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Abstract We use the proper time variable of the heat-kernel expansion
to regularize field theories in the framework of the background field

method. The method can be naturally applied to supersymmetric and gauge
theories. Explicit computations have been done including superfield

perturbation theory.

1. INTRODUCTION

Renormal ization is one of the most difficult techniques in
quantum field theory. Besides difficulties of principle with some
schemes breaking down at very high orders of perturbation theory!, some
symmetries of the theory can be rnutilated in the process. The problem
of recovering gauge symmetry in the BPHZ scheme? is notorious®. Dimen-
sional regularization® is the best method to deal with gauge theories,
since the gauge principle is maintained in arbitrary dimensions. How-
ever, concerning supersymmetric theories the situation is not yet in
good shape. This comes from the fact that the number of degrees of
freedom of fields of different spin does not behave in the same way
with respect to the dimension. A way out is the process called dimen-
sional regularization via dimensional reduction, or supersymmetric di-
mensional regularization (SDR)®. in this process, the space-time is D-
dimensional, but the fields and the algebra are kept 4-dimensional.
However the process is ambiguous at higher orders of perturbation the-
ory®. In this work we propose a regularization procedure based on a cut
in the integration over the proper-time variable of the heat kernel ex-



pansion. This is made as follows —one uses the background field
method’, splitting the field into a classical and a quantumpart. The
quantum piece is integrated, and we get an effective action in terns
of the classical fields, fromwhich the renornalization constant can be
read. in order to performthe integration over the quantumfields, the
corresponding Green's function are expanded in a series whose ternsare
successively less divergent at short distances, and the coef ficients
are functions of the background fields, being called Seeley coef-
ficients®. Introducing at this point a cut in the integration over the
proper-time, ati products of different Green’s functions are regu-
larized in an explicitely supersymetric way, since the above pro-
cedure can be equal |y made using superfields.

Sone of these results were also partially shown in a previous
comuni cat  on’.

2 THE HEAT KERNEL AND BACKGROUND FI ELDMETHOD

The background field method consists in splitting the field
into a classical and a quantum piece. The specific way one does itis
rather arbi trary, and one can use this arbi trariness in order to sim
g ify the computations. W shall study 3 cases, namely the @ theory,
the (supersymmetric) Wéss-Zum no nodel , and the supersymmetric & = 1
Yang-M 11s theory. The ¢* model is descri bed by the lagrangean:

i

L=g08°%+ & (2.

N

The background quantumsplitting is simply

> ¢+ §
and we have

L@ +0 @E+5 00° +£e* + Fe%+ F &' @2
the quadratic operator

DB=-D+%¢2 (2.3)

defines a heat-kernel G(x,y;t), such that



g? Gle,y;T) - DB Glx,y;T) =0 (2.4)

with the boundary condition

Glx,y;0) = 8(x-y) (2.5)

The Green's function is given by

Loe]

Gle,y) = [ dt Glx,y;T) (2.6)
0 .

The heat-kernel (or equivalently the Green's function) can be expanded

in a series®.

® T ) o W
Gle,y;0) = } (2.7)
n=0 (hnt) 2

Plugging (2.7) back into (2.4) and (2.5) we can compute the an's. In
fact what we actually need are the lowest three Seeley coefficients at

coinciding points. From (2.5)

a e,y =1 (2.8)

and from (2.4) , to lowest order in T:

g e-xz/ln ) e—xZ/ln: a2
'7¢ = rulh el b 3! 2.9
(bmrt) 2 (4m) T
from which
a, @) =-§ ¢ (210)

To second order in T we have
92 y g 2
az(x,x) =-8-¢ (=) 'ITD(P (2.1])

So much for the ¢* theory. We turn now to the computation of the Seeley
coefficients for the Wess-Zumino model. The theory is defined by the

lagrangean density'?.



L:jd"efw—%‘rjdze ¢3--3A_rjd25$3 (2.12)
where ¢(®) is a chiral (antichiral) superfield:

D,¢=0=0D (2.13)

and D is the usual covariant derivative (see ref. 9 for our conven-
tions)
The background quantum splitting is also very simple

and we have the lagrangean,:
L.=fd“e - [ato Goste ey - [am e ey

(2.14)
As usual we can turn the two dimensional Grassmann integrals into four

dimensional by means of the identities.

