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Abstract V¢ present in this paper a set of new results of new Three
Component Deck Model for Diffractive Dissociation Reactions. These new
results are confronted with recently published ones to obtain a general
view of the model, its predictions and comparison with experimental re-

sults. Two kinds of correlations and amplitudes are given: the slope-
-mass-cos 69 and slope-mass-partial wave correlations.

1. INTRODUCTION

Orne of the most important parts of high energy scatteringis
the Inelastic diffractive component or diffraction dissociation. The
Three Component Deck Model (TCDM) gives a very good description of the
dlffractive dissociation phenomena. W have made! applications of the
model to several reactions, with very good results. Other applications
are presented in the present paper, giving a certainuniversalizationto
the model. In this paper we confront the previous results with the new
applicatlons of the TCDM, exhibiting a general view of its main proper-
ties. For a general review of all diffractive aspects of scattering,
see reference 2.

Similarly to other aspects of the scattering process, the ine-
lastic part has also soft and hard components in the physi-
cal regions. While the soft component has been very much studied and is
described by good models, the hard component appears at high energles
and very large momentum transfers, and is due to the interactionsofthe
hadron constituents. It is an apen subject.

In this paper we limit ourselves to the diffractive dis-
ia

soclation soft component and specifically to the TCDM . V¢ have shown®
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that this model reproduces the maln aspects of the diffractive dis-
soclatlon reactions {DDR). Here, we put together all new and published
results for different reactlons, giving a systematic description of the
spin-parity structure. The TCDM is the only model describing, among the
maln properties of the data, the mass-slope-cos GGJ and mass-slope-
-partial-wave correlatlons. A summary of the improvements, der"lvations,
spln-parity structures for each reactlon, approximations and hypothesls
are given in the next sections. Section 2 is dedicated to the model and
the main aspects of its derivation. In section 3 we give the appli-
catlons of the TODM to several reactlons with different spin and parity
structure in the a + P » i + 2 subreaction (here a is the beam-particie,
P 1s the Pomeron exchanged in the complete inelastic reaction and 1 + 2
represents the subsystem in which we study the effective mass distri-
butions and general properties). Partial wave amplitudes for each reac-
tlion are glven in section 4. Finally in section 5 we present the dis~

cusslon and conclusions from our study.

2. THREE COMPONENTS DECK MODEL

W present now the general description, propertles and maln
parts of the derivations of the TCDM.

In all cases, we have considered a general reaction a+b+(1+2)+3,
see fig.l, where b = 3 = nucleon, atvery highenergy, where the dif-~
fractlve phenomena are dominant. In TCDM the diffractive character is
represented by the Pomeron (P) exchange. The dissociation of the hadron
(a) into a pair (1+2) 1s descrlbed by the coherent sum of the Born terms
of the exchange amplitudes of the (a), (]) and (2) particles or the s,
u and t channel respectively of the subreaction a +® -~ 1 + 2 (see fig.
2). ¢ use a standard parametrization of the Pomeron exchange, as de-
scribed belo~.The two parar'neters b and O the slope and the high energy

Fig.l - Single Pomeron exchange in the
at+tb-+ (1+3)+2 reaction at high
energy.
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Fig.2 - The three components of the (TDCM),rep-

resenting the ti-channel, u;-channel and s;-channel

of the a + b » (1+2) + 3 reaction.
_total cross section are in general experimentally known. But in ourcase
the subreactions (2) + (&) » (2) *+ (3=p),(1) *+ () » (1) + (3=D) and
(@ t (b) > (@) + (3=b) are off-mess-shell in the sense that (2), (1)
and (a) are off-mass-shell particles. Then we must correct theoff—sh.(;ll
problem by changing slightly the b and Op in each case. This isthe best
way to consider indirectly a form factor without breaking some other
Important properties, as the interferences among the three terms,

-1 )AJ, where AP

The well known Gribov-Morrison rule?, AP = (
and AJ are the parity and spin balance between the particles In the
diffractive vertex, is automatically satisfied in elastic diffractive
subreactlons, which appear In the TCDMW.

To obtain the hadronic current coupled to the Pomeron, in TODM
we assume the vector coupling hypothesis (VCH). On the current con-
structed with this hypothesis we impose the s-channel helicity conser-
vation (SCHC)", which simplifies the form of the coupling, and reduces
the coupling constants to only one. It is a well known experimental
result that in the elastic dIffractive reactions, dominated by the
Pomeron exchange, the Pomeron couples only to the s-channel helicity
conserving hadronic vertex .

in the high energy approximation (HEA), defined in Appendix A
the current, for a vertex a(p,A) Pb{(p',A') obtained with (VCH), has the

general form®

)lw -A|/2

Jg.)‘(p',p) V(-8 r(x,0)p° ()

where ¢t = (p'-p)%, P = (p'+p)/2 and V(X',h) are functions of the coup-
ling constants, the masses mys My and the momentum transfer t.

1
Imposing the SCHC on these currents, they become d
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B 8
J)\.}\(P',P) EZQan p 6)\'}\ (2)

In the diffractive reglon, dominated by the Pomeron exchange,
the hellcity amplitudes are essentially imaginary. For a generic dif-

fractive reaction,
alp, X )+ b(q,)\ ) > alp', )\ ) + blgt, )\')
the hellcity amplitudes may be written as

Bt/2 B (3)

A(s,t) .
BiAIA, A'xb

)\)\ A)\

b)
The relation among the coupling constants, which appear in the

currents, and the total cross sectlon is given by the optical theorem

ab
Iaap Ippp = OTot &) (4)

0ff mass shell corrections must be introduced in the diffrac-

tlve amplitudes contained in the TCDM. It is important to emphasize the
Inconvenienceof introducing newform factors totake intoaccount off mass
shell effects. The complications duetothepresenceofthese form factors
could destroy the posslble Interferences among the components of TCDM

The most convenient way to Introduce the off-mann shell effects

Is vla small variations of the experlmentgll) dlffracltylve sIopesaZSBZb, b
(7)0 (S)andc (S)).

