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Abstract We generalize the time dependent quantum variatlonal principle
for Hamiltonian operators, which contain real parameters and Its time de-
rivatives. The consequent variational system is formed by a Schrbdinger
equation coupled to Lagrangian equations, where the Lagrangian is the
spectation mean value of the parametrized Hamiltonian operator. This
dynamlcs describes the interaction between a g-number sub-dynarnics and
a c-nurnber one. in the zero order WK.B. approximation, the variational
system is reduced to a Hamilton-Jacobi like equation, coupled to a fam-
ily of Lagrangian equations. The formal structure of the parametrized
varlational principie postulated in this paper, may be convenient as a
startlng point for the formal treatment of generaiized semi- classical

models.

1. INTRODUCTION

Dynamics which involve c-number and gq-number variables are
called semi-classical dynamics. The study of semi-classical models is
of great importance for the understanding of the transition from a
purely quantum behavior to a classical one. Many interesting papers
dealing with semi-classlcal dynamics have appeared recentlyl’z’s.
Sudarshan and Gordov start from a quantum dynamical model which, tater,
Is reduced to a semi-classical description. In his paper, Sudarshan im-
poses super-selection rules, while Gordov formulates his model in an
extended Hilbert space. Liran®, Schiutte®, and Griffin’, which are
Interested in the non-adiabatic nuclear behaviour consider, {in their
models, the existence of a collective dynamics, represented by time de-
pendent real parameters, coupled to a microscopic quantum dynamics. In
all papers listed above, the proposed dynamical equations are not of

varlatlonal origin.
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The purpose of thls paper is to establish the variational
equations describing the coupling between the g-number and the c -num-
ber (parametric) behavlour of the same global dynamics. For this purpose,
we start from a generallzed quantum, time-dependent, variational prin-
ciple with a Hamiltonian operator depending on real parameters and its
time derivatives.

The resultant set of variational equations is formed by a
Schrodinger equation (whose time evolution operator is the parametrized
Ham!1ton operator) coupled to a family of Lagrangian equations. The
Lagranglan is the spectation mean value of the parametrized Hamilton
operator. The WKB. approximation is evaluated and we show that in the
zero order, the system of equatlons is consistent with the expected

classical limit,

2. CLASSICAL ACTION FOR PARAMETRIZED HAMILTONIAN

Let us consider the classlcal parametrized Hamiltonian

. n . .
B pa’,d?) =V #p. - n(x? 292757 (2.1)
J 24 J
J
where {xJ,pé}, Jd=1,...,n, aren pairs of canonical variables and
{xJ,i'J} ,J=1,...,R, are R pairs of real parameters and its time de-
rivatives. The = coordinates {#”} are cartesian and orthogonal. The R

parameters {xJ} are carteslan orthogonal coordinates in the configur-
atlon manifeld, V,, of an external dynamlcal system in interaction with
the internal canonical one. The presence of the parameters in eq. (2.1),
will allow the formulation of a variational classical principle for the
interaction between the internal and the parametric dynamics. In the
slmplest cases discussed in the literature’, the parametric dynamics
acts on the internal system, without the corresponding reaction, which
means that the quantitles XJ(t) are prescribed.

By convenience we postulate the determinantal regularity con-

ditlons

2
313 £0 , Jk=1,...n (2.2)

LK
Ax

9

Let us consider, then, the classlcal action
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n . . J g
a=] 17 &, - 86 p e’ 50 (2.3)
) . J J
J=1
t.
1
wWe now construct two independent first order variations, 6, and §,, for
eq.(2,3), such that 5,.7,*7 and G,pj are independent and arbitrary, but

with

and later we take 6..xJ arbitrary, but with

suxg = dllpj =0

In both variations, the time is not varied. As a consequence, we obtain

the following variatlonal equatlons

. 3H Y
X = p. = - —r (2."‘)
Bpj J axt/
d 3(‘H) 3("]1) t
g 9\zH) VA _ g (2.44)
at 33’ ax”

The system formed by eqs. (2.4) and (2.4') specifies the interactionbe-
tween an interna], Hamiltonian, dynamics and an external, parametric,
Lagrangian, dynamics.