J d%e ¢£? = J d%e d%8 &9 052 £ (2.15a)
J d2g $E? = J d?e 428 Ep g-z E (2.15b)

The part of the lagrangean, which is quadratic in the quantum fields

is now:
wo ¥ F £
L=(d8¢&gg 0(z) (2.16a)
| _— E
2
A 1
0
0 = (2.16b)
D2
1 -A =9
O
The heat kernel method has already been employed in supersymmetric
theories!®. It is possible to find the heat-kernel expansion for (Oﬂff



This is done in a very simple way, just considering the heat-kernel

corresponding to

o O 8 (2-2) =j At qepta 0] @.17
0" o o (yn7)? 0

and treating the background field as a perturbation. The first Seeley

coefficient (ai) is given by the expansion of
{ o O] T-w o ’l o 0O
LO™ o 0 DY

so that

[ dt__ - €-y) 2/t a, @) = -\ J

(bwT) 2 ( (5m) 2T1T2) 2

~ (x-2)2 “3D2% 0 o) 2
« o~ @-A2/hT [Mg $ _w%] o~ (3-9) “/hT, 2.18)

from which we get

D%, o
al(x,x) = -2 (2.19)
0 D%
The a, coefficient can be computed also easily:
AZ 0 5202(—b¢—|
a, &2 = 5 25245 ¢ | (2.20)
Finally we turn to the case of supsrsymmetric gauge theories. The

lagrangean density of a ¥=1 Yang-Mills theory is given by (11}, (12):
_ tr 2 2 tr 25 <2 ..
L-—-—-—Jde w +-—-—Jd6 w + gauge fixing + ghosts
2g° 2g°2
(2.2Y)
where



and V is the gauge field, a general real superfield, in the adjoint
representation of the gauge group G.

Gauge transformations act as

RN A (2.22)

where A(R) is a chiral (antichiral) gauge parameter. A suitable gauge

fixing lagrangean is?:

Lgp = - LJ d*e DV BV (2.23)
. g2

The gauge transforrnation (2.22) is highly nonlinear, but can be re-

expressed as
8y = LIV I:-¢ (A+A) + coth Liy i (1-\-A)| (2.24)
2 z
where
LY = (x,7]

It is now possible to write the Faddev-Popov action

LFP = tr J d*e (c'+c") L%V I:c + ¢ + coth L%V(e-a)] (2.25)

The background field rnethod is not less cornplicated, although the re-
sults are quite sirnple, once we know the way to proceed. It turns out!?
that the best procedure is to consider the quantum field as above (V)
in the chfral representation, and the background field in avector rep=~

resentation, defined by the fields € and Q . The splitting is

eV -> eQ eV eQ (2.26)

This has the advantage that we can use the following very simple rules,

in order to realize the method!2.

a) Covariant derivatives are now background covariant:

R !
D, > Ua = e Dye (2.27a)
D +7D, = & D. Pt (2.27b)
& o a



b) The Laplacian operator in the quadratic part of the gauge action,
after expanding in powers of V¥V, turns out to be
DB = DO"Da - wal)a - waDa (2.28)

where w(W) are the background field strenghs.

c) The ghost (and eventually matter) fields, which previously obeyed a
chirality or antichirality conditions obey a background covariant

chirality or antichirality condition:

D e=0>D c=0

@ o (2.29a)
D.e=0+D.¢=0

o 2 oL

As a result of c¢), when the ghosts are introduced one must divide out
the (spurious), contribution from the determinant of their square op-
erator, since it is no longer constant, but depends on the background
field. This introduces another ghost, the Nielsen-Kallosh ghost %,

which however, has only one loop contribution:

