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Abstract Propertlesof the elastic excitation functionat 180° produced
by deviatlons from the usual strong absorption S-matrix are studied. W
consider deviatjons S with the shape of windows in R-space, centered
around a value R corresponding to a peripheral collision and concen-
trate our analysis on the interference of the partial waves neighbour-
Ing L. The conditions for constructive and destructive interference and
the effect of odd-even staggering factors are investigated, inthe pres-
ente and in the absence of Coulomb and nuclear refraction. The conse-
quences of such interference on the anomalous behaviour of the 180" ex-
citatlonfunctions for the elastlc scattering of some n-a nuclei aredis~
cussed. In connectlon with results of other works.

1. INTRODUCTION

The anomalous behaviour of the cross-sections for colllsions
between n-a nuclel (e.g. *2c, !%0, 2°Ne, 2"Mg, 2%Si. %25, etc) has been
Intensively studied in the last seven years!. Contrasting with the typi-
cal optlcal rnodel Ilke pattern observed in most Heavy lon collisions
the elastlc cross-section for collislons of these nuclei is strongly
enhanced at large angles and the 180° excitation function is dorninated
by pronounced oscillations. Similar abnormal cross sections are also
observed in inelastic and a-transfer channels.

Although the dynamical origln of such anomalies has not yet

2,3

been satlsfactorily established, It has been shown that the main

tendencies of the large angle elastic scattering data can frequently be

Work partially supported by FINEP, CNPq and FAPESP (Brazllian Govern-
ment Agencies).

457



reproduced by the additlon of two anomal ous contributions S(&,E) and
5'(%2,E) to the normal strong absorption S-matrix2 These contributions
have the shape of w ndows in R-space, representing peripheral

collislons, and §'{%,E) contains an odd-even staggering factor (-)2 as
that appearing in elastic transfer processes. This factor affects
drastlcal 1y the contributions of §' to the cross-section. whije the
relevant partial waves usually interfere destructively, prodv:ing can-
cel latlons, the factor (-)R changes the rel ative phases between con-
secutive Rvalues and rry lead to constructive interference.

In the present paper we study in detail the interference be-
tween the partial waves describing peripheral cotlisions which con-
tribute to the elastlc cross-sectlon through the anomal ous terns 5(2,F)
and S'(%,E). V& discuss al so how the results of this study affect the
concl usl ons of other papers2’®?*’® in which the anomal ous el astlc scat-
tering of n-a nuclei 1s attrlbuted to peripheral processes. in section
2 we stablish our notation and introduce some useful anal yt tcal ex-
pressi ons based on the Poisson serles. In section 3 we study the in
fluente of the detai 1s of 5(2,B) and S(2,E) on the interference of the
partial waves. In section 4 we show how cancel | ation or enhancenent
effects resulting from the interference of peripheral waves may aff ect
the trends of the 180° excitation function. Finally a sumnary of the
nai n concl usions of the present work is presented in section 5.

Throughout this paper we wi 1t consider exclusively 180° exci-
tatlon functions. This choice is justified by the facts that the in-
formatlon it contains are mich richer than those contained tn angul ar
distributions and that analytical expressions become nuch sirnpler at
180°.

2. BASIC NOTOONS, ANALYTICAL FORMULAE
We Wite the parttal-wave projected S-nmatrix as
120

S(,E) =e Y (Fm) +« Fr,m) (2.7)

vhere & 1s the usua “'strong absorption prof ite' * corresponding to
strongly absorbing optlcal potentials and §0.E) 1s an anornal ous con-
tribution associated wth peripheral processes. Assuming that the 180°
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excltation functlon is not affected by 5(2,,E) we may write

o 210, 2
D 180°8) =| L T e Fap e X (2.2)
dan ik 220
In the above equation aR are Coulomb phase shifts, k is the relatlve
wave number and the factor (-)R corresponds to the Legendre Polynomial s

at 180°. It is convenient to wrlte §N(2,E’) as

Fa,2) = dE@wla-1) (2.3)

where d(E) is an overall energy dependent strength and w(!L-SZ) rep-
resents a window in R-space centered at R = R with the normalization
w{0) = 1. The quantity R characterizes the peripheral nature of the

process and is given by the semlclassical relation?