In the HEA, the general form of the common vertex bl’3, con-

and B ) and the cross sections values (0

slderlng that b = 3, is given by

8

(5)
x sAp —

v Zng RB(S Ashp
3

where R = (pb tp,)/2.

The factorization property of the pomeron permits to factorize
thls common vertex in the TCDM. Thils factorization may be represented
as in flg. (3).

A consequence of thls property in the case of the TCDM is that
the splns of the HP3 vertex do not affect the general structure of the
TCDM. Then, at the HEA, the spins of the particles b and 3 may be
neglected, and the current in eq. (5) may be written as
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Fig.3 - Graphical representation of the Pomeron fac-
torlization property.

8

B
a2 6
2 Ipp R . (6)
To materialize the problem and to introduce a standard notation
for our applications of TCDM, let us consider a particular type of reac-
tion In which the particle b = 3 is a nucleon and a, 1 and 2 are spin-

less hadrons.
The amplitudes for each component of the TCDM, represented in

fig. (2), with the kinematics defined in Appendix A, are

s t,/2
() _ < 2b B8 1
A =5e (ZngR )(ngQB) P 910 (7a)
1 "2
, B, t /2
() 7 "2 B8 1
A =32°¢€ (ZQbPR )(ZgIPPB) w =2 ga12 (7b)
and 1
. B ,t
() _ i “ab2 8 ]
av = ze (29, pR )(Zgal,KB) p— 901s (7¢)
1 a
To simplify these expressions we define
" B t /2
g (t,) = tot(32)
. B,.t_ /2
g (t;) = 012 (a)e P
and
. t,/2
gs(tz) _ Oab (s)e ab 2 (8)

where, according eq. (¥),

B, o,
Tiot(S) = I1pdop > Trot &) = G1pdp
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and

0ab () = g
tot wip
and also
' t 2
T = 9,,.,9 (tz)/(tl'mz)
, u
u-= 9,159 (ty) 7 (uy-mf) (9)
and

S = igangs(tz)/(sl-m;)

At the HEA in eq.(A.9), using eq.(A.10) and the definitons

above, the components In eq. (7) become

A(t) =T =3s,T
A oy (10)
and
4 s oes
The scattering amplitude is the coherent sum of the three com=
ponents
Az ale) )

the TODM yields

s.g° (¢,) Sz-gt(tz) 53.9%(£5)

= =' ]]
A=5+T+U=1g,, et Tt T an
1 a 1 2 1 1

The general forms of the components, considering the spin fac-

tors, are
A& gl g 0 @ g
and
A 2 @y
where

F(s), F(t) and Flu)
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are tunctions of the masses and invariants in eq. (A.3). It is clear
that for spinless particles F(s) = s, F(t) = s, and F w o= 83.

The components of the TCDM summed up coherently may interfere
destructively in some klnematical regions. This interference is the
mechanism which gives rise to the correlation among three variables:
the diffractlve slope B, the effectlve mass M,, = /él_ of the dis-
sociated system, and the polar coordlnate SGJ of a dissociated particle
momentum El relative to the incldent beam momentum Ea in the GJS.

Another feature of thls correlation is the slope-mass-partial
wave correlation, which will be studied in section 4. A direct conse-
quence of the Interferences above mentioned is the large slopes and/or
the dips obtained in the do/dt, distributions.

In the spinless cases it is possible to obtain relatlons that
give the positions of the dips and show clearly the correlation among
My2, coseG"]' and t,.

At HEA, s v s, + 83, taking this into the eq. (11) and
equal to zero the coefficients of s, and s, we obtain

[]
o

Zst

i

g° (52) (£1m3) + " (£2) (o1-m2)
(12)
0

Z
su

Some observatlons may be made about these equations:

a) they may be satisfled In the physical region, since In this

2
2

g% (£:) (uy-m3) + g"(25) (sy-m))

m

. . . 2 .
region sl-m; is positlve whereas t,-m and u,-m; are negative.

b) they may be rewrltten as

coseGJ = fl(tz)

(13)
My, = £,(E,)

which show clearly the correlation among the three variables ¥,,, cosBGJ

and tz, predicted by this model.
c) the factorlzation of the elastic vertex B3 In the TCDM,

according to fig. (3), shows that the position (M;,, coseGJ, t,) of the
zero In the amplitude, or of the dip in do/dt,, is independent of the
hadron b.

d) the parameters that fix the position of the zeros of the

. ib
amplitudes are the total crors sectlons Utot(s) and the elas-
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tic slopes B,, (2 = a,l1,2).

Dual Reggetzation of TCDM

In the present form of the TCDM, each component 1Is the Born
term of the amplitudes for exchange of the particles a, 1 and 2. The
valldlty of the model Is restricted to the effective mass #,, = ( /s, )
range between the threshold and the resonances of the dissoclated sub-
system 1+2,

The need for reggelzation has been known since the beglnning
of the DR fenomenology development,

The reggeizatlon of the TCDM must be done with some care. The
components of exchange of particles a, 1 and 2 must be handled in a
symmetric way, because the Interferences ‘that generate the slope.- mass
—coseG’ correlation must not be lost in the course of the process.

