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Abstract It is shown using tensor algebras, namely Symmetric and
Grassmann algebras over Hilbert Space that it is possible to introduce
field operators, associated to the Liouville equation of classical stat-
istical mechanics, which are characterized by commutation (for Symmetric)
and anticommutation (for Grassmann) rules. The procedure here presented
shows by construction that many-particle classical systems admit an al-
gebraic structure similar to that of quantum field theory. It is con-
sidered explicitly tha case of n-particle systems interacting with anex-
ternal potential. A new derivation of $chonberg's result about the equiv-
alence between his field theory in classical phase space and the usual
classical statistical mechanics is obtained as a consequence of the al-
gebraic structure of the theory as introduced by our method.

1. INTRODUCTION

The use of Hllbert space in classical statistical mechanics
(CSM) was proposed a long time ago by Koopman®. Some physical realis-
atlons of this Hilbert space have been presented by Della Riccia and

Z and by Sch'o'nberg3. In these realisations one <considers the

Wiener
Hilbert space H= L, (Qn) of square-integrable functions en(p,q) defined
on the phase space

> >

-> > > _ _
Qn(PpPpu-,Pn:qpqz,---,qn) = Qn(P,q) = Qn.

a

The dynamical transformation group Tt on en then induces the one-par-

ameter unitary group Ut in H such that
~ ~t -t
(Ut G)n) (p,q) = ,On(T p, T~ q).

The generator Kn of the group Ut is called the Liouville operator or
Liouvillian of the system and we have
—iKnt

y =e (¢ real) .

® On leave from Instituto de Fisica, Universidade Federal da Bahia,40000
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It can be shown that if the classlcal Hamiltonian Hn(p,q) = Hn Is a suf-
flciently smooth function (and 1t is assumed that this is always the
case), then Kn is a self-adjoint and, in general, unbounded operator
given by

K O = a{Hn,@n}n

where

n n E{H,}

n n n

9H Ben 9H BG)n]

13

7,0} = .
n nn > -> > >
k=1 Bpk qu qu apk

is the Poisson bracket. The Liouville equation is then written as

30
no_ . .
gg— =17 Kn @n N @n € L2 (Qn) (‘ )

Thus, with the formulation in terms of Hilbert space the
states of a classical system are represented by normalized functions @n
in LZ(Qn) with the inner product

<0,(p,@),0,(p,q)> = J & (p,q) 0, (p,q)dpdq ; (2)

the classical observables 4{(p,q) of the system are represented by oper-
ators A(p,q) of multiplication by corresponding real -valued functions

A(p,q). As in quantum theory, the quantity
<®n(p,q), A(p,q)On(p,q)> (3)

is interpreted as the expectation value of the observable A(p,q) in the
state On(p,q). Since' the observable A{p,q) is the operator of multipli-
cation by the phase-space function A(p,q), the expression (3) can be

written as

[ 40,016, 5,010, @.0)dbdg & (*)
Then, the quantity
*
f,,(p,q)dpdq = 0, (p,q)e, (p,q)dpdq = |0, (p,q) | dpdq

can be interpreted as the probability of finding, at a time t, the mech-

anlcal system in a point (p,q) E Qn in the interval
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[(p,@ - (p+dp,q+ dg)]

Consequently the expresslon (4) represents the ensemble average of the

physical quantity 4{p,q) in the Gibbs ensemble
” = . 2
fn(pyq’ t) = ,On(p,q, t)l .

Furthermore, if Gn is a solutlon of the Liouville equation (1) then O*
n
and

Fupyat) = O;(p,q;t)en(p,q;t)

satlsfy tha same equatlon. Hence, the Hilbert space formulation of CSM
Is showed to be consistent wlth Gibbs statistical mechanics.