L+1/2= A =R /TR VEE, (2.4)

In order to study the interference between the partial waves neighbour-

Ing L It is convenient to put eq. (2.2) ‘into the form

%% (180°,E) = g(E).|d(E)|%.a(E) (2.5)
with
- K 2 32 EB 6
g(E) = (7<-) =R2(1 - E—) (2.6)
® L+~ 240
a®) = | T 2 et weeb)| (2.7)
~ =0 A

g(E) 1s a purely geometrical factor which tends to the IImlt 52 as the
scattering energy Increases. The interference factor a(E), onthe other
hand expresses the Interference aspects of the partial waves. In the
slmple case that w(l,fl) = 8(%,%) one gets alE) = 1. If w has a finite
wldth a(E) wlll have contrlbutlons from other partial waves and thenet
result may be cancellatlon or enhancement. In the former case a(&) <1
and in the latter a(g) > 1.

I our study of a(E) we wlll use two different shapes for

w{2,%). A gaussian shape (GP)
w(2-2) = exp[-(2-2)2/202 ] (2.8)
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and the derivative of a real Ericson function® (DEP)

w(2-2) = 2[1 + cosh[l-z—]{—} ]_

As we will see below,

(2.9)
these shapes have the advantage of leadingto ana-~
lytical expressions for a(E).

To calculate a(E) we will follow Frahn’. As a starttng point we
write the Poisson formula for ).‘.'(8=|80°)

F080%) = - % ] LT (m+1/2)

m==%

J ar & exp[2(20(A) + 2m(m+1/2)2)] (2.10)
0

- 1 g,'V . . R §N
where h = L + % and () and o(X) are analytic contintiations of 5 (%,E)
and gy 1f the Couloinb phase-shifts can be expanded linearly around /T,

20(})

g K . ) = r = =1 Il

BR()\ A) + 20(A) ; BR eR(A) 2 tan (7&) (2.11)

In the whole region of h-space where §N is relevant, Frahn :shows7 that

F080°) = i % L N TR LI DR afb + (2me1)w]  (2.12)
m=-x

with

H(z) = r o 8Qh) ()=

(2.13)
N
and

o

N = Lw(x-ﬂ)dx

(2.1%)
The Interference factor takes the form
S ineme)i
a®) = N | 5 MU 4G 4 (2mer)n] |2 (2.15)
m=-w
For the DEP (eq. (2.9)) one finds’
B(z) = — B2 0k (2.16)
sinh{(mAz)

and



N =43 (2.17)

For the GP of eq. (2.8) It can be easlly shown that

H(z) = exp|-0%2%/2 | (2.18)
and
N = o/Z1 (2.19)

V¢ ore also Interested In the odd-even staggering* wlith these

parametrlzation, 1.e
w' (A-R) = eiBM w(d =R) (2.20)

wlith B = =1**, |n these cases It is stralghtforward to show that the
normallzation N 1s unchanged and the function H'(z) can be expressed in
terms of H(z) through the relatlon

28

H' (z) = e H(z + Bm) (2.21)

The above relation holds not only for odd-even staggering but also In
any case where the dlfference of phase between w' (A-1)  and w(A-A) de-

pends llnearly on A

3. STUDY OF THE INTERFERENCE FACTOR

In this sectlon we will study the interference factors a(g) and
a'(E) In different situations. We will consider the DEP and GP- shapes of
w(A-K), the effects of refraction on a(E) and a'(E) and also the effects

of asymmetry of w(x-R) with respect to A.

a) No refraction limit

Let us consider first the Ilimiting, hypothetical, case where

both Coulomb and nuclear phasesareneglected (02 = 62 =0). In  this

case éR = 0 and no expansion of oy is needed. The Poisson series is
strongly domlnated by the terms m = -1 and m = 0 (except when a or Z<<l)

* e will adopt the notation that primes are always associated wlth odd
-even staggering. .

Clearly a B=1 Is also posslble. However we choose the negatlve sign
so that even-odd staggerlng may be viewed as a formofnuclear refrac-
tlon (negatlve).

*%*
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and we get
alE) = ¢ cos?(ni(E)) (3.1)

a'(B) =c' (3.2)
where C and C' are the energy Independent quantities

- —2q2p
(4md)? e A , for de DEP
¢= e-or21r2 , for de @@ (3-3)

and
16 A2, for the DEP

c' (3.4)

2

210 ,for the GP

For the purpose of comparing the DEP and the @ it is convenlent to ex-
press the parameters A and 0 in terms of the half-width T

£/1.18 (3.5)

o

A=T/1.76 (3.6)

]

The constant C' gives an energy independent upper limit for the
odd-even staggering Interference factor a'(E) in the presence of refrac-
tion. In the no-refraction case the contributions from all partial waves
are allgned along the posltive dlrection of the real-axis. The presence
of refractlon introduces energy dependent relative phases among the par-

tlal wavesand the coherence is weakened.