L = tr J d*e bb (2.30)

now We can compute all the necessary Seeley coefficients. in order to
do that, we rnust look at the propagator of both the gauge potential V,

whose inverse propagator is:
( aVv >~ o (v“va - iwa‘Da - 1,(3%“) § (a-a) (2.31)
and the ghosts, which are chiral (antichiral) , and have as propagators.
<e(?) .c(z') >7? (DaD - 'Lma'D - —D 0)6(3-2') (2.32)
The heat-kernel corresponding to the operator

- m"‘v - u:)aﬁ

where [} = =% o0 Can be computed using the identity (the chiral case
(2.32) can be obtalned trivially, substituting wa'D by 5 1 %, )



Glz,z") = Jw dt [expl-1((]"' - imaDa - i&dﬂa 1 8(z-2") =
0

-1 -T -
= j dr, e §(z-z") + J dt dt, J d*z e 8(z-2") (- iwaﬂa-

. -T
§(z"-z") + %J dt dr,dt, J d*z" d*z"e 8 (z-z")

.0’

-1
D) e
o

1

(2™ - ™) (2" e-TZD § (z'-3"") (-15&-)6‘17& - ) (=)
a o o

‘TaD'
e 8

(z"''-z') + higher orders. (2.33)

For our purposes, the background fields in 7' do not contribute,since

the corresponding a, coefficient is:

ay be@) = Fy = - 4D (2.34)

which is less divergent, because of the derivatives (as a rule, we must
have a maximal number of derivatives on the §(z-z') function to have a
non zero result, and derivatives on the exponential functions, in or-
der to have contributions to the infinite parts) .

We have for the Seeley coefficients a,:

a, (3,2 = waDa wBDB + (terms with) (2.35)

3. REGULARIZATION AND PRODUCT OF THE GREENS ~ FUNCTIONS AT THE SAME POINT.

COMPUTATION OF COUNTERTERMS

we shall now rearrange the heat kernel expansion in such away

that all the divergent structures become transparent. We write!®:

Gl,y) = Golwy)ao w,y) + Gy @w—y)ay l,y) + Go lw-y) az (@,y) +G b,y

6.1



2 =t Y 2
e 0 - b [Rn e¥ 28] 5 @) (3.9

and

G =0, 8@ - —— "™ 1 20) 3% () 3.9

(4m)
where G, is linearly divergent, and contribute to mass renormalization
Now we are able to conpute the divergences is perturbation
theory. In the ¢* theory, we have for the one | 0op contri butionthe

diagram (1) (Fig.1).

{tig. 1)
whi ch contributes as

J d*z d*y % ¢ (x) G: {x-y) % o2y = - j _de g%" &) 2n AL 2¢)

16 (4m) 2
3.10
inpl ying that we nust take a conterterm
2
L = - L 39 ga @ 4 2¢) ¢ 3.11)
4t 3292
or equivalently
2
= i - .31- yt'
Zg 357 gn(e " A 2¢) (3.12)
giving the B-function at |owest order
2
s @ =3 3.13)

16m%

For the two loop conputation we conpute the three diagrans in Fig.2

KO XD &>
(a) (b} (c)

(fio. 2)

10



The first contains the lowest order counterterm and its contribution

is

(@ = J d*z h—ég—z-z— $2 (@) 2n (eY‘H A 26) a, (,x) G, (x,2)
327 »

= J gy 3 6* (an &'t A 20)2 (3.14)
k. 6hm? (bm 2

The second contribution is

2 _ 3 ( Y+] 2
b)) = - J dum% [Gl (x:x)al (x_,.r):l = - m} d*z &n (e A 2¢€) ¢l+

(.15
Finally (c) has two contributions, one exactly as above for the " term:

397 [ 4oy g 2 (o v =
d*x d'y ¢@) W) a, @5 62 @-9) G, (x-y)
12

3
=-—9  (ne' A2 J d*z¢" () (3.16)
16 (4m) *
and one contribution to the 2-point function
2 2
Jd"xd"y L 4@E oW = —L—anE"+ A Ze)J dx (8, ¢(=)*
L 12 (4m) *

3.17)

We have as a result

2
2 Y p e + % (&n ALl

=] - — A 2¢)
2 (4m) 2 4 (4m) *
3
+ 39 gn e e (3.18)
(4m) *
and
2
2. =1-—92___ gn oY A 2e (3.19
¢ 12 (4m) *

This gives the B-function

11



Z,

Blg = 3° 11 _g (3.20)
2 4
() 3 (4m)

which is a well-know result.