The solution of this problem is given by duality, which pro-
vides a Regge behaviour for the three channels, avoiding double counting
and treating all channels in a symnetric Wayia.

The procedure for dual reggelzation of the TCDM in the spinless

ia .
case has been performed"® using the Venezlano formula

I'(~o_)T(-a ) I'(-a_)T(-a,)
hdg dep —O M Lop e Tt L
[ rg -a, -a) I -a, - o)
where
aS:sl—m;, at=t1-m: and a, =u, - m

3. APPLICATIONS OF TCDM TO SEVERAL TYPES OF DDR

In thls sectlon we collect several results of the applicatlons
of TCDM. The CCR studled here have different configurations of spin and

parlty in the dissociatlve vertex (a - 1 + 2). These configuratlons will

be denoted as AP e AP, AP.
a 1 2

The followlng configurations are analysed here
4- (0" >0% 00)
B-(0 »1,0)
c - /25 »172%0)
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and
D - (1727 » 372%, 07)

Some examples of ‘reactions that correspond to these structures of spln

and parity are
A-wm+p>(eta)+p

K+p > (k+m+ p
B-m+p-(p°+7 +p

K+p~>(K*+17) +p

C-p+p->(n+1T+)+p

p+p—>(A+K+)+ p
D—p+p—>(A+++1r-)+p

The TODM amplitudes for DDR of type A have already been ob-
talned In the precedent section.
For reactions of type B, using the kinematics of Appendix A

the components of TCDM are

/2

(t) _ 2 8 ] H
o TZ° (opR") Qogply) ——— 9., 02z,
1 2
. B t,/2
(s) _ <2 “ab"2 B !
4 =g (29,p8") (29,gKg) —— g, *(p), 0P} (15)
S1 ma
, 2 (-4, +k Kk _/k?)
w _z Pt/ ugy “Fvo *
o =% (29,pRg) e (py 2T — g..,4,)°/2
1 1

where Eu(pl,kl) is the wave function for spin 1 particles and

M8V _ 2, E(guspv . Pung) - gt PB] (16)

Is the s-channel helicity conserving coupling in the vertex 1P,
In the HEA using the notation introduced in sectlon 2, those

components may be wrltten as

(z) u
A>‘1 ~ T e;(pl,)\l)pa
(s) u
A7 v S ed bk, B
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and

A{?) 2_{?pg +s u(pU-pg) -UR (s, + m; -mk - tl)/{] €§(pl,A1) (17)

in the G.J.S. we have

pz = EaEu + [Hp;a[Zu and p" = Vs, ola (18)
and for HEA
M2 (B +sinax!+ cos azt) (19)
- 2/51
where
0 0
U uo_ i Mo 0
E ) X 0 and 2 0 (2.0)
0 1

Taking these results into eqs.(17) and summing up the compo-

nents, the heliclty amplitudes read

[
i

= Vs, 5+ ET+EU+s U2 + o5 - m? +t, - ul)/h/sl}eﬁ(pl,)\l)E’u

+

{32|Ea|T +8 U[|_§a] - (s, + m; - m} - t )cos o/b/s, ]} a;(pl,xl)zU

- t,)sin a/k /Elje*(pl,Xl)Xu (21

- [s U(s, +mc21 - m

The spin 1 wave functions are

b
u . E, sinfcos ¢
* [
e (p,,0) = 7 E, sinfBsin ¢

E, cos 6
(22)
0
eu*(p f) = e?‘,iq) +cos® cos b~ I sin ¢
1T /7 cosB sind+ 1 cos ¢
[ +sin®

and the helicity amplitudes in eq. (21) are written explicltly
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2

~- |7 2 2
AA1=0 = |p,[/s, 5 + ET+EU+s Umi + m2 - m2 +
+t, -y ) /Ws3m -E s, P |T+su[|p | - (s
2 U 1 1 1%W2iF, . a 1 (23)
+ mé - mi - tl)cos o/4v/s,]} cos e/m1 - sl El(s1 + m;
- mz - tl)sinoc sin6cos ¢ /(bm,vs,)
and
4 =1p;i¢{{s 7 ]T+sU[l§|-(s +m? - m?
A= T HE 21Pg a 1t T,
-t )cos a/Ws ]} sine- s U(s, + m; -ms - (24)

- t,)sina(cos & cos¢ 7 sin¢)/Ws IN2
The posslble zeros In these amplitudes may not be determined
by simple equations like those for spinless reactions. In this case,the

zeros must be found numerically.
Reactions of type C have the following components for the TCDM

(¢) _ -
A)\IAa = ZTR.Qu(pl,)\I)YSu(pa,)\a)
W _
47 = Uulp A )RE + m )y ulp,,A,) (25)
and ra
(S) _ - \
A A =S u(pl,kI,Ys(ﬁ + ma)ﬂ’u(pa,la)
The hellcity amplitudes, obtalned sunnning these components, may  be

wrltten as

Ay o = Bglp ) 12(T + Py, - W+ Y%y, uip ) (26)

1 a

5

where we have assumed my = ma.

There may occur zeros in these amplitudes, due to interferences

among the components, if

T+S=0 and U+ 8 =10 (273

in the physical region. The equatlons for the zeros are
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]
o

By = (s, - m)g"(e) + (5, - m)g°(2)
(28)

n
o

Z, (s1 - m;)gu(tz) + (u1 - mi)gs(tz)

These equatlons are the same as those (eq.(12)) obtained for spinless

reactlons.
. 1
For the reaction pp > n7p, 8 from egs. (28) and wusing the

relation
2
sttty =2m;7+m_n‘|"l:2
we obtain
= 2
tidip) "Mt ¢,
and
2 A'tz
sl(dlp) =my - tz.e .8 (29)
where

6 = oyy/o.y and A= (Byy - BTTIV)/Z

These equatlons describe correctly the behaviour of the zero
In the amplltudes, or the dip in do/dt,.