Let us take a new variation A, defined as

A=5+At%E

which varies also ¢, and ¢, in eq. (2.3). Now, the MY are free, biit we

impose the constraint
A =0 , J=1,...,R (2.5)

As egs. (2.4) and (2.4') are conslidered valid between the extrema ¢,

and 1;2, we have

t,

AA(ArJ=O) = (§ + At %—; Jf {5c‘7pj - H}dt =
t, (2.6)
tz 2

. . . T
= [p.6a? + stadp. - AeH] (p.6x? - HAE]
J J J ‘

t .
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Developing the left hsnd side of eq. (2.6) in terms of A and At,
which are independent, we have In place of egs. (2.4) arid (2.4'), the

new voriatlonai system of dynamlcal equations

U op,; Mooy (2.7)
ad Y 3t
L QL ¥y (2.41)
\ dt 3z 3x
with the constraint
b =0, J=1,..,R (2.5)
where
4= 427,57, t) (2.5")
2 "
B a, Ml i) (2.5%)
3z

The system formed by eqgs. (2.4) and (2.4%) is a Routhian System®,

equivalent to the standard Lagrangian or Hamiltonian formulations of
dynamics. But the dynamics description contained in egs. {(2.7), (2.4")

Is of a different nature. This is a direct consequence of the boundary
condltion, eq. (2.5), which destroys the symmetry of the global dy-
namics. The constraint, eq. (2.5), makes it possible to vary arbi-
trarlly only the internal coordinates, i.e., take as arbitrary only the
quantities l'. This allow us to interpret the Lagranglan behavior rep-
resented in eq. (2.4') as a boundary dynamics which influences the in-
ternal motlon, described In eq. (2.7), which is a Hamilton-Jacobi-like
parametrized equation. The system of eqgs. (2.4'), (2.7) represents a
Lagrangian picture whose conflguration space is the carteslan product

of the parametric and internal configuration spaces.

3. QUANTUM ACTICN FOR PARAMETRIZED DYNAMICS

As it is well known®’?®

, the non-relativistic quantum fundamen-
mental equation, may be obtained from a time dependent quantum vari-
ational principle
84 =0 (3.1
. :

A=Jt

* L, (3.2)

1
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with

LW,9) = W) i - Alv)> (3.3)

and where the bracket <||> means an integration in the configuration
space {xJ} of the quantum system. In this paper, we extend the quantum
variational princlple given by egs. (3.1), (3.2), (3.3), for the case

In which the Hamiltonian operator, ﬁ, has the pararnetric dependance

A=£ = ﬁ(a’c‘j,ﬁj;x’],&:‘]) (3.3")
As we will see, in this sltuation, the resultant Euler-Lagrange equations

describe a quantum Hamiltonian dynamics embedded in a Lagrangian bath
{x‘],a’c‘]}, with whom it interacts. In this bath, the quantum system s
supposed to be pointlike, in the of first order variations AxJ.

Then, inserting egs. (3.3) and (3.3') into eq. (3.2), we ob-

tain
tZ . . .
p=| a2 "W 0 - B e (3.4)
¢
1
with
~ ot a .L’|
B; = ik P, (3.4")

where § is the adjoint of ¥, and d%? is the volume element In the con-
figuration space {xJ}. Now, as in the classical action, eq. (2.3) we
consider two independent types of variations, Ga and Gb’ for eq. (3.4)

) J _ _ . - . _ )
a) Gaw =0; 6,z = Sal? =0 with dau} arbitrary and also 6at =0 With

this and imposing the condition 8 A = 0, in eq. (3.4), we obtain

(im %——E - l?(xj,ih _a;; xJ,a'cJ)w(x‘j,‘r‘] ,5c"‘],t) =0 (3.5)
3

the corresponding equations for \l-) are easily obtained.

