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Abstract Stabilization in the length of growing polymers, starting from
small constituents via seif-replicating information, isobtained through
the analogy between laser crossing threshold and critical phenomena.

The question of cooperative effects and self-organizationplays

nowadays a central role in theoretical bio]ogy1'3. lts formulation on

mathematical grounds, as suggested by Haken';' comes from laser theorys_7
extended to biology. In fact, both laser and biological systems areopen
systems far from thermal equilibrium.

The fields under investigation to which laser theory concepts
and techniques may be applied are mainly (i) ecology (population-dynam-
ics), (ii) evolutionof species and (iii) morphogenesis. In thefirst
case, the question to be understood is basically the distribution and
abundance of species (e.g., population of different butterflies in cer-
tain areas) The parameters that determine the sizeof a population and the dif-
ferent species which can coexist are some of the correlated questions
in this field. Due to the high complexity of biological systems, incom-
parison to physical systems, its description in terms of a microscopic
is a hopeless task. Since Oparin® there has been some attempts to ex-
plain the process which leads from inanimate matter to life. Recently
some authors®>'® have shown that starting with ‘small fragments' (mono-
mers, dimers, trimers, etc.) one can account for the growth of apolymer,
with a biologically promising sequence of oligomers, through conden-
sation reactions which are catalysed by fragments complementary to the
original ones . A simplified model considers the formation of a linear
macromolecule, as the sequence: ABABAB..., where A and B represent oli-
gomers as purine and pyrimidine in DNA and the growth is assumed to be

catalysed by complementary oligomers, such as ABA, as follows:
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In the above diagram the vertical lines represent chemical bondsbetween
complementary fragments and they play a crucial role in the process. A

1% of growing polymers,using the renormalization

configuratiorial analysis
group (RG) concept, leads to a critical point k* for the equilibrium
constant k (fugacity) and also to two (stables) fixed points: k=O (cor-
responding to a lack of growth) and k* (corresponding to infinite
growth) ,

The relevant result obtained from the treatment rnentionedabove
is the existence of a critical point k=k*. This shows that the tran=~
sition from inanimate matter to life can be looked at as a critical
phenomenon'®. However, although it supplies the critical point k*, this
technique does not take care of the stabilization in the length of
growing polymers. Therefore, mechani sn that tends to stop the growth
when a convenient length is attained is not included in this treatment.

In order to explain the polymer growth and its properties,
alternative treatments in terms of the polymerization-degree parameter
can be used as, for example, in the model of self-avoiding random walk'®
SAW. Treatments that follow the models for magnetic systems are also
investigated'?. In this paper we employ a different (though phenomeno-
logical) procedure following the laser analogy: we assume the same
growth-model of ref. 10, but adopt the length L(#) of a growing polymer
as the desired variable. V& set L{¥) = IV(t)Lo, where N(t) is the pol-

ymerization-degree parameter”, as appears for example in

- @ -]"

and L, is the length of the small constituent as AB. Typically, LoﬁSA;
N = 10*, which gives L = 10* L, = 5 x 10%A.
Setting the equation of motion for ¥ (#) as:
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%Nz = (g-2) ¥, m

where g is a gain parameter (due to all mechanisms that tend to increase
the size of the polymers) and R is a loss parameter (due to mechanisms
that act in opposition to the growth of the polymer). Eq. (1) can lead
either to an exponential growth for g > & (corresponding to the infinite
growth for k>k* as mentioned in ref. 10), or to an exponential decayfor
g < & (corresponding to the lack of growth for k<k* as also mentioned in
ref. 10) . There is a slight difference in ref. 10 where below threshold
(k<k*) one finds a finite value N (=) « (k-k) "™ # 0 where v isa critical
exponent. This difference, however, can be easily circunvented by the
substitution ¥ (¢) ~ N(t) = N(t) - V().

The approximation described by eq. (1) gives the threshold
condition: g-R=O (corresponding to the critical point k=k*, of ref,10) .
However, eq. (1) does not give an upper bound to the growth, since above
threshold {g>%) the length of growing polymers blows up.

in fact, eq.(l) corresponds to a linear approximation which
isvalidonly forsmall values of N(t). For largevaluesof N(f) the
growing polymers become sensible to the presence of mechanisms that act
in opposition to growth, leading to the stabilization in the length of
the polymers. For example, we may have a saturation’* in the gain par-
ameter, as in lasers (see ref. 7, pg. 153), due to internal ' forces '
In this case, following the laser analogy, we would have a modificetion
in the gain parameter, yielding g+g—8,N. Alternatively, we could have a
modification in the loss parameter, yielding 2>+8,NV, probably due to
external ‘forces’ (e.g. collisions with neighboring molecules in
Brownian movement) . V¢ assume that the saturation parameter =g, (8,) is
very small in such a way that BI<<g(Bz<<JL) . Therefore the nonlinear term
B]N(BZZV) becomes significant only for ¥(¢) >>1 which leads to the stabil-
ization in the length of polymers for large values of ¥ (¢} . Hence,
whatever the nature of the mechanisms might be, instead of eq. (1), we

set:
Ly - (2
where y=g-% is the effective gain parameter and 8=8,(B8,) is the gain

(loss) saturation parameter. Eq. (2) is a nonlinear Bernoulli's equatlon.
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Its general solution is easily found, but here we are only interested
in its steady state solution (1V=IVS)whichis obtainedby setting d¥/dt= 0,
yielding

Ny = /8 = G078 . ()

Of course, the process is not deterministic as one would con-
clude from eq. (2). There are other complications due to the presence
of thermal fluctuations which destroy the deterministic character of
eq. (2). To take into account the random process, we add, by hand, a
fluctuation term F(z), with <F(#)> = 0, which leads to a more realistic

equation:

S= - B+ P() (%

which is a nonlinear Langevin-type equationls.

Its solution, and the
solution of its corresponding associated Fokker-Planck equation, can be
found in the literature!S.

For the sake of completeness, we mention that the analogy of
the present process with a phase transition phenomenon can also be es-

tablished through a potential function!” G(¥), given by:

G = - yN¥/2 + gn3/3 , (5

satisfying the condition dG/dN = -dN/dt.

In conclusion, the presence of the nonlinear term in eq. (2)
responds for the stabilization of the polymer growth. The procedure of
ref. 10 would correspond, in a way, to the linear approximation of eq.
(1) . For complicated systems such as growing polymers, or even in recent
more realistic laser models’®, the linear approximation is a first step

in the direction of a complete treatment.
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Resumo

A estabilizacac no comprimento de polimeros que crescem a

partir de pequenos constituintes, pelo mecanismo de auto-réplicas de in-
formacao, € obtido através da analogia entre o lazer atravessando o li-
miar e fenbmenos criticos.
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