On the other hand, the no-refraction Ilimit in the absenceof odd
-even staggering gives the strongest cancellation possible. The Inter-
ference factor shows strong osclllatlons resulting from the terms m = -1

and m = 0, which have the same amplitude, with the *natural® perlod

P, (E) = [f%‘-@-}-l (3.7)

deterrnined by the condition SL(E) = 1. Although the period of oscil-
lation depends on E, the maxima of a ( ~3re tangent to the energy inde-
pendent quantity C.

A cornparison between the Interference factors resulting from the
two parametrizations with the same half-width [ indicates that the DEP
produces stronger enhancement in ' while nothing can be sald about can-

~

cellation in a(E) as the comparison depends on T.
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b) Pure Coulomb refraction

To perform calculatlons wlth Coulomb refraction It {is necessary
to specify a system in order that !E(E’) and o, can be evaluated. W
choose %0 t 28Si for which there s a lot of information avallable. It
should be mentloned, however, that the maln features of a(E) and a'(Z)
are qualitatively the same for other n-a systems. For 60 + 2851 X is

glven by eq. (2.4) with

B =7.36 fm (3.8a)
Ep = 17.8  MeV (3.8b)

If the width is not too small and the energy not too high (too
low), the factor a(E) (a'(E)) 1s domlnated by m = -1 (O) in the Polsson
serles. Keeping only these leading terms we obtain

a(E) = [Lm(GR-ﬂ)Ez/sinh(ﬂE(eR - m)]2 (3.9)
a'() = [4m8,8%/sinn(wke,)]> (3.10)

for the DEP, and
alE) = 2no? exp[-oz(gR—w)zj (3.11)

a'(E) = 2mo? exp[- o? 5;] (3.12)

One should keep in mind though that these are approximate expressions
based on the condition T << A and on a linear expansion of the o{2})
around 7&, which may become Inappropriate as E + E’B, in which case A~+0.

tn figs. 1 and 2 we show a{E) and a' (E) in the cases of DEP (eq.
(2.9)) and @ (eq. (2.8)), respectlvely. Interference factors obtalned
by the numerical summatlon of eq. (2.7) (full lines) and by the approxi=-
mate expressions (3.9)-(3.12) (crosses) are given for T = 1,2 and 3.
The no-refractlon 1imits cand c¢' are also indicated in each case.
Flrstly it should be notlced that the approximate expresslons (3.9)-
(3.12) give the interference factors with very good accuracy. The short-
coming of missing the large energles oscillations for FT=1 can be
easily ellminated by the inclusion of the m = 0 term in the Poisson

series. Besides, the figures show some interesting features of a and a'.
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Fig.1t - Exact (full lines) and approximate (crosses) interference fac-
tors In the DEP including Coulomb refraction. No refraction 1lmits are
indicated by dashed lines (for I' = 3 C lies below 10-7). Fordetalls see
the text.

OE ‘TITI]T"‘I‘IlIlr‘l'll'!llll" Illl.Vlll'rm]lll’lll‘l‘r‘lllll Lﬁ‘l’g'l]l_l'jl:1lll_ll_l‘[71r1_‘ 01OE 02
O+~ . - _ - - _ ¥ {E)_ . 1ne U - ' — 010+
W - 0
{’:LA \ Mv_ﬁ_v: 1
0A0E+Q0 — ~1 O40E+00
0A0E~02 - — O10E-Q2
0.10E~04 - — 010E-04
040E-06 — — 010E-06
010E-08 |- L Jos0e-08
010E-10 |- — S = - -~ 010E-10
OA0E-12 |- — = - r— -4 010E~12
- E 3 4 L 4
0.10E-14 |~ = - ~1 - ~] 010E~-14
L o) 1 t D . ¢ .
uufeoadog ooty Lo fo oo d oo nudundlsencboodien b
15. 20. 25. 30 35 40 15. 20. 25. 30 3% 40 15. 20. 25. 30. 35. 40.
Ece(MeV)

