(22)
J_ = - <Dh|CHR> ,
Jp = <Dh|LPR>

and we have introduced the positions:
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hS = J? = Uy Gs fo’s ElrIOt (24)

1,8

with GS being the solution of the Spitzer-Harm equation:

e

- - S
Cq Folvn £46) = TS0 7, (25)

It is immediate to show that the variational principle:
sy FIF) =0 (174
with the constraints:
01,17 = 2P B> - 401505 g (19)

Q7,15 =<k P 1on 5@ 1en Do ® (0 o B4 3 g =0
(20%)

leads to a variational formulation for the equation:

Dl + v,,Gsfo'sE,r,Ot) =B g Fo g 4 CF IR @1)
stemming from Eg. (3), upon substitution of the solution of Eq. (25),
which in this case is assumed to be known 'a priori' (contrary to the
variationel formulation previously described). It can easily be proven
that (17') with the constraints (19') and (20') is, contrary to the
previous case, a mini-max variational principle (being minimum with

respect to f‘l(D?g and maximum with respect to f‘lps ).
? ’

4. RELATIOIYSHIPS WITH THE MATERIAL FLUXES

An important feature of the present approach is that the pre-
vious variational functionals W, (f‘llf'l) and Wz(f‘zlf'z) are related to
the material fluxes (of particle and kinetic energy) as well astothe
parallel (electric) current density J,, flowing parallel (or antiparal-
lel) to B. In fact, substituting the solution of Eq. (3)into Eq. (10),

one finds:
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. - ¢
W R = <F vy 9, + <Fl e vuf B0y (26)
0
or, from Eq. (7):
W L) = - Loy v Uelis * Azsrzs} - <‘4‘3J"/To,s>s (27)

where we have defined the thermodynamic forces Ais (Zz=1,3; s=1r) :
_ .9 .3
Als - 8?02" No,s(] Z ns)

0
/19.q = ﬁnln T0 s (28)

(with n_ =93 4%n No’s/'aln To,s) , while T, and I',_ are, the so-called
geometrical fluxes of particle and kinetic energy across an isobaric

surface®’!! respectively, and they may be written in the form:

= - 3,5 7
Fls = -<Vn, JSdv vD’SfI’S P
3 msuz . (29)
I‘ZS = - <Vm,. fd 3 vD,sfl,s>S
and 3 -
0 = Zs=l,r’ s fdv v, fl,s

Similarly, it results for W, (f,|f):
w2 (Frlf) = _zs=l P {Aisrls * Azsrzs} + <A3J"/T0,s>s 30)

Thus, in particular, Wz(__f-‘lljf-‘,) i.e., its extremal value, coincides

with the surface-average of the local entropy productionrate dueto :f‘l s

(S(?1l?1) = -<fltcfl>): ’

UAVAFSIENICAES: (63))
while, from Egs. (27) and (30), it obviously results:

W1 (}1|}‘1) = SG]I}H) - 2<A3J“/To,s>s . (32)
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Notice that S’(}‘lb—“l) is related to the total surface-averaged entropy

production rate by the simple relationship:
S lr) = 5GFF) + (1% (33)

where

5G1F) = - <FIcF>

and ?1’8 is defined by Eq. (2).
Hence, in order to determine the fluxes (29) and the parallel current
density J,, it suffices tocomputedirectly either W;(f;[{fi) or
W, (}"ll?'l) in terms of the thermodynamic forces. Their knowledge is, in

turn, equivalent to that of the surface-average total entropy pro-

N L
duction rate (,é(f1|f1) may be computed®). In fact, defining the
transport coefficients Li;.k) (Z,d = 1,3; e,k = 1,7 in terms of Sﬁcllfx)
as:
27 7Y (sk)
5l = s Jk=1,r Z‘L,J =1,3 L AtsAgk S (34)

one obtains the following constitutive relations for the fluxes andthe

current density:

_ (sk)
M isTims = ke, r Zj=1,3 Ty 45K7s
_ _ (sk)
Azs I‘zEs - Ek=l,1r' Zj=l,3 <sz Ajk>S To,s (35)
' (sk)
<Jns‘43>s = - 2k=l,r Zj=l,3 <L,z "A. kA3>S T,
provided the reciprocity relations:
1) _ . (ke)
Lz’ =Leg Ty /T, s (36)
are fulfilled. Notice that in the previous equations Ais (Z=1,2) are

the total particle and kinetic energy fluxes across an isobaric sur-

face, while T .. (= ,2) are the so-called eletric-drift fluxes®*?!%,

They are related by the following equation:

Moo = Tis * Tipe + Tigs

(Z=1,2) 37)
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with

A =-<n, . fd%% D f @,0,0)>
18 0 s S
(38)
m v? .
- 3, > 8
A=~ I, . fdv v = fs(r,v,t)>s
- - =2 3
Pls N c'vth,s <Kd v, fo,s>5’
- 39
= 2 v 3, s
I‘zs = cvth,s <k f d’v -5 v,fo’s>s

Wwith r = grot B;R/(BBT) and B, = (B%-B2 1/2) where the Av,'Cs are the
classical fluxes reported in ref. 8 (Eqs. (2.10).

In conclusion, both variational formulations previously ob-
tained exhibit the required property of allowing the computation ofthe
physically relevant quantities (the material fluxes) in terms of the
functionals W, (f;|f,) and W, (f,]f1). Such a property is,
evidently, an important advantage for the pu.rpose of obtaining at the
same time good numerical accuracy and mathematical simplicity for

the actual application of the previous methods in collisional transport

theory.

5. AN APPROXIMATE SOLUTION METHOD

As an application of the variational formulations previously
reported, we shall examine in the sequel the possibility of adopting
115

the well known techniques of the ''‘energy method' In particular, we

shall propose an approximate solution technique which is founded on
the constrainedvariational formulation given by Egs. (17), (19) and
(20) for the drift Fokker-Planck equation. We remark, first of all,
that the search for approximate solutions of Eq. (3) can actually he
limited to weakly convergent sequences {un,s’ with n € ¥ and s=I,r} in
the sence that

Vim |17, g =l gl = 0 (40)

where we have defined the norm in energy (or "‘energy')*:

* Notice that an energy norm of this type cannot be defined in terms of
the inner product (7) , since in this case, the operator - is not posi=
tive definite with respect to the same functional class {f;}"'.
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“un-J_"IHCZ. = - <un-?llc(un-?1)> an

It follows immediately that if a sequence {un 8’ neEw, 3=I,r}converges

in energy, i.e., in the sense:
Vim llw,F, g = 0 (42)

then, thanks to the triangle inequality:

P - Uy 1S 07 -l )

it also converges weakly in the sense (40) .

Let us now suppose that a sequence {un Py ney , s=1 ,P}converges

weakly to fl,s' Then, according to Eq.(18') provided both fx,s and un,s

have finite energy, this implies that
lim IW2 (unlurz) - Wz(f1|f1)’ =0 (bh)
nre .

R 2 = = = .
with -WZ(unIun) = l!unHC and Wz(fllfl) = ||f1l|?, However, since
Wz(unlun) and Wz(fllfl) are (positive definite) quadratic forms in terms
of the thermodynamics forces (see previous Section), Eq. (44) implies
in turn:

lim ITo) - T, F)l =0  @=1,258=1,7 (3
vim [ <400, @) - 7,F)} >gl=0 (46)
n-)OO
(_sk)

(and analogously for the transport coefficients Lia , t,Jd=13and
sk =1,r), i.e., the sequence converges also in the mean, and ‘the
approximate fluxes Fis (un) (as well as <A3J.,(un) >S) converge to their
exact values. It is easy to see that the weak convergence (40) does not
imply energy convergence. To show this explicitly, notice that from Eg.

(18) it follows that

Wyl lu) = =llu H% + 2<u |P>, 17)
and taking into account Eq. (3) one arrives at

Wy b fu) = <l u <Fi 12+ 1R NIS + 2% |DF > . (u8)
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On the other hand, since from Egs. (19) and (20) it follows that

2
Wyl lu) = w1,
weak convergence (40) does not imply energy convergence unless:
lim<u |Df > =0 (49)
N0
holds too*. It is therefore quite natural to look for approximate sol-

utions of Eq. (3) in the form of weakly convergent (or energy conver-
gent) sequences.
A possible realization of a weakly convergent sequent can be

obtained in the form of an extrema2 sequence. Introducing thenotations
+
S, O w0
nss N,
aven parts of un s with respect to Vv,,, and:

3

u and u"(l;% being, respectively, ;he oddand

AAUADEN A S (50)

]

Wy (un(P) iun(P) ) Ilun(P)HZ

we say that{un o S0 N.s = 1,r} is an extremal sequence for W2 (unIun)
£l
ifu(D) and gy are such that:
n,8 ", 8

@)

i |21, -l = 0
e (51)
. @)
Vim [[fu " ||, - =0
it 1l

where m = ||}-(D)[[p and M = ”}'(P)”C ,and f, . isa solution of Eq.(3).