Some time ago Schc’;‘nberg3 proposed the application of second
quantization methods to the Liouville equation. He considered a system
of indistinguishable particles and defined field operators , and

oo . . . ,
VY (p,q) characterized by commutation and anti-commutation rules, that is,

b@.a),v6,3)], =0 (5a)
@D .TE 1, = 0 (5b)
wE 0 3301, = s3816@3, (5c)
where
[4,B], =4B B4
and

= (pl’pz’p3)

QY T

f

g,,9,,q,) .
Schonberg also introduced the equation

i Lx(® =k x®) (6)

where®’®

B
K@) =0 x, + 1 L[ o e, eama

K= j V@3 .9, B
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%, @:a) =¥ B30 6,03, 0T 6L ) X,

Xo single the vacuum defined in the phase-space @ of a
singlc-particle, and in the rules (5) the sign minus (plus) corresponds
to classlical bosons (fermions). Having done so, in order to establish a
relatlonship between his theory and the usual CSM, he proceeded to show
that eq. (6) leads to eq. (1) when the system has a fixed number n of
particles. His demonstration follows the usual presentation of the quan-
tum mechanical theory* to introduce the second quantization method for
the study of the many-body problem; it is clear but does not adequately
exhibit important algebraic aspects of that method.

In this communication we present an alternative procedure to
obtain Schb‘nberg's results. W will use tensor algebras over Hilbert
spaces  in connection with quantum field theory; more specifically
Symmetric (for classical bosons) and Grassmann (for classical fermions)

algebras'®™13

. For simplicity we will consider the case of n-particle
systems interacting with an external potantial. However, the method here
developed may be in principle extended for a system with interactingpar-

ticles, taking in account their interaction
> >
I V(@4
i<

Our procedure is simple; it is closely related to the multilinear al-
gebraic method applied to Schrb'dinger equation. The importance of this
procedure is that it allows to show explicitly that the classical and

quantum theory admit similar algebraic structures.

2. NOTATIONS AND PRELIMINARES

We will represent a complex Hilbert space of arbitrary dimen-
sion by
w={o,y,n,... } =L, (Q)
The Hilbert space
H =H® HS...9 H
{(n factors) will be the »fold product of H with itself; for n=l we

will use _
]H1 = H,;

will denote the space of all complex numbers with the inner product

<a,b> = a*b. we put IF for the Hilbert space direct sum, i.e.,
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T= 2o My
The canonical representation (n)
r' = {[o]}
of the symmetric group
5, = {o}

of degree n on the space B, Is determined by the condition that
= Y
] v, 8y, 8...07) Yg1 @ Ygp 8 <+ @ Ton

for arbitrary vectors vY,, YooY, in . The operators

- -1

§=m) 3} [o]

a

and

i=xD"T sign (a) [0

a
are called symmetrizatlon and alternation, respectively, on H,. Ifoe,

and h g TH with » +m =1, their tensor product is a (m+n) - tensor de-
noted as @ 8 A E]Hr and defined by

l) {d) @ >\} (YI’YZ""’Yn’ n+""')Yn+m) = ¢(Y13Y21“'$Yn)>‘( )

YoV oam
with Yj E H
i1 8 h=he¢ = (constant ¢)h , if ¢ em,

With ¢ E IHn fixed, the correspondence

Aem,,»(p@;\ﬂ?(qb)xemr (7)

is linear mapping which depends on ¢ € IHn' With ¢ E I, and h E I, we

can define the contractlon of A wlth respect to ¢, 5(‘1)') h, such that

) Ce)A=0¢eH,, ifn>m (8a)
1) 0(¢) A= <«,2> = A(¢) eH , ifn=m (8b)
i11) GO} (V)7 e07, )M (6 @y, 87, ® ...8Y ), if n<m (8)

m-n
Iv) C(¢) A= (constant ¢) A, If ¢ eH ; (8d)

it is a mapping which is antilinear in ¢,

It is interesting to notice that if ¢ EIH and A E H,, then

Pl¢) TH M

C(d) :]Hm +1Hm__]
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An element of the Hilbert space direct sum IF will be denoted

by
02 (9,) = (dgs0,5 - »0,5--2)

with ¢n E ]Hn such that

If we have

we deflne

b, A>= ¥ '<¢n, A
n=0

The operators: ?(An) and 5(%n) are defined on IF, respectively, by
B(x)e= PO ) (6,0, .-50,,.-.)