Flg.2 - Exact (full Yines) and approximate (crosses) interference fac-
tors in the GP, including Coulomb refraction. No refraction 1limits are
Indicated by dashed lines (for I'=3 C lies below 107!¢). For detalls see
the text.
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- The interference factors converge to the no-refraction limits as the
energy increases. This is a direct consequence of the fact that 6R

6 =2 tan ' @ =2 tan " —-‘—I—-Q-—-:l (3.13)

R A VE(E-Ep)_

goes to zero as E #+ », and the non-Coulomb-refraction limit is ap-
proached.
- The vlew that a(E) 1s domlnated by cancellation and that a'(E) by en-
hancement fs not correct. The tendency of the interference factor
changes wlth energy. In fig. (ib), for example, a(E) < 1 for E < 31
MeV and a(E) > 1 for E < 19 MeV.
The factor a(E) intercepts a'(E) at E, = 23.0 MeV, both for DEP and
GP, for any f‘ E is given by the condition (see egs. (3.9) - (3.12))
8_ = w/4, or K(E'): n(E). This means that the introduction of an odd-~

R
-even staggering factor in w{A-A) enhances the cancellation at ener-

gies below 23 Mev.
V¢ have also investlgated the mecanism through which strong

cancellation may occur in a(E). For this purpose we introduce the quan-

tity
2=t 270 z
a(E)(O_Z)E ) 20+ 172) 770 w(L'-8) (3.14)
L2'=0 A
(0-2) , R
, wWhich are represented in fig. 3 for the DEP

and similarly a'(E)
at 35 MeV with T = 2. It is shown that the cancellation is an overall
property of the partial waves around ,E A naive interpretation that such
cancellatlon occurs among consecutive partial waves for which the
Legendre polynomial glves opposlte signs is clearly wrong. If this were

(0-2)

the case a(¥) would alternate from large to small values, contra-

dicting fig. 3.

¢) Coulomb plus nuclear refraction
Let us consider the simple case where

)

- A -
wA-k) =e ¥ jw(r-1)] (3.15)

with |w(x-A)] glven by the DEP or the GP. This is exactly the linear
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b) Pure Coulomb refraction
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Fig.3 - Study of cancellations in the partial waves summation (eq.(2.7))

for § in the form of eq. (2.9).

dependence of eq. (2.20) wlth éN = Bm giving a nuclear deflection. Ana-
lytical expressions for a(E) and ¢'(E) are then trivially derived and
the results are those of egs. (3.9) -(3.12) with the replacement of éR
by &;
=8 +8% (3.16)
in fig. 4 we show exact values of a(E) and a'(E) obtained with
the DEP with I = 2. Results for the GP or for other I are qualitatively
similar. The interference factors were calculated for éN =0 - 0.257,
-0.5m, -0.757" and -7. An interesting point to be noticed is that the
inclusion of nuclear deflection shifts the no-refraction limit to flnite
energles. In pure Coulomb refraction the condition GR =0 is fulfilled
as E > «, In the present case, however the no-refraction condition be-

comes 6 = 0, or

§R=2tan_l [ 1.0 L-é' (3.17)

v
Byp Eyn18-7 _I

The condition above is an equation for E. For example the solution for

6y = -05 , is Epp

A second point of interest is in connection with the footnotes

= 23.0 MeV, which is in perfect agreement with fig.4c

in p.7. The factor a' (E) corresponds to a(E) in the presence of the nu-
- n

clear deflection function GN = = . The sequence of figs. k4a, b), c), d),

and e) show how the interference factors a and a' change into one
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another as 61\7 varies continuously from 0 to -m.
tn all.cases, a(E) and a'(E) are contained within the two cor-
responding no-refractlon IImlts (excepts for the localized m =0, m = - 1
interference oscillations). It is Interesting to remark that the IImits

corresponds to the conditlons for obtaining forward (in a(E)) and back-

ward (in a'(F?)glory scattering. Qualitatively speaking, forward (back-

ward) glory Implies refractlve enhancement at forward (backward) angles
and a corresponding damping at backward (forward) angles. These features

are clearly exhlbited In Fig. 4.

d) Effects of asymmetry in w(A-1)

So far,
This Is clearly a simplifylng assumption, which does not

we have consldered symmetrical shapes for the R-windows.
generally cor-
respond to anomalous S-matrlx deviatlons associated with specific physi-
we study the interference that
restrict the dis=

cal processes. In this sectlon, factors

result from asymnetric shapes. For simplicity we will

cussion to the case
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]

exp - (-1 2/20,2] A<k (3.18)

w = exp[- (A-A) ¥/20,2] Az A (3.19)

The above choice of the shape functlon have the advantage of leadlng to
easlly derivable analytical expressions. It should be mentioned however
that we have performed numerical calculations with other asymmetric
shape functions and the results were qualitatively similar. Also for
the sake of simplicity we wlll neglect nuclear phase shifts.