Thus, m and M are the extrema (minima) of W, (3(Dg(D) ) and Wz(q(P) |g(P)),

according to the definitions (18) and (50) ({see also Appendix B).

In order to construct a extremal sequence for W, (un|un) , we
adopt here a technique which, in a sense, is analogous to the well
known Rayleigh-Ritz direct variational solution method (actually devel-
oped originally for symmetric and positive-definite operators). we in-
o @,2), i € ¥} and {qfi,
< € N}, which are, respectively odd and even functions with respect to

troduce two sets of coordinate functions {¢1,'

v, and are defined on the functional class {f‘l}'. We assume that

* This is a consequence of the fact that the operator L is Not posi-

tive definite. Hence, a norm in energy with respect to L, N analogy
with the definition (41), cannot be defined.
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(D)
1 8’
in energy in the sense:

(for © € y) and ¢,(P) (r,») are independent,orthonormal
i,s8

b, ¢’j > =6i.7' vi, j EN ~ (52a)
o O, _ .
<, ¢j > = 6ij Vi, J EN (52b)
® O, _ ..
<¢; ¢j > =10 Vi, g €N
and complete in the sense of energy convergence, i.e., there are an
integer k* and constants aPL, an: . (Z=1,k) such that, for k3 &k, one
finds:
_ ® (D)
o =T wap 0 ~ T x e ¥y Mlp<e 63

for an arbitrary gs{j"l}' and € > 0.
Then, an extremal sequence can simply be constructed by in-

troducing the sequences:

0 _ ' (D)
s = Zz—l n %1 %
(P) ( ) oY
P) _ P,
un,s - Z1,—1 n %p; ¢
whero the Fourier coefficients a = <¢(D) (D)> and a <¢(P)] (P)>

are chosen in such a way that the functlonal Wz u Iu) has a con-
(D) ) d ®)
an W, (u ]u )

. D
ditional extremum, i.e., W, (u, Iun

are minima under the constraints:

Qulu lu) =0 (55)
| =
Q,(u lu) =0 (56)
Hence, a solution for the Fourier coefficients aP R am (Z=1,n) can be

determined, for example, by the method of Lagrange multipliers by solv-

ing the set of algebraic equations:

ga_D; {w, (un}un) + 1,49, (unlun) + 2,8, (unlun)} =0 (57)
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)
da

{w, (unlun) + XIQI (unlun) + 1,0, (unlun)} = 0 (58)
i .

with

ﬁ.VaDi = ﬁ.VaPi =0 (59)

and Egs. (55) and (56) . The fol lowing result can then be proven:

Theorem 1 - If Eq. (3) has a solution with finite energy, a solution of
the set of algebraic equations (55)-(58) gives, <in terms of the

definitions given by Eqs. (54), an extrema2 sequence for W, (un|un) .

A sketchof the proof canbe given by adopting a method similar
to that of Ref. 15 (see pages 88-90), so, only some guidel ines shall

be aiven here. Let us consider, as an illustration. the discussion for

u(D) (the same is true for u(P)). IFou 2: {f,}' then by
n,s n,s n,s
definition:
(D) (D) > 2
v ) 2t (60)

On the other hand, m? is an exact lower bound for Wz(g(D) |g(D)) , under
the constraints (19) and (20), for g;D) & {F,}'. Thus, there exists a
funstion US(D)( v) e {f;}' sush that:

(D E
H‘U Hc<m+7 (6‘)
for an arbitrary positive €. Since the basis {¢7§D?S(r,v), i € N} is or~

thonormal and complete in energy,it follows, furthermore, that there
exist k* 6 N and constants bDi (Z=1,n) such that for »n> k*:

P - 102 1,0 <5

o _

(o)
Vi, s Zi=l,n bps ¢i,s

+This result is thus completely analogous to that obtained by the
classical Rayleigh-Ritz direct variational solution method. See, for
example, Ref. 15.
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It follows that

D,
me 1020,

A
<

. D .
However, since evidently HurED)HC_ﬁ. Hv(D)HC with u' ) given
by Egs. (54) =(58), by letting e+0, we infer that Hun(D)HC
the sequence unDs is minimal for P{z(unD [u,, )).