. _ J _ . J . J -8 _n
b) 60 = &0 = 6, = 6,t, with 8,2 arbitrary, but Gbm (tl) Gbx (t,)=0.
Here, we corisider §;# # 0, induced by the variations Gbx .
With these variational conditlons we obtain from the variatlons 6bA =0

that
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2 .
Jdt 37 @(%H)w—o (3.6)
tl
As
- 3F J 3 . .
6,0 = 72 o 4 T 55 (3.7)
Y L A PY A
we obtain
t, s ai
- 37 dH_ _d_ 3H_ J
O«Jdtdxw% - G G o
t
7o [ a2 Vi ]tz
+ édemw—w (3.8)
?sz 2 "t

The boundary term in eq. (3.8) vanishes, and from the restrictions which

define the Gb variations, we have

t

2
J 3 d, d - - J
a Lo’ [ -L gy [ gy 2 -0 3.9
jt_ UZ b [BxJ at s’

1

L J . . . .
Since the variations GbX are arbitrary in the open interval (tz,tl) it

follows that

[_3_J_ -4 (P YlH[p> = 0 (3.10)
ox dt 4
with
wlil = [ @l 5y 3.11)

The coupled variational equations, deduced from the generalized quantum

action In eq. (3.4) with the aid of (Sa and 6b variations, are

iﬁa—tw =hy
-4 9] @il =0 (3.12)
dx dt d=x

482



where

i=8F,5 .;xJ,ﬁcJ)
J
and

R

As a consequence of the 617 variations properties, the boundary

term in of (3.8) may be written In the form
-~ t tz
J 9" 2 J 3 -
8,5 |=lw], = (1 8" =5 wlzly] (3.13)
o wlgWle, = W 7 2

From the form of eq. (3.13), we define the canonical momentum conjugate

J
to x7, as

pJ:-?—JQJ)I}?IQ)) (3.14)
ox

It Is important to remark that eq. (3.10) is a Lagrangian equations in
which <w|ﬁlw> plays the role of the classical Lagrangian. This aspect
is unusual In the literature of the semi-classical model. Liran* in the
treatment of nuclear collective processes by the Cranking non-adiabatic
model?, arbitrarilly postulates an additional Lagrangian system of
equations which allows to calculate the coupling between the classical,
collective dynamics with the internal quantum dynamics. But Liran takes
<1p|f7lw> as the classical Hamiltorilan and from it he constructs, in the

usual way, the classical Lagrangian.

4. THE ¢-NUMBER HAMILTONIAN

In this section we obtain the classical Hamiltonian, which is
assoclated with <p|#{y> by a Legendre transformation. For this purpose,

we multiplyeq. (3.10) and summing over J, we obtain

T GI2 lale + 2 2 wlae - & @ -2 glde)) =0 (h.1)
J axJ ach dt BxJ
but
L oglale = ] & L 9l + & 2 @lalp) (4.2)
dt 7 Ax dx

Hence, from egs. (4.1 ) and (4.2) we have
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d o] -~ - . . -~
7 0 S5 e - i) =0 =5 @&, - Wiy 63)
x J
The c-number Hamiltonian H is
o -
W=l &, - wlile (4.4)

J

it s now easy, to obtaln the Hamilton equations defined by H, namely

> aH
p, =~ =
J axJ
(4.5)
o aH
x = P
Bpj
5. THE CLASSICAL APPROXIMATION TO EQ: (3.12)
Let us represented ¥ given in eq. (3.4), as
g s %(so+-’isl+ﬁ_2s2+...)
V(52?07 ,t) = e = e v 22 (5.1)

where
s = 557,27 ,8)

So is supposed to be real and is an scalar by regular coordinate trans-
formations of the {x?}. Generalizing Pauli®" and Stachell2?, we may

rewrite eq.(5.1) as
T o ,
] . ]
v 5o 27 t) = ! &, +-§- R, + _7’2_2 R, +...] (5.2)
kA

where R, is necessarilly not real. If we substitute eq.(5.1) into (3.4),
In the approximation where R coincldes with R  we obtain
0
t,

¢

. -Lg Ls
P e PO mEAL g (5.3)

’

A(R=R,) = 4, =

Jtl

If we consider variatlons §,, restricted by the condltions

§,Ry= 6,5 =6 =60=28a =0
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§,t =70, but GIR*:, arbitrary, we obtain wth 84 =0

_Z 7
ta . S BS So
J d* dt G,R: e [at fl]R eﬁ =0 (5.4)
;. S .