In fig. 5 we show a(E) for the parametrization of eq. (3.19)
wlth the half widths f; and f’z taklng the values 1.5 and 2 and also the

‘lll‘lll!lr'ﬁrlll'fillrlll“‘[lll

O10E+02 =

OA0E+0O1

O10E+00 -

O10E-01
O10E-02
010€-03
0.10E~04 +

T

I

+
’ -
040E-05 |- fee r :2'0 -

+
+
FETIRINT IR ATIRES ARSI AN I W S AT TSN AN O A R A2 |

15. 20. 25. 30. 35. 40.

E(MeV)

Fig.5 - Interference factor alE) for asymmetric shape func-
tions. Full lines correspond to the parametrization of eq.

(2.18) with I'y = 1.5, T, = 2.0 and with f,=20, T, = 1.5.

Results for symmetric GP with T = 1.5 and T = 2.0 are also

shown (crosses)
results wlith f, and 1:2 interchanged. For comparison the interference
factors for the symmetrical GP with F =15 and 2 are also show. It is
Interesting to note that the asymmetry leads to osciltation with the
"natural"” perlod of eq. (3.7). The average value of a(E) decreases with
energy more slowly than those for the symmetric parametrizations. For
energles above - 32 MeV the Interference factor for the f = 1.5 GP is

exceeded, showing that the asymmetry attenuates the cancellation The
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effects of interchanging Ty and T, are not relevant. Results along the
same |ines for a'(E) are presented in fig. 6. In this case theasymetry
does not introduce any slgnificant change. The interference factor lies
between tnose for the symetric parametrizations and it has the same

trena.
LI L I T LA B l LEBE L ‘ LI B B I LA 7 I LOLJ LI s
OA0E+0O1 |- —
010E+00 -1
QA0E-O1 |- -
o
Q40E-O2} —
0A0E-03 1 -1
0A0E-04 |- -]
IR TN SIS AR N S S S A SN SN U N BV S AU S A AT A
15. 20. 25. 30. 35. 40.
E(MeV)

Flg.6 - Interference factor a'(E). The detalls are thesame
as fig.

The main features of a(Z) and a'(E) for the asymetric shape
functlons of eqg. (3.19) can be understood on the basis of eq. (2.15). in
this case we get

N = va/Z (o,+0,) (3.20)
and
H(z) = By(z) - iH,(2) (3.21)
with
A7z A
Bz =2 o e Tho,e 2 (3.22)
and
B,G) = &[5, Dixy) - =, Dz,)] (3.23)
wher e
xl’z = zol,z//; and  D{x)
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“

D(z) = ™ f ot a (3.24)
0

s the Dawson functlon®. The term H,{2) corresponds simply to an average
of the H functions for the two symmetric distributions with weights g,
and a The term Hz(z), on the other hand, is responsible for the pecu-
itaritles of a(E) for the asymmetric parametrization. The fact that the
Dawson functions varies slowly with x, it has a maximum at x=1 and for

large (>5) x,goes to zero as

D(”)—""z‘;“*“l'; - ==, (3.25)

x>0 2z
has two consequences. The flrst ts that It is necessary to consider a
few m values In the Polsson series for a(&) (eq. (2.15)). This polnt is
dhown In flg. 7, where the exact a(E) and a'(E) values are compared to
those obtalned with the use of eqgs. (3.20)-(3.23) in eq. (2.15), con-

TTII1IIIIIIIIIII]Itllllilllll
010E+02 i~
OA0E+01 1~
OACE+00 |-
a
OACE-O1 |~
040E-02 |~
ILLLl'llLlllllLJllllllLlllLl
15. 20. 25. 30. 35. 40.
E{MeV)
Fig.7 - Interference factors for asymmetric shape func-
tlons. Full lines correspond to exact partial-waves sum-
mation (eq. (2.7)). Dotted lines correspond to approximate
analytic expressions with the leading term m = -1. For de-

talls see the text.

sldering only the dominant m = -1 term. Although it reproduces very well

a'(E) and also the average behaviour of a(E), it misses the high energy

470



osclllatlons. W could however reproduce these oscillations with good
accuracy by Including the m = 0 and m = -2 terms in eq. (2.15). The se-
cond consequence is that H(z) in eq. (3.21) is completely dominated by
H,(z) for very broad asymmetric shapes (both fx and T 2 3). in such a
case a(E) becomes several orders of magnitude larger than the inter-
ference factors associated with the symmetrical GP with half-widths f1

and fz.

