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Abstract W calculate the spontaneous magnetization for the transverse
Ising model (TIM), in two (2-D) and three dimensions (3-D).The critical
indexes of the magnetization at finite temperatures are the same as
those of the corresponding Ising model case. W also obtain thecriticat
frontiers which separate the ordered-disordered phases of the TIM 1in
2-D and 3-D and the critical fields compare well with other values avail~
able in the literature. As our results are based on extensions of the
relations for the magnetization of the pure Ising model, we expect that
they will be good estirnates for the spontaneous rnagnetization of the TIM
at any finite ternperature.

1. INTRODUCTION

The transverse Ising model (TiM) has been proposed as a model
harniltonian to describe the basic features of a list of cooperative sys~-
tems. For example, this model was proposed by de Gennes' to describe
the microscopic behaviour of hydrogen-bonded ferroelectrics of the
KH,PO, family. Also rnagnetic ordering in rnaterials with singlet crystal
-field ground state can be described by the TIM, as reported by Wang
and Cooper®. Further applications of the model can be found in a paper
by Stinchcombe®.

The hamiltonian of the TIM can be written as

B=-0) & -+q ] o o
t 7 2 EE A
7 7J
where R is the transverse field, J is the nearest-neighbor exchange in-
teraction and 0% (o = x,y,2) are the components of spin -1/2 operators.

In one-dimension this model was exactly solved by Pfeuty“ exhi=~
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biting long-range order at zero temperature for sufficiently small
transverse field intensity. In higher dimensions we have the series ex-
pansions results of Elliot and Wood?, Pfeuty and Elliott®, Yanase et al?
Yanase® and Oitmaa and Plischke®. Among the effective field ap-
proaches which represent irnprovements over the mean field calculations
for the TIM, we would 1ike to depict the works of Hattoril® and Sa
Barreto et alll.

Hattori calculations'® are based on considering a pair of near-
est-neighbor spins embedded in the mean field of the remainders, ob-
taining good results as coinpared with the series.

S3 Barreto et al!? developed approximated relations for the
spontaneous and transverse magnetizations of the TIM. tn the case & =0,
their relation for the spontaneous magnetization reproduces an exact

12 Also their results can be seen as a lower

identity derived by Calien
bound for the critical field, while the mean field approximation (MFA)
represents an upper bound for it.

MA results for the TIM are displayed in a paper by Blinc and
Zeks'® and the comparison between the upper éind lower bounds for the
critical field is found in the works of Silva and Si Barreto®".

Several renormalization group schemes have been applied to the
TIM. V¢ detach the works of dos Santos er al'® and Penson et all!® at
zero temperature, and of Friedman®’, Stella and Toigo'®, Plascak!® and
Kolb2®, at finite temperatures.

In this work we intend to obtain the spontaneous magnetization
for the TIM in two and three-dimensions based on the known relations for
the pure (2=0) Ising model. in section 2 we Jiscuss the two-dimensional
case. The three~dimensional version is discussed in section 3. Finally,
we conclude in section 4, making comparisons of our results with others

available in the literature.

2. THE TWO-DIMENSIONAL CASE

Let us pay attention to the following results from the series

5,6,8 . . .
’ue in two or more dimensions the effect of the transverse

expansions
field on the Ising model is to shift the critical temperature without
altering the critical exponents (provided the critical temperature re-

mains finite).
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Also we will write the 2z = 4 (z= coordination number) spon-

taneous magnetization equation for the TIM in the MFA and in the Sa

Barreto et al approximation“. ¥ have

M=—2M  ianng (2)

/02 + (bam)?

in the MFA, where M is the spontaneous magnetization, and 8 = 1/kT, as

usual., and

] g Ao 2 zJ tanh BY Q%+ (27) ZJM

W = ————— tanh BVR® + (8% + 2

AEE— |
/0% & (4)2 Q2 & (27)2
-

Ly o ']
4+ |—————— tanh B ¥0%+ {4} - 2 ——= —— 2 tanh 8/2%+ (29) 2 |u°
/_——1 e |
/02 ¢ (b)? /a2 4 (20)2

(3)

in the Sa Barreto et all! approximation.
Putting R = 0 in relations (2) and (3), we recover the results
for the Ising model in the MFA and in the approximation worked out by

Honmura and I(aneyoshi“, respectively. Moreover, we can see that in
these two approximations, the effect of the transverse field is to re-

place the function

tanh Bx by —% ____ tanh B/O2 + x?