The helicity amplltudes for this type of reaction may be
written in a form more convenient for calculations. Summing the com-

ponents In eq. (25), we obtaln in the HEA

A)‘zxa =(5+7T+ U){t(plkl)Ysu(pa)\a) -7s |'Ea|(3+u)szn aulp,),) (c®?

- 01 - 03
cos a o +sinaoc )Ysu(paka)/Z/g (30)

This gives explicitly

2,512 = F {5+ T +U)G_ cos(6/2)

S|Ea|(S+U)sin a[E’+ sin acos(8/2) - e;i¢(G+

+ E+ cos a)sin(6/2)]/2/5] | (31)

and
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Aﬁ/z’ﬂ/2 = -eiiq’ {(s+T+ U)_G+ sin(e/2)
+ s[i;al(3+u)slna[E_ sina sin(6/2)-e"" '(~-
+ E_ cos a)cos(6/2)]/2/5 } (32)

where

ty
B
"+

s (Elml)l/z(Eama)l/z (El"”1)1/2(3a'ma)1/2

(33)

(2
|

I+

L= (E1"""1)1/2(Ea'"’a)1/2 (El_,nl)l/Z(Eama) 1/2
Dual Resonance Parametrization

The TODM for the reactlons of type C may be reggeized and du-
allzed. The helicity amplitudes in eq. (26) may be written as

A 2R-Pylgt Vs _ 2o, F Ba Ys

AN &(pl)‘l)

; (o ,2) 34)
P (o, ) (6, m2)  (ayom?) e ) |09

The prescription for dual resonance parametrizatiton (DRP) con-

slsts In performing In eq. (34) the substitutions

I'(-a (s )T(-a,(t,))

(35)

1/(s,m2) (£ -m?)
e e r(t-a (s )-a,(z))

and
I'(-a (s ))T(-a, (x))
1/(s,-m?) (u_-m?) 2 1 LI (36)
@ r(1-a_ (s )-o, (x))
a’ 1 1
The Regge trajectories are parametrized by
_ I = - 2
al(ul) = u, m; o, az(tl) t, m, 37)
and
aa(sl’ =8 - m; + 7 X(SI' (ml+mz)2)1 /2

where the parameter h controls the resonance width.
The TCDM has been applied to the reaction pp + A 1r—p, which

Is of type D. Its amplitudes are given in reference Id.
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4. PARTIAL WAVE AMPLITUDES

In this section we project the helicity amplitudes, obtained

in sectlon 3, into partial waves.
For reactions of type A, (0"~ 0+,0-), the partial wave ampli-

tudes are glven by eq. (B.5), for A, = 0and N3z = -1. W& then have

and
AJM,+ =0 (38)

and the parity of these amplitudes Is P = —(-I)J.
The amplitude A{6,9), given by eq. (11), may be written as

48,0) = 47 (8) + 217 (0) . cost (39)

where

A(l)(e) = iga”[sgs(tz)/(sl-mé) + azgt(tz)/(tl-m;) + aagu(tz)/(ul-mi):[

(40)
4 0) = 1g_ blg"(5,)/ (6, m2) - ¢*(8,)/ (u,m2)] (1)
For HEA we have
a, v s(E, + [§1|cos acos8)sy
as v s(E, - Igllcos acosd) Vs, (42)
and
b n s[gllsinot sen 6//‘;

The Integration over ¢ shows that there are non-vanlshing ampli-

tudes only for #=0 and M=#1, and that

We introduce the notation
Py L JM,-
AL), =4 (43)

where J=L, and the S, P and D partial wave amplitudes are given by
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my f: d(cos 0)a® (014 (o)

=
cm i
°v

fl

1
4@, = 6% 1 dlcos 0) & (0) 21 0)
-1 00
pt 1/2 ! 1 ()
A(Pl)1 =((3m)*"%/2) J_‘l d(cos8) d”(G)A 2) (g) (h)
40, = 6mM% o1 aeostaz, @141 (o)

= (m*2/2) 11 alcos 8)a2, ()27 (6)
-1

N
S
N
~
|

for reactlons of type B (0" =17, 07), the hellcity amplltudes
In egs. (23) and (24) have the form (see eq. B. 1)
_4;;\1 N
4, (6,¢) = e Ay (9,9) (45)
1 1
and the partial wave amplitudes are given by egs. {(B.2) and {(B.5), for

Aa=)\2:0 andNu:—l:

A

(2 ML R S AN OF SICROER AR O I CRY)
1 1 ’ 1 1

46
for )\1 = *] ( )'
M, - -4
407 = (@) /wm ™t fae™ & (004, 6,0) (1)
1
and
A‘{M"‘ =0 for A, =0

1

The parlties of these amplltudes are given by
P=# (-I)J

From eqs. (23) and (24) we see that the expresslons for :X)\ ©,9
have the form 1

I (09 = a0 + A{j’(e) cosd + 47 @)sin g (0
where, A(fs)(e) =0 for h1 = 0 and A_(:)(G) = -Al(l)(e) and AST)(G) =

= -Al(z)(e) for A, =£1. The coefficients A)(:')(G) (£ =1,2,3) may be
1

obtained from egs. (23) and (24).
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The integrations on ¢ in egs. (54) and (55) show that only the
values MO and ¥=t1 correspond to non-vanishing amplitudes.