= (qigigi;;;g,xn ® ¢o,xn ® ¢1,...) (9)

(n-1)-fold
and

GO o= CO) (64,0, 005.00)

= (€ 6, COL) ¢ ces) (10)

n+l’

where ¢ £ JF and )\n E]Hn. It follows® that

<ﬁ(An) d, &' > = <9, é(xn)¢' >

that is, P(X ) is the adjoint operator of 5(>\n).
The symmetrization and alternation operators § and 4 are de-

fined on IF by

Ao =) =(Lo, Ad,cc, 46, ....)

7

with A ¢0 =3 ¢° = ¢0, E IF, ¢n € ]Hn' Thus, one obtains the Hilbert

spaces
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Am
b3

® 3
® 8

Fm , TFT®W) =
n=0 n n=0

F (H) =

il
1]

called the Symmetric algebra and the Grassmann algebra, respectively. In
fact, given (a = (¢n), A = O‘n) with ¢, = 0 snd hk = 0 except for a

finite number of indices k (& and A' E ' = IF), It Is possible to
define the symmetric product by

(@ OA' =5(0' @A) (11a)
and the exterior product by

p'm At = A0 @A) . (11b)
These products (lla, Ilb) are associative. linear with respect to their
factors, and define on JF'(-)(ILH) = § (W) and F' (+) (M) = A #H) re-
spectively, algebra structures. In what follows we will just IF (IH}and
IF (H) to specify these algebras, thu¢ omiting the prime syperscript.

On the Hilbert space IF one can define the operator A(W such

that

ANe = (n(0) ¢, A(1) ¢,.. . h(R) ¢ ,..0)
where A(n) is a function Jefined on the set of non-negative integers.The

operators #(¥) and the mappings P(¢) and () given by eqs.(9,10) allow

us to define, on the Grassmann aigebra 1F+(]H), the operators

b*(n) = Vi 4 B(n) = 4 B(n) VI*T (12a)
() =8(n) AVE =VFeT C(n) 4 ; nems= L,(R) (12b)

and, on the Symmetric algebra IF (H) the operators
at(n) =vF § B(n) = § B(n) /IaT (13a)

an)=Cn) 8 =V/EaT1C(n) S ; neHEI L) (13b)

It follows that in 1F+(IH), we have

B, b7 (], < 0 (14a)
), (], =0 (14b)
B7m), '], e <m vy> Asn, yem (1he)
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and, correspondently, in TF (E),

*m), a ()] <=0 (15a)
"), aam]_ <0 (15b)
[m,aty)] € <n,y>3 n vyeH (15¢)

where the symbol € indicates the inclusion of the domains of the oper-
ators and the equality of the operators where the domalns coincide. The
field operators will be defined by using the operators b’ (n) and a* (n)
given by egs. (12a,b) and (13a,b), respectively.

3. GREEN'S FUNCTION OF THE LI1OUVILLE EQUATION

The Green's function of the Liouville equation has been studied

14 18

by Andrews®® and by Balescu”>. W consider the Liouvilile equation

n@.2.8) = K, n3,d,t) (16)

Q)Im

with

3
- >
Hy = Z +V ql’q29Q3’t) 9= (91,92,93), P = (P1,p2,P3) "

The function V(_c;,t) represents an external potential. The Green's func-

tlon of eq. (16) we denote by I‘(E,—c;,t;g',?q",t'); it is a solution of eq.

(16) in the variables (E,_q),t) and takes for t = t' the value
-+ > -+ +

6(p-p')6{(q-g'). Consequently, we have

3

-ig?r(;?,?{,t;;-,?p,t-): h {4"11.3___ g_qf_/_g?J r@.2. 650,00t
3= 15 95 °F;

with

F(;’-&,tig',a',t) = 6(;';')6(3'3') .