Q% + x?

Now consider the exact relation for the spontaneous
magnetization of the Ising model in the square lattice,expressed interms
of hyperbolic tangent functions, W can extend this relation to the TIM
case, by using the same replacement mentioned above. Doing that we will
have :

2
M =2 — tanh B Vw? + (27)%| M
2 2
Yw? + (2J7)
(4)

- 2J tanh B Yw? + (2J)2

Yw? + (27)2
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where o is the *renormalized’’ transverse field given by

(2-2)
(z-1)

w Q (5)

where relation (5) will be explained in the proper occasion.

Putting w = 0 in equation (4), we recover the exact spontaneous
magnetization for the iIsing model in a square lattice, as obtained by
Yang??, but expressed in terms of the hyperbolic tangent function?®?.

The critical temperature (TC) is obtained from (4) in the limit

as M > 0. We have

2
1 =2 2J tanh Bc/wz + (2J)° (6)
;Wz + (2)2

Also in the Timit as Bc + o (T = 0) we obtain We (and also Qc’

using relation (5)). We get

1=2 |2 (7)
Y+ (20)2
Soiving equation (7) we obtain Rc/ J=3.

We compare in figure 1 the line of critical points of the TIM
given by relation (6) with the Monte Carlo real space renormalization
group calculations of Kolb2?, Except for a narrow region around the
critical transverse field the two curves remain close to each otherin a
wide range of R. W also compare, in the table 1, the critical field with
other available results.

Now let us explain relation (5). tn a previous paper®* we
were able to improve the MFA critical points obtained by various ver-
sions of the Ising and transverse Ising models, with the imposition of
constraints in order to modify the standard mean field approximation. in
that work we had to use two constraints: a) one that accounts for the
effective transverse field and b) other that accounts for the effect of
the correlations in the parallel effective field. However, in this work
there is no need for the second constraint (case b), since the exact re-
lation for the spontaneous magnetization contains the exact information
about the parallel correlations. With respect to the case a) relation
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Fig.l - Critical frontier for the TIM in the square
lattice. This calculation (dashed line) is compared
with the Monte Carlo renormal ization group estimate
of Kolb?® (full line).

Table 1 - Values of the critical field QC/J, for the TIM, accordingto
various calculations.

Method |Best of dos| Penson-| Hattori |SA Barreto
Santos- Julien- 1o Fittipaldi|Present
Sneddon- PFeuty Zeks work Series
. Stinchcombe 16 11
Lattice
15
Honeycomb - 1.97 - 1.83 2.31 -
5,6
Square 3.03 2.63 3.3 2.75 3 3.047
4.12 v,
Triangular 3.74 4.76 5.4 4.71 4.33 L.77
Simple - _ 5,6
Cubic 5.4 4.7 5.30 5.167°
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(5) remains the same as that of the previous paper?“.

In order to pursue further this question let us define the
following function

£(0,B7) = —2— tanh BJ va2+ 4 (8)
aZ + 4
where
= [6V]
“=7

Then, based in the Potts®® result for the Ising model in the

triangular lattice and using the same argurnent employed in obtaining
equation (4), we find

M = 2f(0,80)M ~ [2f3(0,B) - f*(a,Bs)]M° (9)

which is the spontaneous magnetization for the TIM in the triangular

lattice.
Thecritical temperature isobtained in the limit ¥ > 0, and

is given by the equation

1 = 2f(0,8 ) (10)

Putting a = 0 in egs. (9) and (10) we recover Potts?® exact
result for the Ising model in the triangular lattice.