As we are seeking for posslble interferences among the com-
ponents of TCDM, we choose M=0, which selects the coefficlents A}(\l)(e).
The coeffislent Agl)(S) is the only one that contains the three 1com-
ponents of TCDM, and is the more probable to gives rise to strong in-
terferences.

From eqgs. (54) and (55) we obtain, for MO

1
AP0 = (2 [ d(cost)d (8)4") (o) (49)
1 1 00 [}
1
AP0 2 n (2 J dleose)d” (814" (6) (50)
1 =1
o0, T He0, -
A== Ay=1
and
JyM=0,+
4 0

The amplitudes for well defined orbital angular momentum are

glven by eq. (B.10). Using the notation

By

J,M=0
g (51)

= A1)

AL

the S, P and D partial wave amplitudes are, for MO

alsy) = (1/3)1/2 (ZA'{__I-‘:]’M=0’- + A‘{jlémo" )

A(P)) = - A'{TS(SM:O’-

4@ = @) VRFATEAT0T 4 0T (52)
40D = @M @70 - 0T

AY) = (/M Ai?i;M=0” + @Ac{?émo,- )
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The helicity amplitudes for reactions of type C also factorize
simllarly to eq.{(B.1). The partial wave amplitudes are glven by eq.(B.2)

for A = 0 and N, = -1 as
-t (M-A_ )¢
iMx_ - ((2741) 78m) " J doe a {djlxl(e)kxlxa(e,¢)
5 dj}_xl(e)l_xl, Aa(e,q>)} (53)

and the parities of these amplitudes are

£ (-1)?71/2 (54)

From the helicity amplltudes shown in egs. (31) and (32) we
see that

5 - a) ¢) 2 a?

)‘1>‘a(e,¢) = 4y (6) + 4y (6) cos ¢ + 4y )\ (8)e {55)
where the coefficients Ai?;\a(e) may be obtained from those amplitudes.

The Integration on ¢ shows that the non-vanishing amplitudes
correspond to M = )\ and M = A * 1. Ve choose M= >‘a because this
condition selects the coefflclents A( ) (8). Only these coefficients
contain the three components of TCDM, and are the most probable source
of the interferences we are seeking for. From egs. (62)and (64) we ob-
tain for M=)\a that

1

A;{;M=7\a:i = (w{J+1/2))1/? J d(co$8) [dJ A (8) A(l)
1" -1

The partial wave amplitudes for well defined orbital angular

momentum L, according to eq. (8.10) , are

JM)\ T M=N -
. 2 J-1/2,172,9 TR

A([=g- 1/2) = 2(24/(27+1)) Cg 172,172 *172,

JM)\ .+ J,M=A,+
N /2 J+1/2,1/2,J T

A(L= J+l/2) = 2(2(m1)/ 2711 )? 0,1/2.1/2 AI/Z,Aa
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M=k +

A, =0
(L=7-1/2)2,,
and
I, MN =
A(L=J+l/2)xa =0 (57)
and satisfy the relations
J,=1/2,% _ Iy 1/2,% 8
AL=a172),-1/2 = F A(1=g21/2) 172 (58)
Introducing the notation
P . adM=1/2,%
ALy, 0 = 4y 2 (59)
the $, P and D for M = Aa = 1/2, are written
- _ J=1/2,M=1/2,-
A1 =7 a1
+ _ - J=1/2,M=1/2,+
AR i = =TT Sy S )2
+ _ J=3/2,M=1/2,-
4(P3,9) 1,2 = /E’Aklé‘/z,xaz‘/z (60)
- . =3/2,M=1/2,+
- _ J=5/2,M=1/2,-
ADgya)y72 = VT Ay Dz 102

+
The partlal wave amplitudes for reactions of type D{1/2 +3/2%,
0-), are given byld

o C3/2,1/2,+ . ,3/2,1/2,+
43902 = 2072”72,

+ _ 1/2,1/2
APy 2 =T A 2000

+ B 12 . 3/2,1/2,- 3/2,1/2,-
AP )y == (1/5) 77 (34355°05°7  + &y’ )

414



L - 9 B
40, 1)1 /9 = /“}fﬁj}ﬁ"

e R - A

A 5)y/y = '(2/7)]/2(/3-A§;§::5§’- * A?;%::;%’-)
5 - O B 5 R

(61)
5. RESULTS AND DISCUSSIONS

In this paper we analyse the TCDM applications to several types
of (DDR). V& put together all splin-parity structures of the subreactlon
a+® 1+ 2 These amplitudes can be useful for a complete under-
standing to the IR phenomenology. In this sense the model is universal,
describing the multiple aspects of the data. The TCDM is a natural
consrquence of the earlier Drell-Hiida-Deck-Model®. This model de-
scribed thr DDR untll the discovery of the slope (B), mass (¥,,), angu-
lar (cos GG'J') and the slope-mass-partial waves correlations.

The applicatlon of TCDM to these dlfferent types of reactions
permits us to test the model In those reactions for which there are
experimental results, and to give a theoretical prediction for the
others.

The DDR studied here have different spin and parlty structures
In the subreactlons (a +P » 1 + 2).

The reactions studied here have the following spin and parity
rtructures in the dissoclative process (a >+ 1 + 2), (J‘Sa > JZ:] + J1;2):
A-(07 > 0%,07), B-(0+17,07), c- (1/2" 1/2%,07) and D-(1/23/72%,07).

V¢ choose only one reactlon of each type to apply the TCDM. The

reactlons chosen are respectively:

A-: Ktp=(k+m) tp
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B~: K+p~> (B +7) +p

C-ptp~> (n+r ) +tp
and
D-: p+p+ ("t + 1) +p

We now discuss the results obtained for eachofthese reactions.