For the Wess-Zumino action we have at lowest order thediagram

of Fig. 3

(fig.3)

contributing as:

2 -
2 J( d“xd"yd"exd“ey (%) ¢ (,8,) Gi (x-y) ¢ (v, 0 ‘L) st (ex—e f szzau(ex—ey)

A® Y+l “ wp T
= “g@gzrine A2 j d'z d'0 ¢¢ (x,0) (3.21)

giving for the B-function the value

1 3
sy = 32 3.22)
2 (4m) 2
where we have used the Feynman rules for {anti) chiral fieds, which

demands factors of 22 (?) in all lines, except one'?.
The two loop computation is very simple, since it involves

only one diagram (Fig. 4).

(fig.4)
As a result of the Feynman rules we have.

3n*
3!

4 4 L y 2 - 4
J dh dy @', % 6} (16,60 00,0
27284 - 2720k - 2 7T
D*D*8" (8, ey) D?D%8 (egc ez)x o0 (x) (3.23)

wWe have as a result:

12



where

gad ep2
G (’L‘) - I dt Tn e x*/ bt
n 0 (LHTT) 2

G, (x) is regularized by a cut-off in the T integration:

(o] - 2 l*

Gl = [ —dr 6.2
0 ¢ (Um)?

To regularize the remaining functions, we force them to obey the fol-

lowing relation, valid in the non regularized theory

¢ -y = | d'zG &2 G (3 (3.3)
min+1 v J R A

As a result we have

0 - 2 an
J dr__ -xt/hT ) (n+Tl).e] 2 (3.4
ety e (bmr) 2 t ~
In order to find the divergences characteristic of perturbation theory,
we Fourier transform the product of Green's functions at the same point
and consider the first few terms in a Taylor series around zero momen=
tum, the remaing terms being convergent (e.g. by power counting) . The
first product is given by G: (x) . In the above procedure it is only

necessary to consider the first term (zero-momentum

Joo dt,dt, () * A (1,+7,)
e

Jd“x G2 (x) = " 7 T ° 3.5
(4m *ti12 (‘r—1'+r_;)

where a small mass A was introduced to avoid infrared divergences.The

above integral can be performed, and we have, for small €:

J d*z Gﬁ (@ = - 1 n (eY"'l A 2g) (3.6
(4m) 2
so that
) = - ——an (A 2066 (3.2
(4m) 2

Other products can be computed by the same procedure. We need the fol-

lowing



)\2
4 () #

(n &Y A 2¢)° f d*z d*0 ¢¢ (3.24)

and the B-function can be computed®®:

38

-3 (3.25)

2 (bm) *

2 (4m)

Now we can turn to the Yang-Mills theory. The one loop computation will

have the following contributions:

i) The gauge field loop, fig. 5,

i)

Pii)

which corresponds to the trace

of the a coefficient

The ghost loop, fig. 6, corre-
sponding to the trace of the
a coefficient in the chiral
case. It comes with a factor
of 3 (2 Fadeev Popov ghosts,
and one Nielsen Kallosh ghost).

The matter fields, fig.7, which
only appear when we have ex-
tended supersymnetry. 1t comes
with multiplicity 1 for N= 2,
and 3 with ¥ = 4. Each con-
tribution is numerically equal
to the ghost contribution, but
withopposite sign, to that

they cancel for N = &,

It is not difficult to see,

(fig.5)

~
Came”

Cfig.8)

ctig.1d

in the present approach, that i)

does not contribute. This happens because in the a, coefficient there

are two derivatives, namely O DB (or ﬁd 1_76) which are not enough to

delete the four dimensional deltas in the Grassmann variables, so that

the term vanishes at coinciding points. The only contribution comes

13



from the chiral integrals:

[ @02 a0 [ & eMi@e), wro,050 -

@ - (z=x!) 2/b1 2
_ N 2 dT _e_ _ _3_8 2 GB 2 -at
- [ @ 20 0,0 L—T— — o 0 ) e
¢, @)
=2 4% gn (Aa)] d*z d%6 w? (3.26)
(um 2

Taking into account the corract multiplicity and the matter fields, we

have
G-mc,@q?