6. CONCLUIDING REMARKS

Various possible variational formulations for the drift
Fokker-Planck equation have been discussed, which are based either on
"constrained' variational principles, where the class of admissible
variations is appropriately limited in terms of '‘ad hoc'' constraint
equations, or on a variational principle based on the definition of an
appropriate inner product (in terms of which the linear operator ap-
pearing in the given integro-differential equation is symmetric). We
have shown that in the cases presented above the variational func-
tionals are related to physically meaningful dynamical variables (ma-
terial fluxes across an isobaric surface and the parallel electric
current density) , and therefore such variational formulations appear
potentially useful for an accurate determination of such dynamical
variables. An approximate method of solution based on a ‘''constrained"
variatiorial principle has also been described. In particular, we have
shown how an approximate solution can be constructed in the formof an
extremal sequence, proving, in addition, its weak convergence. The
present results seem useful in order to allow accurate transport cal-
culations for collisional or even strongly collisional magnetoplasmas,
in the sense that either Vs,eff/wb,s vl oor Vs,eff/wb,s >> 1. In fact,
for such types of plasmas an accurate and systematic investigation,
based on rigorous mathematical methods is in the author's view,
still largely missing. In particular, it seems potentially useful to
ascertain the accuracy of previous transport calculations performed by
various authors and based on different approximation techniques.
Selected applications and comparisons with other previous work shall

be the object of a forthcoming paper.
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APPENDIX A
In order to define the adimensional pararneter p =V Jw ,
s s,eff "b,s
it is convenient to write the drift Fokker-Planck equation (see eq.(21),

. . . . . . t
defined in Sec.3) in terms of adimensional variables andthe case E'.r.o =0,

Eqg. (21) can then be written in the form:

S 4 - “s,eff ) @)
3% s wb,s s :
where
vy - B - VW, (A.2)
,eff U”B lvxl s »S
and
L 2 3
vs = 4m e, NO’S 4 (mS vth,s) (A.3)

is the Spitzer self-collision frequency. The linear integro-differen-
tial operator Ds’ appearing in Eq. (A.l) is related to the Fokker-
-Planck collision operator (i.e. Ds(h) = 0y (fol hy/v)), and X denotes
an appropriate angle-like curvilinear coordinate along the close path
C. Recalling the representation of the linearized Fokker-Planck
*' in terms of the v-space

coordinates (©,A,0) with v = l$| and A = 2u/v? one obtains (for TO s =
b

collision operator in the Landau form®
= To,k for all species) :

Ds(h) = H(:) () + IS k) + Hs(z) ) (A.5)
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where

(0) (- A19) X
B (h) = (v) {)\(I - T o hs}
(0) ]2 3 - 3
HY () = —~ % {»? = 0, ©) exp{us W} g5 @, explra@ N}
ekp? 2 J azu a
@ (py - ] th,s —~ T, o
H () = 222y » Pry d’v' 5% Iy 333‘3, f '—"hk}
O,s
(A.5)
and
2N xk
0,00 = L5y, Kk L feptad) v 25,00 1y [ ae exp -2
L eln. =3 222
g 0,8 Tk k
where (A.6)

o @ = -}

Notice that the linearized Fokker-Planck collision operator ¢ (£ |&
s~

may also be written in the form:

Cs(f‘olh) =z, '{csk(fo’k[hs) + CSk(thfo,s)} A.7

i,r
where

- 3 3., 3% 3 Mg 3
Csk(fo,klks)—qska——.Jdv'——-—.{f' A R

> s %kap e m ey
(A.8)

P 3% -, 9 s )
c, . ) =gq ——.jd%' =~ -2 _pn}
sk ko, sk 3% 3759 kB; 0,8 my T 0,8 yF k

(a.9)

with U = 33" z Zﬂe e g¢n (A ,/m%) and % A _, the Coulomb 1 -
dsx = sk’/My an sk ogar
i thm.
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APPENDIX B

For conpl et eness we intraduce here, the proof of thefollow ng

result:

Theorem (theorem of the minimal functional W, (F 7,0 )

The functional W,(g|g), according t0 the definition (18), has a minimum
in the class {:f‘l}' in which the variations are subject to the
constraint equations (19) and (20), for ?1 R solution of Eq.(3),

L

The proof can be obtained by noticing that w(gjg) has a
mni mum both with respect to <f &5 and f' (where fl -<}'1 gt