It follows that T(E,;,t;g',g',t') has the following properties

3

i) -ig—trr(i’»!a’t;;”-—q’l’tl) z —szl—-a_—g—v-——p_J (Er—q),t;gry-q),’tl)
= N J

i) n3,q,t) = j dp' da* T(3,q,t:0'.q",t"In(@",3",¢") (17)
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i) <0 tp,0,6), TEETBLILE)> = T(.5,60,3,¢) . (18)
4. FIELD OPERATORS IN PHASE SPACE

In what follows we consider classical bosons only. Hence wewill
work with the Symmetric algebra T (H), IH = L2 (Q). The same devel-
opment may be applied to classical fermions, by only using the Grassmann
algebra ¥ (H) and its correspondent operators instead of the Symmetric
algebra.

The one particle Hilbert space is

M=z L,(2) = {n(p',3",8)}
with the inner product given by eq. (2). W will work with the classi~=
cal Heisenberg Picture!®,

The Symmetric algebra is

F(H)= 6 FH

n=0 n

where JHn is the n-fold tensor product of T, i.e.,

H=1{,8n,8...8n}

with n; E IH.

Ve define the field operator \I;'(E,Z,t) and its hermitean con-
. -+ 5 5 . . - > >
jugate ¥ (p,q,t) by uging the Green's function I‘(Tr,g,l‘;p,q,t) and the
operators (13a, 13b), that is,

1 ?,9,t) = a I*(M,%,1;p,9,) (19a)
734,10 = & o@E gt (19b)

where (7,%,1) are the independent variables of the function T(7,%,1 :
£,d,t) € H and (g,g,t) are considered parameters; hence the field oper-
ators depend on (1_5,5,25) as independent variables. The operator {J\)-(E,Z},t)
(?(E,g,t)) is the annihilatlon (creation) operators of one particle in
the state I'(T,&,1;p,4,t).

From relations (15a, b, ¢} and property (18) of T, we have
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0 @30, 6,3, = [176.40 3Eq,e)]. = (20)

TR, FE ] = 2 GETELY, tGL >

= T(3,q,%:0",9",t") . (21)
And for ¢t = ¢t'
@30 876 .3.0]. = 6@-3)6(@-7") . (22)

Reiations (20) and (22) are corresponding to those imposed by
SchGnberg® on the field operators in Classical Schrddinger Picture. In
the present formulation they follow from the definition of ai( n)
together with the use of Symmetric algebra structure of F (H) and
properties of the Green's function I

V¢ obtain from the definitions (19a, b), (8) and (7) that

]

g— "(3,3,t) ata{F(ﬂir,pqt)}

]

- g @EGB0 )

_ £} _ v 9 > >
=a {1 JZ] —m‘lq‘ g——gp—J r(m,¢g, T,P,q,t)}
-k, VB0 (23)

1

and, correspondently, for the operator lﬁ+(§,3,t)

i 55 T 3,3,0) = at €33 TRE3,3,0)
= -k, 3'(,q,t) (24)

that is, the Liouville equatlon is verified for both

U G.5.8) and ¥ (3,9,
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5. THE VARIATIONAL PRINCIPLE AND THE LIGUVILLE OPERATOR

It is shown in ref. 3 that in each sub-space §I{n= F(H) one
obtains a Liouville equation for n-particle probability amplitude On.
% now proceed to show how to use our formulation to express this result
using tensor algebra. Equations (23) and (24) can be derived from the

variational principle
6 j L dpdg dt = 0

with the Lagrangian denslty L given by

3 p.
R -~ . ot > g
|_ = lP (E’E’t) g—tw (P:q,t) + 1 .2‘ ¢+(P,3,t) —m‘lgq—lp (P,Q»t)
J= Jd
3 -~ - -
-1 ) e i . (25)
g=1 % °Fd
It follows that the conjugated momenta are
07 3.3,8) = —2k— = £ 37 3,3,0) (262)
3y
3(52;4
@80 = 20 (26b)
LX)
3(-3—1';-)

and we can define a Hamlltonian density

-

(p,q,t)

IQ)

k=4 V.0 + 8630 864 - L

Q|
Y

L

or, with eqs. (25) and (26a, b)