1

d
The term z?i R has been negl ected because it |s of order h

Developung A as a power series in (-7 7), with  normal
orderlng, we obtain for the zero order term
7 1z
- s So_ S 35 .
A, -in 2 SRy = P H —5 &Ry (5.5)
97 327
inserting eq.{5.5) Into (5.4), we have
t, s 3s
. . 35
J 4’ at 6,R’:gt—° + H(xJ,;Jr,xJ,xJ)]Rg =0 (5.6)
ty *
Keeplng R, # Oand &§,R; arbitrary, we obtain the zero order variational
equat i on
38,
3—— + H(a:J -——-r;xJ,xJ) (5.7)
9’
This ts a Hanilton-Jacobi like equation for dynamics endowed with an

action Sy, paranetrized with x~ and a':J.
Now, let us consider &, variations, subject to the fol Tow ng

conditions

GHR’:J = 5,,30 = (SIISO =8,t=0
5,,35‘7 arbitrary, except in the boundarl es:
J J
8,47 () = 8,a7 (¢,) =

Hence, If 8,4 # 0, then 8,4, = 0, implies in that

t -l ts

2 s ¥ 0 -~ 0
8,4y = 0 = L dat d*s’ R’; e ! [-5..H]Roe-ﬁ (5.8)
1

If we adnit that &,,~like variations commute with Ry, i

ss So and x7, we

can wl te
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t2
0= j gt 7 87 1 —§:; P|E|y> - 51—-3%7 Y[}
t J 3

. x dt 3z
t,
1 o’ 2 wlilv] (5.9)

L dx t,

where .

7

% 5o
[v> = Re

The boundary term in eq. (5.9) vanishes, but from it, we can derive the
canonical momentum P The arbitrariness of the variations Gll:cJ, in eq.
(5.9) generate variational equations, which are of the Euler-lLagrange

tipe

2 il - L
dt

9 wldle> =0 (5.10)
dx 3x

Egs. (5.10) and (5.7), show that In the zero order approximation, (n?°,
the system in eq. (3.12) is equivalent to the equations obtalned from a
classical action princlple, where S, is the action and the Lagrangian
is WlE|v>, with i
% 2

[‘p> = Ro e
With this correspondence, egs. (5.10) and (5.7) are equivalent to the

system formed by egs. (2.4') and (2.7).

6. CONCLUSIONS

The dynamics generated by Hamiltonian operators, which depend
on c-number parameters and its time derivative, describe, necessarily,
a c-number dynamics interacting with a g-number one. The equatlons
(3.12), have a dynamical structure which exhibits clearly this aspect,
and its variational orlgin suggests that they may provide a natural can-
ditate to representation for this semi-classicai coupling. A very
Interestlng and open problem to be studied is the semi-classical system
wlth Incomplete quantum information. This will lead, naturally, to the
coupling between an statlstical quantum dynamics and a c-number dy-

namics. Work in this issue Is In progress.
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Resumo

Generaliza-se o princfplo variacional quantico, dependente do
tempo, para o caso de operadores Hamlltonianos contendo parametros reais
e suas derivadas tempo,rlals. 0 sistema variacional obtido é constituido
de uma equacdo de Schrodinger acoplada a un sistema de equacoes de
Lagrange, onde a Lagrangeana & o valor médio do operador Hamlltoniano
parametrlzado. A dinamica consequente do principio variacional, descre-
ve a Interagdo entre uma sub-dindmica g-nupber com uma subdinamica c -
-number. Na aproximacdo WKB. de ordem (#) , o sistema varfacional re-
duz-se a uma equagdo do tftpo Haml!ton-Jacobi, acoplada a uma famflia de
equagbes de Lagrange. As caracterTsticas formais do sistema variacional
obtido sdo apropriadas para a descrigdo de interagdes g-number = c-num-
ber, adiabdticas e ndo adlabaticas, dependentes do tempo.
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