The reactlons of type A have the simplest spin and parity
structure. The TCDM for these reactlons may be reggeized, what extends
the valldity of the model beyond the region of resonances In the dis-
sociated sybsystem (1+2).

The partial wave amplitudes for the reaction K + p » (k +7) +p
are given by eq. (44). A slope-mass correlation may be observed in the
Swave. Fig.{(l4) shows the theoretical dlstributions for the S wave In
the effective mass ranges 1.25 <M, <135 GeV and 1.35 i M, < 1.50

GeV respectively.

S-WAVE S~WAVE
o 9 Be146(Gevd) Y\ B8-11.8(Gev-2)
b By i~
= >
2 3 :
2 2 ~
?l:- 104 E 10 g
g VI Vi
= = =
o 10' ; 10! ;
< Vi VI
o ) 0
[} Y f 2
Tlo )
LU S L L SR L
00 02 04 08 08 00 02 04 08 o8
2 2
(t,GeV") (t, GeV")

Fig.h - Partial wave (0°5) t,-distributions and
slopes of the reaction XKp - km)p, for two ef-
fective mass ranges.
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The slopes of these dlIstrlbutions, calculated in the interval
0 < [#,| <0.002 Gev?, are respectively B = 14.6 Gev™? and B = 11.8GeV >

These results may be compared with the experimental onesa, shown In flg.

(8).

The parameters of TCDH used to obtain the results above are
oW =23 m, "Igc: 20 mb, clg)lt =24mb B =76V, By = 6.56ev"?
and By = 6.5 GeV™".

The reaction of type B studied here is K + p »~ {K*+m) + p. The
heliclty amplitudes and the partlal wave amplitudes are given by egs.
(23) and (52) respectively.

A slope mass correlatlon may be observed in the S and P waves.
In flgs. (5,6,7) we see the distributions for 1 S and 0-P waves, re-
stricted by M=0, in the effective mass ranges .04 < M <1.20 GeV,
1.20 SMK*w < 1.35 GeV and 1.35 gMK*“_ < 1.50 GeV.

The slopes of these distrlbutions calculated in the interval
0 < [ £, | < 0.02 Gev2, are glven in those figures.

The results for the two hlgher mass intervals may be compared
with the experimental distributions® and slopes of fig. (8).

The TCDM parameters used to find these experimental slopes are
22 mb, T mb, A =21 mp, By = 9.0 Gev 2, By =15

°tot2 tot "0 ot
GeV™2 and B, = 3.0 Gev~>.

v

As may be observed In flg. 5, there exists a strong inter-
ference in the 0° P wave, whose slope ts much higher than that of the
l+ S wave. As a consequence of that interference there appears a dip in
the 0 P wave. The dip naves slowly to higher values of lt,| as M
increases.

It must be remembered however that in the mass intervals where
the data are given, mainly in the higher ones, there exist X*7 reson-
ances.

The dip in the 0" P wave, predicted by the model, 1s not seen
in the data. Possibly It is covered by resonance effects, or the large
errors near ¢, = = 0.3 Gev? do not permit to observe the dip.

The reactlon of type C, p + p ->(n+1r+) + p, allows an excellent
test for the TCDM. This reaction has the bestdataamong the DDR. A
clear slope-mass-cos GGJ correlation may be observed in these data. This

reaction has some spin complications. However the TCDM may be reggeized
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and dualized. Two parametrizations have been obtained for the dualized
TCDM. The dual resonance parametrization {(DRP) is obtained according to
the Veneziano ansatz. W cannot expect that the theoretical mass spec~
trum fits well the experimental one with this rigid parametrization.

A more flexible parametrization to describe the resonances is
the dual reggeized Deck parametrizatlon. In this case the Veneziano
functions are replaced by their Regge limits.

The fits of these parametrizations to the data are shown in
figs. (9) to (16). The values of the (TCDM) parameters (which are the
same for the two cases) are c?gt = 25 mb, o?ojt = 30 mb, Gl:gt = 40 mb,
B, = 10 GeV 2, B, = By, =9 GeV 2 and h = 0.3 GeV.

The total mass spectrum, fig. (9), fixes the overall normaliz-
ations for the two parametrizations. Fig. (10) shows the do/dt, distri-
butions for some windows in MmT and cos GGJ. These windows  appear fin
fig. (I}, where the zeros of the amplitudes, determined by egs. (29),
are located. Fig. (12) shows the net diffractive slope (B) as a func~
tion of the effective mass and the good fitting of the slope predicted

by the DRP.
There is a satisfactory agreement of the parametrizations with

the cos 6GJ and ¢GJ distributions, shown in fig. (13). The- dualized
TCDM reproduces well the turnover of the cos G'GJ distributioens at
cos GGJ = +1.

Although there are no experimental results to be confronted
with, it is interesting to see how the slope mass correlation appears
in partial waves. Figs (14,15,16) show the S P and D waves distri-
butions, restricted by M = Aa' It may be seen that the strongest inter-
ferences occur in the P and D waves, In which there appear dip-s and
turnovers.

Another reaction, of the same type, which is very well de-
scribed by the dualized TODM is p + p . (A+xty + p. See figures {17-21)
taken from references lc, where the comparison with the experimental
data was made.