4. EFFECTS OF THE INTERFERENCE FACTOR ON THE 1800 EXCITATION FUNCTION

In this section we use several of the conclusions reachedabove
to discuss information about the anomalous deviations which can be ex-
tracted 'directly" from the experimental 180° + 5° excitatlon function.
As was done in the previous sectlon, our dlscussion is centered on the
169 + 285} elastic scatterlng system. W& employ the DEP for deflniteness.
In flg. 8 we summarize our findings concerning the connection between
the strength d(E) and the width Iy compatibles with the data for differ-
ent values of the anomalous plece of the nuclear deflection function 8[V'

O10E+O1 illl'l.llxlllll‘llllIIIIIIIIII LA Jua Eme o rrror] oy
-1.0/4

5]
5 010E+0Q0

(o
sttt rd e tegay 0.00
000 10 20 30 40 50 -050

r eN

Fig.8 - Connectlon between d(E)} and T compatible with the data and the
unitarlty constraint of S (see text for details). The numbers attached
to the curves in fig. 8a correspond to the values of GN inunlts of m.
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These curves were constructed by fixing O/oRuth (180%) at ECM = 35 MeV

to be * 10'2, in accordance with the data, and using eq. (2.5), namely

-2

GRuth(ISOO)/g(E) G.1)

a(E)|d(EY|% = 10

which supplies d(E) vs. T, the width associated with w(2-%) and conse-
quently a(E) (see eq. (2.7)).
Since the unitarlty condition of the S-matrix Imposes the con-

straint
d(E) €1 *.2)

the maximum values of f, fmax’ compatible with the constraint are indi-
cated by the intersection of these curves with the dashed tines (d(E)=1)
Wewxhibltthedependenceof T on 6117 in fig. 8b.
max i

Clearly the largest value of rmax is obtained in the case of
complete even-odd staggering, which using our previous conslderations
amounts to very strong nuclear refraction, or a genuine physical process
e.g. elastic transfer. On the other hand the minimum value of r

. max
(-1.3) is attained under conditions of forward glory i.e. GN = —ec. The

full curve émax(-ém) is symmetrical about this point. Thedashedportion
of thls curve corresponds to positlve values of GN namely short- range
repulsion.

The above discusslon clearly shows that an unambiguous deter-
minatlon of T from the 180° excitation function without explicltly con-
sldering the refraction effect of the window-like anomalous devlatlons,
doubful. Of course our findings are basedonthe Ericsonparametrization.
However, little qualitative change occur if other types of para-
rnetrizatlons are used, as we have verlfled with the GP.

A second polnt which Is worth commenting upon as a consequence
of the results of sec. 2 Is the association of the strengths d{g) and
d'(E) with the o/op (180° £) data. Such an association ts made in refs.
4 and 5. In these papers a semlclasslcal multi-step a-transfer model
was used to estimate the quantities d(E) and d'(E) in the colllsion
169 - 28si. These functions turned out to have* window-like behaviour
In E-space with a maximum at E, - 25 MeV and exponential fall off at
higher energies. It was shown later® that with a more realistic choice
of the impact parameters Involved in the semiclassical model the maxi-
mum of d'(E) wes shifted to E} = 32 MeV. The functions d(E) and d'(E)
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of ref.5 were then directly compared to the U/OR (180°,E) data, as a
test of the model used. Our study of the interference factors shows,
however, that a direct comparison of thls kind may be Inappropriate.
The factor g(E)} (eq.(2.5)) should not affect significantly the gross
structure of the excltatlon function but taking |d(E){2 will make O/OR
sharper In S-space and the presence of the interference factor may turn
the excltatlon function rather different from the corresponding
strengths d{(E) and 4'(E), especially If the anomalous S-matrix is broad
In R-space. To investigate this polnt we calculated U/OR with the d(E)
and d'(E) of ref.5 using DEP for w(2-2) with different widths. Only
Coulomb ref'raction was considered. The results are shown in fig. 9
together with d{E) and d*(E). The comparison between the energy E ()
where 0/0p, (0'/0p) has a maximum with E,(EG) shows that B is slightTy
shifted to a lower value while E’,;, has a more significant shift towards
higher energies, speclally for broad w(2-2). The difference between the
half-width of the strength d{&) (d'(E)) and that of 0/0, is of the
order of 1 MeV, In fig. 10 we show that the excitation functions ob-
talned wlth the DEP can be put in agreement with the gross structure of
the data if a rather broad (I' = 5) w'(R-&) is used. This of course, Is