The critical field is given by the equation

. (1)

/oc;+ A
obtained by taking the limit B, > in eq.(10).
The critical field is compared with other available results in
the table 1.
Finally, we present the last two-dimensional result of this
paper, in an analogous way as we did before we obtain for the TIM

in the honeycomb lattice the spontaneous magnetization

M= 21- £2(0,89)M + { £2(a,87) [2 =12 (c,87) = 2/1 = £2(a,87)]}0°
(12)
So, the critical ternperature for the TIM in the honeycomb lat-

tice is given by the equation
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1 =2/1 - fz(a,BcJ) (13)

and the critical field is given by

1=2 /1« ———— (14)
(a + &)

Again the critical field of (14) is compared with other avail-
able results in table 1.

It is worth to mention that the results for the TIM in the
honeycomb lattice were obtained based in an extension of Naya's resul t2°
for the Ising limit (2=0). Naturally that case can be reproduced taking
a0 in relations (12) and (13).

In figure 2 we present the spontaneous magnetization for the
TIM in the square lattice, as a function of the temperature and for
various values of the transverse field. W see that the magnetization
goes to zero at the critical temperature with the critical indexcharac-
teristic of the two-dimensional Ising model, that is .125.

The results for the other planar lattices look similar to the
square lattice case and we do not present plots of them here.

100
M
050+

Fig.2 - Spontaneous rnagnetization

for TIM in the square lattice, as

a function of the ternperature.

From inside we have the curves

) 1 calculated in this work for R'J =

0 0 20 =27, RRJ =2 and R = 0, respect-

KT/ ively.
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3. THE THREE-DIMENSIONAL CASE

7

in a recent paper?’, we have proposed that the spontaneous

magnetization for the Ising model in the simple cubic lattice can be

well represented by the equation

¥ = (3 tanh? 387)M - (2 tanh® 3g7)M21/° (15)

The above relatiori gives the critical temperature (TC) kTC/J =

= 4.56 as compared with?®
ch/J}series = 4.51

Also relation (15) can be expanded around TG, as
M= 1.5 [1 - i] (16)
a r-esult that can be compared with

M = 1.57 [1 - = (17)

series

the series result, as quoted by Fisher?®,

Then we can use. relation (15) in a similar way as we have used
the two-dimensional exact results for -Ising model, in order to obtain
the spontaneous magnetization for the TIM in the simple cubic lattice.

Doing so, we have

2 .
M= 3[__3J__ tanh B/w? + (3)%| M

Jw? + (37)2 (18)

3
-2 {—-ﬁ—-—— tanh p/w? + (3J)2 MZI/5

Yw? + (37)2

Taking the limit as ¥~0, we obtain the critical frontier of

the TIM in the simple cubic lattice. W get

2
1 =3 —3L  tanh B/ w? + (30)2) (19)
Yw? + (30)2
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Finally, we obtain the critical field (8. -+ =) through the

C
equation

2

2 2
w, + 9J

The critical field obtained from eqg. (20) is compared with the
other results from the literature, intable 1.

We plot in figure 3 the critical frontiers of the TIM in the
two and three-dimensional lattices treated in this paper. Also we com-
pare in tables 2 and 3 the values of the present work with the
series resylts, in the square lattice and in the simple cubic lattice
cases. W see that the agreement between the two calculations arenotso
good as expected.

in figure 4 we present the spontaneous magnetization for the
TIM in the simple cubic lattice, as function of the temperature and for
various values of the transverse field. We see that the magnetization
goes to zero at the critical temperature with the critical indexcharac-
teristic of the three-dimensional Ising model, that is .3i25 as quoted

from series results by Fisher2®.