The reaction of type D analyzed here, p + p » C N I T P,
has helicity amplitudes ahd partial wave amplitudes given In reference
Id. The complexity of these amplitudes does not permit to derive simple
equations to determine the positions of possible zeros. But the numeri-

cal calculations of do/dt, show that there exists slope-mass corre-
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lations In the distributions for that reaction. In fig. (22) we see
that the slope decreases as the effective mass increases. Fig. (23) shows
how the slope depends on the effective mass and on the cos GGJ Intervals

The set of parameters of TOOM used in these calculations are
™ =25 mb, O =40 mb o5 =50 mb, By =10 GeV?, By =9 Gev
and BNA =38 GeV-Z, and the slopes are calculated in the interval
0 < |¢,| < 0.02 Gev?.

The best way to see the slope mass correlation inthis reaction
is to look at the partial wave dlstributions. !t must be remembered that
the partlal wave distributions are here restricted by the condition
M=A_. This condition has the advantage of simplifying the calculations
and Is enough to exhibit a possible slope-mass-partial wave correlation.

In fig. (24) we see the S, P and D wave distributlons for two
effective mass intervals. The S wave shows a strong interference, with
a dip at tz N~ - 0.35 GeV .

The examination of each amplitude A(Lg);/z’ for P and D wave
distrlbutions, allows us to seek for interference structures not seen
in fig. (24).

Fig. (25) shows the A(P+/2)]/2, A(P:;/Z)I/Z and A(Pt/z)]/z dis-
tributlons. Among these, the A(P3/2)1/2 is the one that shows the

strongest interference, with a dip at ¢, v 01 GeV?.

The relative normalization in fig. (25) shows that the partial
wave A(PT/Z)I/Z is two orders of magnltude larger than A(P3/2)]/2, where
the strongest interference occurs. For this reason the total Pwave dis-
tributlons, showed in fig. (24), do not present dips.

} The D wave spectrum for each J, i.e., the A(D;/z)]/za/l(p;/z )1/2
A(DB/Z)]/Z and A(D7/2)]/2 wave distrlbutions are shown in fig. (26). We
remark that only the A(D]-/Z)I/Z and A(D;/z)]/2 waves present dips at
t, v - 0.6 Gev? and t2 % " 0.4 GeV? respectively. The total D
wave dlstribution, showed in fig. (24) does not present djps pecause
all the contributions from different J values are added.

The net slopes for each wave, calculated in the interval
0 <|¢,] <002 GeV , are shown In tables 1 and 2. In table 2 we
remark that all waves, but PJ = 3/2, present an expected mass- slope-
-partial wave correlation, that is, the slope decreases as the effective

mass M/\ Increases.
\TT
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The abnormal behaviour of the P
J=3/2 happens because the zero
occurs for smaller Itgl when s; Increases.

The reactions of type A and B are analised with combined data
from experiments at 10, 14 and 16 GeV incident X momenta. And for the
reactions of type C and D the data come from experiments at 12 and 24
GeV incident proton momenta. It was observed that there is no signifi-

cant variation of the cross sections in the energy Intervals analised.

L|1.37 <M < 1.40Gev | 1.40 <My < 1.45 GeV

s B = 19.5 B=17.4
P B= 9.7 B= 7.3
D B =16.7 B =16.1

-2 .
Table 1 - Values in GeV  of the slopescorresponding

to the curves do/dt, shown at fig. 24.

L| | 137 < M, < 140 GeV | 1.40 < M, < 1.45 GeV
1/2 B= 7.1 B= 45
P [3/2 B = 24.2 B = 33.2
5/2 B = 22.8 B = 18.1
1/2 B = 17.2 B = 16.4
’ 3/2 B = 13.4 B = 13.0
5/2 B = 18.9 B =132
7/2 B = 43.2 B = 347

Table 2 - Values in Gev™? of the slopes for each wave
wlith well deflned L and J values, shown in figs. 25 and
26.
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APPENDIX A

This appendlx contalns a summary of the kinematlcal variables
and expresslons used in this paper.

The DDR a + b + (1+2) + 3 may be represented as in flg. (1), and
the TCDM which describes these reactlons has the diagrams of fig. (2).

The four-momenta corresponding to the external lines are pi(i =
= a,b,1,2,3) and for the internal lines we define

q=p,;Pp» k=p,-p, and p=p+p, (A.1)

At the diffractive vertlices the following four-momenta are used

il

e}
1

= (P1+k)/2 , @ (p2+q)/2 (A.Z)

(p#p)/2 , B = (py+p,)/2

The invariants constructed with these lb-~vectors are
s = (pa“'pb)z’ 8, = (P1+P2)2’ 8y = (po*ps)?
83 = (P1+P3)2: t, = (Pa'Pl)z, Uy = (Pa‘P2)2

t, = (pyp,)* (A.3)

. -> ’ .
The energies E, and the momenta lp;| (i=a,b,1,2,3) aredefined
ES >
In the Gottfried-Ickson frame for p, + p, = 0 the 1 + 2 rest system,

e
see flg. 27. The expresslons of Ev,' and ]ptl are given by

Fig. 27 - Gottfried ;Ja_gkson
coordinates for Ri2(p,+p,=0).
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- 2_ - 2_ 2
By = (slma tz)/z’/s—t. » By (51 ma-m3+1:2)/2/q
E = (sl+m§-m§)/2/; y E, = (slmi-mi)/Z/s_;

1/2
ES = (sasl~m§)/2/§:' , l;alr. A / (811m¢21’t2)/2/8—1

Byl = 2% ey umt,e /2/5,, B | = N6 it 6) s2/ET

a3
and
B 1= 15, 1= 2o m m2) /25,
where
ta3= 31'3't2+m;+m}2,+ m
and A{x, y3) Is defined by
Mz,y,2) = x2+y?+32-2 (xy+xz+yz)

The angular coordlnates for the momenta are
> > > >
p, =2,(8,8), P, =P, (x,0) and p,=p,(a,0)

