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Abstract In this paper we consider the distribution of the temperature
function for the problem of a cylinder of radius a surrounded by an
infinite medlum of another material. The heat flux Q at the surface r=a
is kept constant. The differential equations of heat flux are solved
through the use of finite Hankel and Weber transforms, whose fundamen-
tal properties are given in the Appendix.

1. INTRODUCTION

Unsteady heat flux calculations arise in conection with a wide
variety of technical processes. In some cases is required the tempera-
ture distribution troughout a body at a given time. In other cases the
ternperature variation with the time at a given point in a body may be
required as for example, in food processing, ceramlc manufacture, etc.
Problems on conduction of heat in composite circular or hollow circular
cilinders rectangular blocks, square plates, etc, are treated bylLaplace
transforrnation by Carslaw and Jaegerl.

Here we consider a infinite cylinder of a material of conduc-
tivity K,, diffusivity k;, density p, and speclfic heat e¢,, which is
surrounded by an infinite medium of a material of conductivity X,, dif-
fusivity k,, and specific heat ¢ The cylinder radius is a and the
heat flux Q at the surface r=a is a constant.

In previous papers, Battig and Kalla?, Battig, Kalla and tuccioni®
have considered problems of thermal conduction using the Weber trans-
form. Now, we apply the differential equations of heat flux which were
derived by Battlg and Kalla*. The finite Hankel® and Weber® transforms

are used to obtain the solutions of the differential equations.

2. THE SOLUTION OF THE PROBLEM

Since the heat flux in the boundary =a is given, the corre-
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sponding equatlons for the cylinder and the surrounding medium are used.

These equations are*

azf af 3f
1 ] 1 | _ 1 1
= +;5;__;;fl_zs; 0<rsga (1)
3%f, 3f af
1 72 1. 172 »
PR T f,=%,5¢ << (2)

Let us prescribe the Initlal and boundary conditions as

v, (»,0) =V, , t=0 r<a (3)

v (r,0) =7V, » t=0 r>a (%)
2

fl(a’t) =f2(a,t) =Q ) t > 0 r=qa (5)

vl(a,t) = vz(a,t) , t >'0 r=a (6)

In egs. (5) and (6) it Is assumed that there is no contact re-
slstence at the surface of separatlon between the two materials.

For the region 0 € r < a, multiplying both sides of eq. (1) py
Jy (rEi) Integrating over the section of the cylinder and using the prop-

erty (A3) we obtain
d fl(Ei,t)

- + kyal f (a)d! (aE)) + K EEF (E,,t) = 0 )

Applying the inversion formulae (A1) in eq. (7) with boundary

conditlon (5) we obtain the solutlon

w -k % 7. (rE,) ® J (rg.) (~k,E3t
R e i

e
a2 =1 [:J'(agi):l2 a i=1 5% J'(aﬁi)

(8)

where A |Is a integratlon constant.
Considering the initial conditlon (3) the temperature vl(r,t)

is obtained from the relatlon

0, (n8) == 2 [ 7, (00 ©
© k&, oo Iy (rE,) ( -k Et
oy i° , 2£(a) B> [ 1-@
. izl e * ek, iZ] (L T[aE,) ¢
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For the region » > @, nul tiplyingeq. (2) by ».2,(rA}, inte-
grat ing with respect tor froma to « and using the property (a5} we ob-
tain

d f:()\,t) 27(2
—— + kz)\z f:()\,t) + —“'-fz(a) =90 (10)

Applyl ng the inverslon formil ae (A4) in eq. (10) with boundary
condltlon (5 we obtain the followling sol ution

® kA2t
aen=oe t nomas [ HE
0

0

—k,A2¢
- 1] Fy (A, 1) Ad)

wher e
I (r) Y, (Na) - ¥, (A, r)d, (X,a)

F (\r) =
v e + 2 0a)

Considering the in tial condi tlon (4), the tenperature v,(»,t)

is obtalned fromthe relation

-k, A%t
e ¥ Fumax

= -1 -
valet) = J flr.e)dr = 57 F(,r)dn )
o (1
o o -k A%t
2fla) f [e z -~ IJ F(\,2) %%‘-

K,

wher e
7, (0,22, (Aa) - ¥, (0,2)d, (A,a)