4. CONCLUSIOMS

In this paper we have obtained the spontaneous magnetization
for the TIM in two-dimensions based in extensions of the exactrelations
for the pure Ising case, since for the pure Ising (2=0) the magnetiz-
ation can be expressed in terms of hyperbolic tangent functions. Also
starting from what we think is a good analytical relation for the Ising
model in the simple cubic lattice, we were able to extend the relation
for the TIM case.

The spontaneous magnetization obtained for the TIM in two and
three-dimensions goes to zero at the critical temperature with the same
critical indcx of the pure Ising model (2=0) versions, respectively.

The comparison of the critical fields (see table 1) with other
results of literature shows that we have obtained results close to the
best estimates (close to the series results, in particular).

Also the comparison of the line of critical points, in the
square lattice case, shows a good match with the Monte Carlo Renormal-

ization Group calculation of Kolb2?, except in a narrow region below Qd
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Table 2 - Critical temperature for some values of the transverse field,

5586

obtained in this work, compared with series results ,
lattice case.

for the square

QT KT /7 (series®’®) KT /J (this work)
0 ; 2.252 2.269
0.224 2.248 2.265
.45 2.020 2.106
2.162 ; 1.660. 1.840
2.566 ' 1.348 1.584
2,804 E 1.120 1.330
2.880 0.940 1.204
3 - 0
3.080 0 -
Table 3 - Idem as table 2, for the simple cubic lattice.
QT KT /d (series®’®) KT /J (this work)
0 4.518 4,556
0. hhh L. 506 L. 546
2.760 3.960 L.133
4.080 3.132 3.497
4.656 2.448 3.005
4,920 1.968 2.665
5.036 1.620 2.463
5.124 1.026 2.268
5.160 0 2.169
5.303 - 0
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Fig.3 - Critical frontier which
separates the paramagnetic and
ferromagnetic phases of the
TIM, according to this work.
From inside we have the curves
for the honeycomb, square,
triangular and simple cubic
lattices, respectively.

Fig. 4 - Spontaneous magnetiz-
ation for the TIM in the simple
cubic lattice as a function of
the temperature, calculated in
this work. From inside we have
the curves for Q/J =5, Q/J =4
and £ = 0, respectively.
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as can be seen in figure 1. But the results are not so good, as compared

with the series results5’®

{see tables 2 and 3).

W expect that the results here obtained can be good estimates
of the spontaneous magnetization of the TIM far from the quantum be-
havior at 7=0.

In particular we expect the results to be quite good near Q=0,
the Ising limit.

Now the method has at least two shortcomnings:

a) The results do not display the correct criticality (B = 5/16)
of the TIM in 2-D at zero temperature in terms of the transverse field,
which corresponds (see tha papers of Young®?, Hertz®! and Suzuki®?) to

the criticality of the Ising model one dimension higher {3-D) in terms
of the temperature parameter.

b) W& can not calculate a quantity such as the transverse mag-
netization for the TIM, since we do not have the corresponding quantity

in the pure Ising model case.

W are grateful to Dr. F.C. S& Barreto, to Dr. AS.T. Pires and

to Dr. J.A. Plascak for a critical reading of the manuscript.
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Resumo

Neste artigo calculamos a magnetizacao espontanea para o modelo
de Ising transverso (TIM) em duas (2-D) e trés dimensces (3-D). Os in-
dices criticos da magnetizagao sdo os mesmos que os do modelo de Ising
nos casos correspondentes. Também obtemos as fronteiras criticas que se-
param as fases ordenadas e desordenadas do TIM en 2-D e 3-D e os valo-
res dos campos criticos estdo préoximos dos encontrados na literatura.De-
vido ao fato de que nossos resultados sdo baseados en extensdes das ex-
pressdes para a magnetizagac do mddelo de Ising puro, esperamos queeles
sejam boas estimativas para a magnetizagao espontanea do TIM em tempe-
raturas finitas.
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