clear from fig. 8b.

5. CONCLUSIONS

We have studied iInterference effects in the partial wave series
for the scattering amplitude associated with anomalous deviations of the
S-matrix, having the shape of windows ¥In R-space. Through the Introduc-
tlon of an interference factor a(E) we stablished a criterion to define
whether the overall effect of the interference is constructlve or de-
structlve. This criterlon was then applied to the anomalous scattering
produced in different situatlons. Flrstly we have determined no-refrac-
tlon 1imits for a(E) and a'(E), which give, respectively, the strongest
cancellatlon possible and the maximum coherence. W have then studied
the effects of introducing Coulomb and nuclear phase-shifts. The intro-
ductlon of Coulomb phases was shown to lead to rather different Inter-
ference factors. Although a{E) and a’(E) approach their no-refraction
1imits as E'+ <, the sltuation is dramatically different at energles

near the potential barrler EB, where the tendencies of the factors a(E)
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and a'(E) are interchanged. It happens in this case that the Introduc-
tlon of a parity dependence In the anomalous S-matrix produces strong
cancellation in the back-angle excitation function. The maln effect of
considering nuclear phase-shifts is that the interference factors ap-
proach no-refraction limits at a flnlte energy for which the partlal
wave L(E) produces forward glory. The influence of shapes and haif-
wldths of the functions w(ﬂ-i) which describe the anomalous S-matrix on
the Interference factors was studied. The main conclusions about these
polnts is that the speed with which a(E) and a'(E) change with energy
grows as T increases and that a(E) shows oscillations with the 'natural”
perlod of eq. (3.7) for small values of T (T < 1) orvery high energies
(E >> 40 MeV). The effect¢ of asymmetry in w(l-i) were also considered,
V¢ have found that It produces osclllations in a(E) with the same
"natural' period and leads to a weaker high energy fall off in this
factor. Approximate analytical expressions for a(E) and a'(E) based
upon the Poisson series, along the lines of ref. 8 were derived in
all cases mentioned above and were shown to be in good agreement with
the numerical summation of the partial waves series.

In 1ight of the propertles of a(E) and a'(E) some conslder-

223 of the anomalous excitation functions of

ations about the study
169 + 285i were made. Our main conclusion is that an unambiguous de-
termination of the half-wldtti ? from the 180° excitation function
wlthout due considerations of the nuclear refraction effects attaehed
to the underlying anomalous deviatlons, is douhtful. V& have shown also
that a(E) or a'(E) way play a very Important role in the energy depen-
dente of o(E,180°) and that a direct comparison between the strengths

d(E) or d'(£) and the ratio U/OR may be misleading.

Frultfui discusslons wlth Dr. Raul Donangelo during the pre-

IImlnary stages of this work are aknowledged.
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Resumo

Estudanos as propriedades de funcbes de excitacdo eléstica a
180° , produzi das por desvios-emrelacdo & matriz- Sde absorcédo forte
usual . Consi deranos desvios S comforma de "janel as" no espaco de nonen-
to angul ar, centradas emumvalor L correspondente a uma coliséo perifé-
rica. Concentranops nossa analise na interferénciaentre as ondas par-
ciais proximas a Z. Invest|ganos as condi¢Bes para interferénciaconstru-
tiva e para interferéncia destrutiva, as consequénci as se uma possi vel
dependénci a de s em paridade, e os efeitos de reflexdo Coul onbiana e nu-
clear. Consideranos tanbéma influéncia da interferéncia entre as ondas
periféricas na funcdo de excitaclo el astica a 180° em colisdes entre ni-
cl eos do tipo n-a, emconexdo com resul tados de outros trabal hos.
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