- ,3
+f, s as well as wth respect to f”l()s and f‘(), separately. It is

conven| ent to introduce the foll ow ng paranetri zat| on:

<g(0‘)> = <?1,S>S + as<6"z'1,s>S (B.1)

s S

Adopt ing the method of Lagrange mil tipl iers, we obtai n fromEgs. (17),
(19) and (20), fromthe first variation wth respect to the variations

of type (B 1):
2 e 00, 6@ 1) 100,69 169, |
s

(B.2)

which leads to an integral equation depending on the Lagrange multi-
pliers u, and u,. Qv the other hand, Egs. (19) and (20) inply:

@ (FiiFf) + @ GUF) = -FlcF, + > =0 (B.3)

Fromthe defini tion (18) for W2 (fi[f1), it results irnmediately, for
conpatibility with such an equation,that u; = u, = 0, while evidently,
the second vari ati ongi ves:

aiw (g (oz) 0 (B.4)
a 2
@'

1
Simitarly, we consider the variations with respect to SfI(DL and 8f; g
adopting for convenience the paranetrizations:
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D - (D, '
P " - 7P+ DD (8.5

g P &) - ?I(PL + Bia?g‘Pi' (8.6)
In analogy with Eq. (B.3), one finds:
T LEE 1) + X0 66 19®) + 30, 6® le®}], =0
s . as=0
(8.7)

for m=D,P and s=1,r. The mil tipl iers A™ and )\2" are again deternined
by taking into account Egs. (19) and (20) . Using for W, (f,|f,) the de-
finition (18), it results Alf = AE =0 and A? = h,P = 2 We find again:

2 .
('am)z {,G® lg®) + X[e,G® lg®) + e, G® lg@®) >0 (8.8
3 (o

8

and thus the searched result is reached. It is interesting to point
“out that if adopt instead the definitions (18'} for the funct ional

Wa2(glg), we inmediately obtain that W,(g|g) has, on the contrary a

mazimumn for f ¢ » solution of Eq.(3).

3

REFERENCES

l. C.Cercignani, €.D.Pagani, Phys. Fluis, 9, 1167 (1966).

2. C.Cercignani , J. Stat. Phys., 1, 297 (1968) .

3. C.Cercignani, in Nomequilibrium Phenomena | = The Boltamann Equa-~
tion, Hi tors J.L.Lebowitz and E.W.Montroil, North-Hol land Publ .
., p.123 (1983).

4. B.B.Robinson, |.B.Bernstein, Ann. Phys., 18, 110 (1962) .

5. M.N.Rgsenbluth, R.D.Hazeltine, F.L.Hinton, Phys.Fluids,?5,116(1972),
R.D.Hazeltine, F.L.Hinton, M.N.Rosenbluth, Phys.Fluids, 16, 1645
(1973) .

7. M.Tessarotto, Meccanica, 17, 119 (1982).

8. M.Tessarotto, N.Cimento, 758, 19 (1983).

9. M.N.Rosenbluth, Phys. Fluids, 11, 868 (1968).

10. M.N.Rosenbluth, D.W.Ross, P.P.Kostomarov, Nucl.Fusion, 12, 3(1972).

165



11. M.Tessarotto, Ann. Mat. Pura Appl., 126, 253 (1981).

12. M.Tessarotto, Zeit. Angew. Mech. Math., 62, 521 (1982).

13. M.Tessarotto, Proc.Annual Conference of the “"Gesellshaft fir
Angewandre Mathematik und Mechanik" (Hamburg, March 28-31, 1983 ) ;
Proc. Workshop 'Variational Methods for Equilibrium Problems in
Fluids', Centro Internazionale per la Ricerca Matematica, (Trento,
June 20-25, 1983); Asterique Gocieté Matematique de France) 118,225
(1984).

14. P.H.Rutherford, Phys. Fluids, 13, 482 (1970).

15. S.G.Mikhlin, Variational Methods in Mathematical Physics, Pergamon
Press (1964) .

Resumo

Procedimentos variacionais diferentes sao discutidos no caso
do problema do transporte colisional em um plasma confinado magnetica-
mente e métodos aproximados de solugdo sao indicados. En particular, é
proposto um procedimento analogo ao de Rayleigh e Ritz. Aplicacoes se-
lecionadas para a investigagae de magnetoplasmas onde o efeito colisio-
nal é arbitrario sao discutidos brevemente.
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