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Abstract To test the efficiency of the continued fraction expansion
method we start with ana priori known analytical curve F{w), calculate
the static moments and then, applying the cutoff's most used in the
literature, compare the approximated curves with the original ones. V¢
show that, except in some special cases, it is almost impossibletouse
the method when only the second and fourth moments are known.

1. INTRODUCTION

The continued fraction expansion method proposed by Mori?l,
where the relaxation-shape function ¥{w) is expressed in terms of
static correlation functions, is one of the most used methods in the
literature, for the study of the dynamics of physical systems. In this
expansion, coherent behavior is extracted at each stage of development
leaving, as undetermined remainders, the Laplace transforms of memory
functions. Despite its large use, the efficiency of the method is not
much discussed®. 1In this paper, to test the efficiency of thecontinued
fraction expansion method, we start with an a priori known analytical
curve F(w), calculate the static moments and then, applying the cut-
off's most used in the literature, compare the approximated curves with
the original ones.

Anologous results are found in the literature for Padé
Approximants® but this method makes use of high order moments and in
our analysis we use only lower order moments. On the other hand the
equivalence between the Padé Approximant and the Continued Fraction

Method Expansion is not completely established.

2. THEORY

The relaxation-shape function ¥({z) can be exactly represented

by the continued fraction expansion

37



i ]

v(2) = —— , fj(Z) = , (2.1)
z + 8,f,(2) z + 6j+lfj+1 (=)
where z = 7w and 6, = M,, 6 =M/M, - M ..., with Mn’ the n-th mo-
ment, given by
M, = <w’> = J W'F () dw, Flw) = ir- Re [Y(z=tw)] . (2.2)

Because equation (2.1) has an infinite number of terms, in general, a
cutoff must be considered. Two difficulties come about. First, in most
problems, only the lower order moments can be analytically calculated.
The second difficulty has to do with which function should be used to
cutoff the expansion. To overcome this difficulty, a variety of ap-

4=~11
. These

proximation methods have been proposed by several authors
methods in general depend on both the magnitude of the available §'s
and the temperature region of interest in the spectra under consider-
ation.

The comparison of the results theoretically obtained with the
experimental data does not allow a good check of the method for several
reasons. Consider, for instance, the inelastic neutron scattering tech-
nigue for magnetic systems. Although it gives directly the spectral
function F{w), there are problems with the convolution of experimental
data and the apparatus response and also with the poor resolution
around ¢=0 and w=0. Besides this, frequently the available data are in
regions of spectrum where different cutoff functions {memory functions)
give roughly the same results.

Another reason has to do with the Hamiltonian which may not
be the right one. An example is the Ising model in a transverse field
which may be appropriate for the study of the thermodynamics of ferro-
electrics but may not be good for the study of its dynamics. Even if
the Hamiltonian is adequate, the approximations used in the calculation
of the moments (mean field approximation, random phase approximation,
etc) certainly do not contribute for a tractable check.

Our investigation on the efficiency of the continued fraction
expansion method proceeds as follows. We start with a known function

F{w) and calculate the lower order moments exactly. Then by wusing
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these moments and the most common types of cutoff functions we try to
reproduce the original function F(w.. it is worth mentioning that in
our case the moments can all be exactly calculated in principle; how-
ever we calculate only the lower order ones because, in practical
cases, only these are calculable.

The approximations considered in this paper are the so called
o approximation®, the gaussian approximationg and the N-pole ap-
proximation!l. The first one consists in taking Fin (z) = fj(z), which
leads to

O IR C R CR D R V. S (2.3)

The gaussian approximation consists in cutting off the expansion of ¥(z)

with the furiction

W) = T - A, (2.4)
e 8141 8 a1 85
where
T = (%)1/2 exp{-z2/2) ,
and

X
Ax) = exp(~22/2) f ds exp(s?/2) .
0
This is equivalent to cutting the expansion of the inverse
Laplace transform of fJ.(w) through the memory function
— —£2 /9.
fg,(t) = exp(-¢ /26j+]) .
Basically the N-pole approximation consists in replacing fN(w) by a
constant which, in this paper, is chosen according to the Lovesey and
Meserve approach®. The N-pole approximation is equivalent to cutting
off the expansion one stage before, using an exponential function for
Fy-1 (¢).
The original set of functions F{w) we work with is of three

types. The first is a sum of three gaussians,
Flw =4 exp(-ow?) + B {exp (~y(wrn))® + exp v lw-wp) D}, (26)
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where A, B, a, vy and w, are parameters to be varied. This is certainly
an important set of functions for physical problems. By changing the
parameters we can have one central peak, two lateral peaks and three

peaks. The second type of functions is the Fourier transform of

F(t) = exp(-at?) b1 )

which is important mainly in the study of Fi? magnetic absorption lines
in caF, '*

By setting =0, F(w) reduces to a gaussian function and by
setting a=0 it reduces to the square function, a physically important
function as well. The third set of functions F{w) that we investigate
is the Fourier transform of

3/2) (2'8)

F(t) = exp (-t

which gives the eletronic paramagnetic ressonance lineshape in quasi-
one-dimensional rnagnetic systems in an external magnetic field paralell
to the main chain®®. We could as well have chosen the Lorentzian func-

tion to study but the N-pole approximation reproduces it correctly.

3. RESULTS

In figures 1 to & we show the original function F(w) of the
type described by (2.6) as well as the functions obtained through the
f.. approximation for f;, the gaussian approximation for f, and the 4-
-pole approximation. In figure 7 we show the Fourier transform of (2.8)
and in figure 8 the Fourier transform of (2.7) . In both figures weshow
the same approximations for the continued fraction as before. As we
can see (fig.2) when we have only a central peak, the £, approximation
works reasonably well while the gaussian and the 4-pole approximation,
although the most used in the literature, do poorly. When F(w) has a
side peak all approximations used fail. We could have tried higher
order terminations but this would require knowledge of higher moments
and these are not generally known for most problems of interest. It is
clear from our work that the kind of function used in the trunction of
the fraction is decisive in determining the form of the relaxation-

-shape function.
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When F(w) is a sum of N curves that are nearly Lorentzian for
small w we can show that 6”_'.1 << GIV and in this case a N-pole approxi-
mation for F{w) works quite well. Also there are some models where the
67'1 can be célculated to all orders and, in these cases, the memory
function can be exactly calculated®*. In general, however, as our work
shows, 1t Js quite hard to get a good fitting using the continued frac-
tion expansion and this becomes practically impossible when only a few
6's are known (e.g. 6, and 6 as It happens in a lot of problems in

$215:18 e have also used other kinds of cutoff, suchas

the literature
gaussian approximation for f, (2) » fw approximation for f (2), 5-pole
approxirnation, but we have not obtained any improvement over the re-
sults preserited here. In all figures we show the corresponding values

for the 6's parameters.
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Resumo

Para testar a eficiéncia do método da expansdo en fragdes con
tinuadas considerarnos uma curva analftica #{w) conhecida a priori, cal-

culamos os momentos estaticos e, entdo, aplicando os cortes mais usa-

dos na literatura, comparamos as curvas aproximadas com a curva origi-
nal. Mostramos que, exceto an alguns casos especiais, € impossivel usar

0 método quando apenas o segundo e quarto momentos sdo conhecidos.
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