- p' - A= 3 A

K= 7 da 2 -3 23 (27)
m q . ,

1 7 =

it~

J

Hence, the Hamiltonlan operator acting on the Symmetric algebra

[}
m

F(H) = 6 §H
n=0

n

wlll be
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3
K& =< J {Z [Emﬂ-ﬁ — 9 —V-—ﬁg-—w” & dy.  (28)
4=1 K 395 °Fj
This operator (28) corresponds to the ''second quantized' Liouvilte op-
erator K introduced by SchSnberga. Thus, the result of Ref.3 referred
above, in the context of the present formulation means that the Hamil-
tonian operator (28) in each sub-space g I-In is reduced to the wusual
Liouville operator for n-particle systems (see eq. (1)), i.e,

—~—
sl
—
]
S,

¥ 3{2—9&3 S8 ]=§K’L.=.K.
noon g=1 g1 UM 3dqps 8dy; 3Py

In fact from the definitlons (19a,b) of the operators §

for ¢ = ¢n E 5 ]I-In, i.e.,

o= 1 g, @ Zar)en @8, e en @2, (29

that
Vgt =y I n B¢ . 0,08 t)e..8n T ,E T)
o€ 5, (30)

and

~4 > > —~ > >
Vip,q,0)Ing, (m B 1 )8...8n (1 F 1 )}7 Ogs T8, p,q,t) ®
n

-+ . -
®n., (wz,EZ,TZ) ® ... 0 ncm(nn,gn,rn) . (31)
where we have used the deflnitions (7), (8) and the property (17).
Furthermore ,

Am o )

a—— 1,) (p)qyt)¢ = - a—{r(%,ga'f;_l;,-frl,t)N =
%G 29 (32)

_ 3—— > > > >

=n z Bq.ndl(p’q’t) : ncz(ﬂz’gz’rz) &"gnon(nn’gn’Tn)
J

n
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and

L (,3,10 = j5m « O 15,3,010 -
3p; J (33)
>
= /Z'o'zs %;— n01(g,5,t) .noz(ﬁz,gz,Tz)Q...Q ncn(ﬂn,gn,Tn).
€ n j

Thus with the expression of X(¢) given by eq. (28} we obtain
from eqs. (30-33)

R ror o3 (P 4
ke =n 1 |i| ) {;} CRRFR RS n01<5,3,t>] &b da
ge 8§+ . 9
n J=1
3
co | 1 [EerEebge o n, Gan | B af ] e
g=1 %4 Pi
-> >
en,, (,.2,7,) 6..8n (.2 c). (34)

If we denote in eq. (34) the expression within braces

>
bY Yg.t (‘"’g”r) we have

7 - > > > >
Kt} =n [ v (@E1) en [, 8, 1 )8 . 8n G F 7).
oce s,
> >
Evaluating v  (m,€,1) with the result that

> >

r(T,2,¢50,9,¢) = 6(1-p) 8(2-9)
we obtain

3 .
> . J 9 _
Yg’t(ﬂ’g’t) =1 z m ag‘j 'a—g' a,""] nol(“,gyt)



Then, we can write from eq. (34)

K(t)¢=n ] (K n )®n ®..8n
€

gesS on
n
= 7 (K, nm)®n02®...® Non *
oce b
n
) 721 8...0 ® (xn_.)
+ n,o®n e N_ro. 1n
o €5 12 ol o2 o(L-1) o1

@ N (24+1) 8 ...8n,,

= n..®n_0...8 n_, & (K;n_,)8 n N\ ®
o €5, 171 o1~ o2 a(2-1) of’” To(2+1)
®...0mn (35)
i.e., in the sub-space §]Hn we have, for ff(t), the expression
P i {“_zi 2 37 3 ) _,
e L ) LG

Concluding this section we observe that the operatorsli-(g,a,t)
and @_(3,3,-&) constitute a canonical (Hamiltonian) formalism for the
Liouville field or super-classical field w(Z,Z,t) as it is called by

Schonberg?. iIn fact, we have from egs. (20,22,26a)