The angles In GJS are reiated by

cos B = cos a cos 0 +sina sen 8cos ¢

High energy approximation (HEA)

These approximations correspond to

8,85,85 >> 31!“1'»!”1]:“2'»”’2 (2=a,b,1,2,3)

Using eq. (A.9) we obtaln
QR vs, , 2PRrs,, KRN s

1/2
2 2
cos a x -(s, ma+t2)/>\ (Sl,maﬂ,)

(A.4)

(R.5)

(A 6)

(A.7)

(A.8)

(A.9)

(A i0)



sinav /s V-¢, 2 (sl,mi,tz) (A.11)

s, vs(&, +[§1] cos B)/Ns, and s, v sz, - ];ll cos B)/Ws, (A.12)
For very small values of [¢,| eq.(A.8) becomes

cos 8 v - cos O + (2/;/-7{2—/(31-ma))sin 8 cos ¢ (A.13)

then, carrying into eq. (A.12) we obtain

s2 ~s(E, - IEI[ cos 8) /s, + (28 H;l[ V-t /(s - m;))Siﬂ € cos ¢
and

5, N s(E, + 151[ cos 8) /s, - (28 |51[ V=t,/(s, - mf,))sin 9 cos ¢

(A. 14)
In the same approximatlons we have
(¢, - m}) v ~(s = m2) (B, - |By] cos ©)//5;
and (A.15)
(ux - mi) i G m;) (El + |§1| cos 8) Vs,
From egs. (A.14) and (A.15) we obtain
S3 s 2!51]/3—1_ /gzsin 8 cos ¢
u, - m =7 s, - m {:] ) (e, - m2) (E1+131]cose):!
and (A. 16)
s, s [ 2lp, s /E, sine cos¢|
tl-mi . 8y = my l—l ’ (e, - ”’2"%"51‘““ ®
and at the limit €2 = 0, we have the relation
oy (A17)
Tty ~myg Uy -m, g3 - m,

For a three particles final state reaction the cross-section

Is given by
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do =

>‘1/2(31’m§’m§)
c J ds,dt,d cos 6d|A]|® (A.18)

81
where

- 10,4 2 2
c=1/(2"% Ms,ma,mb))

APPENDIX B

In this appendlx we collect some results useful for the projec-
tion into partial waves of the helicity amplitudes, obtained throughthe
TCDM, for the DDR.

Neylecting the spin structure of (b®3) vertex, due to the fac-
torizatlon property, the helicity amplitude, given by the TCDM for the
DDR a t b > (142) + 3, in the GJS, making use of the Jacob-WIck conven-
tlon, has an expllclt phase

-4 (-2 )
A(S,Slstz:'e,d’) = e A(s’sl’tZ;e’d)) )
xlxzxa >‘1>‘2>‘a (B.1
where h =)y - Az,

The: helicity amplitudes for total angular momentum J of the
dissociated sybsystem (1+2) and Its projection ¥, on the Incldent beam
dlrection ;a’ and normality #*, are given by

IM* -1 (M-X )
Als,s,,t,) = [(27+1)/87] "/ fdsz e “
ArAad !
a (B.2)
. J n, J Z ) ]
x{d? (8) A(0,0) * Ny, d,, _{0) A(6,9
M )\15\2;\a A ApsAgs ),
where
61+Az-v12
¥y, =nm,(-1) (B.3)
In the above expresslon n, and y, and 4, and 4, aretheintrin-
slc paritles and spins of the particles 1 and 2 respectively; Vi = 0
for integer J and v,, = 1/2 for half integer J.
The paritles of the amplitudes are given by
p = i.(_})J"UIZ (B.4)
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For X, = A, = O instead of eq. (8.2) we have

JM, N -2 (M-2 )¢
Aot e [@me T g 0, 0,0 (5.5)
00,4, 0 oa)\a
From parity conservation we obtain the relation

e ) n(_])M”Xa e (B.6)

—Al,—AZ,-Aa )\1}\2)\“
where

A +A_=4
n:nnn(-l)lza (8.7)

12 a

The amplitudes in eq. (8.2) also satisfy

JM, * ~ JM, £
N e R (8.8)

The amplitudes for well defined J, M orbital angular momentum L, spin

3= X, + Zz and normal ity (), of the subsystem 1+2 are given by

A14824
JIM, ¢ 1/2 Lad 122 IM, *
450 = ((2n + 1)/ 27 +1)) 1 ¢ cy, . AT
(Z,8)2, A, O AL TR A,
(B.9)
CL/SJ -
where and C are the Clebsh-Gordan coeficients. In thecases
0AA Xys=Ay, A
for which 5,= 0, 6 = 4, , the amplitudes in eq. (B.9) become
J=L-4 LA J JM, t
JIM,* - 1/2 1 ! 2
A o (pe) () EiN(-l) ] ¢ A
(Z)Aa (« 1/ ) 12 [AII ofxy ]2 ,Ally)‘a
(8.10)
From the egs. (6.6) and (B.8) we obtain
M-\
A9 e (- Ga et (B.11)
(£),-A, 2 (£) a
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Resumo

Neste artigo apresentamos um conjunto de novos resultados de
Reacfes de Dissociagao Difrativa, no contexto do Modelo Deck a Trés Com
ponentes. Estes novos resultados sdo confrontados com outros recentemen
te publicados para apresentar uma visdo geral do modelo, suas predicdes
e comparagaes com resultados experimentais. Dois tipos de amplitudes e
ngrelagaes sdo observadas. A correlacdo inclinagdo difrativa-massa-cos
8 e a inclinagao difrativa-massa-ondas parciais.
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