16 w2

(3.27)

8V @ = -

Now we can turn to the superconformal anomalies. It was shown®® that
the axial current JZ, the supersymnetry current SL\’ and the'energy mo-
mentum tensor ew belong to a supermul tiplet, and that their transform-
ations under supersymmetry are related by:

ol _ oaHV, s H 5p _ P sU_ T A V. 5p

8§57 = 20 Y€ *+ %Y yssapJ zypyssa J F Ve em\)paJ (3.28)
Also the axial anomaly, the y-trace anomaly of the supersymmetry cur-

rent, and the trace of the energy momentum tensor are in a super-

multiplet. As a matter of fact, contractlng (3.28) with Yu we get

H = H 3 > s .
sy, 8" = 20 Ve + 3uy,ed (3.29)

in our superfield language, (3.28) means that those objects are partof
a supercurrent Joui , and (3.29) are connected with the supertrace J .
The classical conservation is given by

g, =0 (3.30)
which quantum mechanically has an anomaly, and (3.30) is transformed
into
=0

v .=cpn J (3.31)

o o

14



Recently it has been proued using components that (3.31) holds, sothat
the supersymnetric structure holds??. Using our method, we can easily
derive (3.31).

In the Wess-Zumino model the superconformal Noether current

is
1 A -
== + =

Tog =3 D000 + 360 40 (332)

Classicaly we have
0% , = - > D%D,3 + » D,D%F = 0 (3.33)

ab 3 A T

where the equations of motion where used in the last step. Quantum

mechanically we introduce the heat kernel expansion, and we have.

o, _ =z 1= 2=
DT . = ¢D¢ g DD 0

ad

\.N'-‘

(3.34)
[ | 7 ' ! 5 '
-5 (00,6627 + ¢ D,[ 16,2 )er

The laplacian operator gives a non zero value when applied to the Gl
function, selecting out the a, coefficient and the result is non zero
due to the mismatch (-1/3, 1/6) in (3.34), and we have:

%7, -(—')— AD, (G0%) = ;B(” 60%9) (3.35)

We can use the same procedure for the Yang-Mills theory. The currentis

(in the following we consider only N=1) :

Jos = wa(:)d (3.36)

and we shall look at its divergence
P @?) = 0t G P o%,A (3.37)
Again we have laplacian operator applied to a Green's function.

E&Jaa = ¢, @ [Oo 5% (2], (3.38)
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selecting out the a coefficient. As before, a maximum number of de-
rivatives must be applied on the Grassmann § functions, and we areleft

with:

ﬁé‘J =0 @) —L—D W) = - I_ﬂ?)_p w? (3.39)
oc 2 2 Q 3 g «
(4m)
showing that the anomalies belong to a supermultiplet.

4. CONCLUSION

We present a regularization scheme which can be used for
supersymmetric theories in a superfield formulation. The present scherne
works at two loop order, and it is possible to obtain the usual values
for the g-function and the anomalies. The latter were obtained only at
one loop, but the two loop results are in progress. A convergenceproof
for the renormalized theory working to all orders is not available,
although this is a very desirable result.

The present scheme has an advantage over supersymrnetric di-
mensional regularization {(SDR), since always work on the physical 4
dimensional space.

Finally, it seems that (3.39) is in contradiction with the
Adler-Bardeen theorem. Recently this issue was discussed at lengh'®, In
order to study the problem with the present method, a thorough 2-loop
computation is needed for the Yang-Mills field, which is presently

under progress.
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Usamos a variavel de tempo proprio definida na expansdo do
"heat~kernel' para regularizar teorias de canpos no contexto do método
de canpo de fundo. O método pode ser natural mente aplicado a teorias
supersimétricas e teorias de calibre. Calculos explicitos foram fei-
tos, incluindo teoria de perturbagdo cOm Supercanpos.