0,96, 6,9, = B G.2.8, 0 @G,q',¢)]. =0  (36)

R G,a,8), Ve ,a,0]. =<8 -2 8@@-7q) (37)

and it is easily verified, as a consequence of eq. (35), that

W padt) - - (R, ¥ (3,9,8)]. (38)
at

20 (p.0.8) - - s [7(e), & (.3.0]. (39)
at

where the operators are acting on Symmetric algebra F (IH). It follows

that equations (23, 24) are obtained from relations (38, 39), using egs.
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(26a, 28), relations (36, 37) and considering the identity

[(FG,8] r [F,B]_ G+ F[G,B]_

6. CQNCLUSIONS

Considering tensor algebra over Hilbert space, we have pre-
sented an alternative procedure to shcwn the possibility of expressing
classical statistical results using field operators characterized by
cornmutation and anticornrnutation rules as in quantum field theory. e
have considered explicitly the case of classical bosons and a Liouville
operators given by

n 3 .
LN
=1 g=1

AR
rg 25 PPy

3
3q

where V(q) is an external potential. The Symmetric algebra overHilbert
space IH =L (Q), (Q = phase space of a single particle), F (M), is
the natural aigebraic structure to study this case. W have defined

field operators acting on F (H) by

a” {r@,E,1:0,9,t)

V(2,q,2)

*( a {r @,%,1;5,9,t)

MERRY)
that is, zﬁ_(;,z,t) (lJT(E,E,t)) is the annihilation (creation) operator
for one particle in the state r(F,E,T;E,Z,t) which is a solution of the
Liouville equation such that for T = t it becomes &(m-p)8(2-9). With
these cperators we have determined the "second quantized" Liouvitle
operator. Hence a new derivation of Schbnberg's result about the equiv-
alente between such a field theory in classical phase space and the
usual formalism of classical statistical mechanics has been obtained ex-
ploring algebraic aspects of the procedure here presented. The pro-
cedure also shows by construction that the classical and quantum theory
admit similar algebraic structures, a result which is important from the

18,519

standpoint of the foundations of Physics In fact, inlast two dec-

ades some physicists and mathernaticians have given attention?°2? to the
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problem of expressing the quantum mechanical mean values as classical
sverages over phase-space distribution functions; in the present paper
we have raised the problem of expressing statistical classical results
with the mathematical structure of the quantum theory for many-particle
systems (field operators, tensor algebra, commutators, anti-ccmmutators,
etc.). For this purpose the second quantized formulation of statistical
classical mechanics formulated by Sch'cl)nberg and Koopman has been re-
visited by exploring algebraic aspects of the second quantizationmethod;
this description of statistical mechanics in terms of Hilbert space can
be considered a generalization of the framework introduced by Prigogine
and coworkers?®? once that i) with the use of the Hilbert space direct
sum F(H ), we can introduce in a natural way the concept of grand
ensemble; ii) the use of symmetric or antisynnnetrical Hilbert space di-
rect sum ]F;(]'H)allows us to introduce the indistinguishability of par-

ticles within the context of classical mechanics.
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Resumo

Mostra-se usando algebras tensoriais, a saber, a algebra Simé-
trica e a algebra de Grassmann, que é possivel introduzir operadores de
campos associados a equacdo de Liouville da mecanica estatistica classi
ca; esses operadores sao caracterizados por relacdes de comutagéo (no
caso da &algebra Simétrica) e por relagdes de anti-comutacdo (no caso da
algebra de Grassmann). Con o método apresentado mostra-se por construgdo
que sistemas classicos de muitas particulas admitem uma estrutura algé-
brica similar aquela da teoria quantica de campos. Considera-se expli-~
citamente o0 caso de sistemas de n-particulas interagindo com un poten-
cial externo. O resultado de Schonberg sobre a equivaléncia entre sua
teoria de campos no espaco de fase cldssico e a mecéanica estatistica
cldssica usual é obtido de un ponto de vista novo, explorando aspectos
algébricos do método aqui apresentado.
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