F(A,r) =
! J2(\,a) + Yf()\,a)

3. VERIFICATION OF THE SOLUTIONS (9) AND {11}

At t=0, the solutions given by egs. (9 and (11) obviously are
satisfled

vl(r,O) I8

vz (P,O) = V2

At r=a, fromthe solution (9 we obtain
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1 r2
- K —avl =27 cf -l-Jl(aEi) eklgq"t—l]
"1 3r (r=a q *1! L E. I {at..)
=1 7 177
t>0
Consldering the result (A2) this expression is reduced to
v,
“Hig e = Hil@
>0
Likewlse, from the solution (11) we get
o “k2\%t ) o
3‘02 fO e Fl )\,a )\dk Zf(a) “Kg t d)\
_ Kz Eir'r=a = szz ; " + p- J [e -\]Fl(kﬁﬂjr
>0 £y (G a)adx 0
where
Jy(0,a)y, (a) - ¥, (h,a)d, (A,a)
Fl(k,a) =

Ji(k,a) + Yf(k,a)
Consldering the expression (A6) we obtain

302

K 57 \p=a = £, (@)
t>0

The solutions (9) and (11) also satisfy the condition (6)

v,(a,t) =v,(a,t) , t>0

This can be demonstrated using the directional derived defi-

nition of a function

dv = f(r).dr
At r=a we have dv =0, and then

v(a,t) = const.
Taklng into account the condition (5) we conclude that

vy(a,t) = vy(a,t)



4. COMMENTS

From the solutiois (9) and (11) we can observe that they are

related by the parameter Q = f,{a) = fo{a), from which we conclude
that v,{r,t) and v,(»,t) are mutually dependent.
The method used here is useful to tackle other problems of

heat conductlon, like: 1) f(r,t) = 0; ii) f(zr,t) = constant or a func-
tion of the time; 1ii) f{r,t) = h.v (linear heat transfer at the sur-
face).

APPENDIX

If f(r) satisfies Dirichlet's conditions in the' interval (0,a)

and if its finite transform In that range is defined as®

a

5, B)sE] = FE) =] 7 00, (8 ae

0

which Is called a finite Hankel transform of first kind; E,L. are the

posltlve roots of the transcendental equation

Ji@ &) =0

then at any point (0,a) at which the function is continuous we have

TR, @ -2 § Ry
Jsr) = Y e )]? !
H, [f(E,’ I’] flr % 121 £ [Jl'(a,Ei)]z (A

1f £(r) =r, then

- 2
f(gi) = %Jz(a’gi)
7

Applying the inversion formulae (Al), we get

© J (@, E)
—g=27 4 T1% i (A2)

2=1 & Jo(a,Ei)
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Furthermore we have the following property6

H Fif #18 Ly 57;‘ =-ak, fay (a,g;) - & FED  (a3)

Br2 ra r?

V¢ shall denote the Weber transform of a function f(r) as®

@] = 0 = [ e ) 2,000 @

a
where

2,0,7) = 7,007, (a) - ¥, (0,2)7, (A,0)
J, and Y are Bessel functions of first and second kind re-
spectively of order v and A is a root of the equation
Zv()\,a) =0

The inversion formulae for the Weber transform is

Z. (A, r)
A4 AdA (Ak)

VO] = £ = |
v [f ] It }'0 JS(A,a) + Y\":(X,a)

V¢ shall use the following property of this transform?®

W\)E_zi,,l ?if_Lf]p%f(a)—xzf*(x) (A5)

r?> pr 3r p?

Finally we have ref.7, p.352 (16)

g, (L)Y (Aa) - J (ha) Y, (A,r)
j v v v v )\=_%%) 0<qg<r (n6)
o )\[J\z)()\,a) + Z\z)(k,a)]

In the egs. {1) and (2) we have v = 1.
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Resumo

No presente artigo estudanos a distribulgao da fungdo da tenpe-
ratura para o problena de uncilindro de raio a rodeado por um neio in-
finito de outro materlal. Ofluxo de calor Qatravés da superficier = a
é mantido constante. As equagfes diferenciais do fluxo de calor sao re-
sol vidas pela uti 1izacdo das transfornadas finitas de Hankel e Weber,
cuj as propriedades fundamentai s séo todas no Apéndi ce.
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