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Abstract  This work studies the anatomy of the dynamics of quantum cor-
relations of two interacting subsystems described by the Jaynes-Cummings
Model’, making use of a natural states decomposition, following an old
suggestion by Schrodinger. The amplitude modulation of the fast Rabi os-
cillations which occur for a strong, coherent initial field is obtained
from the spin intrinsic depolarization resulting from corrections to the
mean field approximation.

INTRODUCTIOM

Even very sirnple open subsystems of closed quantum mechanical
systems can display very intrincate dynamical behavior, described by an
effective, non-unitary time evolution law for the density matrix which
describes their states. This fact is clearly illustrated by the spin
observables of the so called coherent Jaynes-Cummings Model, which has
recently been studied in considerable detail?. In that work, essential
use is made of the fact that the model is soluble, albeit not in closed
form, and a lot of effort is successfully spent in obtaining precise,
computable approximations to the exact solutions, valid both for short
and for long times. These requirements are stringent enough to place
stronger dernands on mathematical expediency than on physlcal trans-
parency. The present work, In a way, attempts at reversing this situ-
ation. W restrict ourselves to moderately short times only (i.e., of
the order of several periods of the fast Rabi oscillations) and we base
the analysis of the dynamlcs on physically motivated quantities. W are
able to show that the remarkable behavior of the Jaynes-Cummings Model
during times that warrant the application of our approach can be under-
stood in terms of the behavior of very simple and straightforward spin
observables which are however governed by rather intricate laws due to
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the dynamical evolution of quantum correlations between the two sub-
systems involved in themodel. Sincewemake no use of the soluble
character of the model, the analysis can in principle be extended to
other systems and situations.

In sections 1 and 2 we give a short characterization of the
model and the definitions of the relevant observables and parameters.
Our approach to the dynamics of subsystems, including correlations be-
tween dlfferent subsystems is described in sections 3 to 5. Finally, in

section 6 we present numerical results and a final discussion.

1. THE MODEL

The Jaynes-Cummings Model" is characterized by the exactly sol-
uble hamiltonian #, that models the interaction of the radiation with

matter

+ +
H=%0, +aatileo, +aoc) (1)

N[ ™

+
where ¢ and ¢ are bosonic operators for the annihilation and creation
of photons respectively (I:a,a+] = 1), associated with one normal mode of-

the radiation field, and
g, * 1o,

0'3,01:—2—

are spin operators satisfying angular momentum commutation rules. This
degree of freedom describes a two level "matter” system, and € is its
natural transitlon frequency; A is the coupling constant that represents
the strength of the interaction between matter and radiation, while the
frequency of the normal mode of the quantized radiation field is taken
as the unit of energy (%=1).

V% concentrate our discussion on the coherent case in which one
studies the time evolution of the Jaynes-Cummings system, given the in-
itial condition

[t=0> = |v> & [+>

where [v> stands for a coherent state of the radiation mode and [+> s
and eigenstate of the spin operator 0,. This case has been extensively

studied by Narozhny et al®. In that work it is shown in particular that

354



the time dependence of the atomic inversion <03>, (see Figure 1) in-
volves at least two different characteristic times. These times are as-
sociated respectively (for strong fields or large v) with a fast os-

cillatory behavior of <o4>, and with a gradual damping of these oscil-

t
lations. The oscillations themselves are readily associated with the
precession of the spin In the strong field of the radiation mode (Rabi
oscillations), but the basic physical mechanism underlying their damping

remains relatively unexplored.
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Fig.l - Time Dependence of
the inversion <g3>; as a
function of time, for
]2 >> 1, showing the
characteristic times tR and
tD (just schematic) .
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V¢ show that together with the atomic inversion (<°3>1;) there
is another crucial quantity that can be calculated to make clearer the

particular behaviors described above. It is the intrinsic atomic inver-
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sion or <op>twhereap is the projectionof the operator § along the
spin polarizatlon axis, i.e.,

G . <o

. G, = __17__2
P | <>,

This quantity is important since it gives us the degree of intrinsic
polarization of the spln as a function of time. It depends on the dy-
namics of quantum correlations between the two subsystems inan essential
way. In particular, it is trivial to check that a mean field approxi-

mation leads to <0p>t being independent of time.

2. PERTURBATIVE TREATMENT FOR VERY SHORT TIMES

First of all, it is interesting to consider what happens to the
system (spin + field) during the first moments of interaction.This means
short times in comparison with the shorter characteristic time of the
system.

in this limit, a straightforward caiculation for the coherent

initial condition gives

S =1 - 2,2
<Opt 1 2)\°t

that leads us to identifying the characteristic time

for <g3>, one gets, on the other hand

t

<02, =1 - 28%(1 + [v]®)¢?

with the corresponding characteristic time

ty w1 (3)
Al

For large v and small A these times are indicated qualitatively in Fig.
1. The characteristic time 'I:R is associated with the precession of the
spin caused by the strong radiation field. As <cp>t is a kind of measure
of the depolarization of the spin, the time tD characterizes a temporal
scale at which the initial state of the spin relaxes to a non-polarized
state,Since, moreover, tD is of the order of the times associated with

the modulation of the Rabi oscillations, one is led to associate the
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latter effect to the depolarization of the spin. This will in fact be

investigated quantitatively in the following.

3. THE DYNAMICS OF THE SUBSYSTEMS

The system characterized by H consists of two subsystems {(spin+
+ field) interacting through the last term. This leads us naturally to
consider the state-vector space for the entire quantum system as the ten-

sor product of a ‘''spin'' space Hs and a ''field'" space HQ

H = H.‘3 ® HQ
and we can say that any state vector (|#>) contained in this tensor
product of two Hilbert spaces can be expanded as®’*’%
2
> = . . > . > 1
&= 1 ap®)la )]s, (%)

where a.(t) are real amplitudes and {|Si(t)>} and {|Qi(t)>}, the natural
states, are sets of orthonormal vectors in the two level system space
(HS) and in the normal mode of the radiation field space (HQ) respect-
ively. These sets may always be completed to form basis sets in these
spaces.

As this expanslon gives the density matrices of the two subsys-

tems in diagonal form

2

b, = tro|t><t] = 7,'-_2-1 |2, (2)> a2 () @ (2)]
2
oy = tr lt> <t|= 7§ |5, (2)> otj:(t) <s,(2) |

Z=1

we see that it can be characterized also as an expansion of the state
vector that clescribes the entire system in the eigenvectors of the re-
duced density matrices for each subsystem.

Expainding the state vector ]t> that describes the entire system
as in eq. (&), we can analyze the temporal evolution of the systems in
terms of that of the natural states and of the respective occupation am~
plitudes ai(t).

If we consider the time dependent Schrodinger equation
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[t> = Blt>

QJIQJ
o+

and calculate 1t using eq. (4) we get

2
a () = nm{igl a,(¢)<q (¢)s, () fﬁlﬂi(t)si(t)ﬂ (5)

o (t) <5, (£) [ng(2) |s, (£)> + <q (2) |ng(2) o (2)>]

2 (6)
= Re {izl a ()R (85 (¢) [#]Q, ()5, (2)>})
and, for m#p
(@ (£) % apw))mp(t) Iro(t) e (£)> + <s (2] |ng(t) |Sp(t)>} = -

2
- @'Zl o (¢) {Qp(t)sm(t) |71, (2)5,(2)> + <q(£)S,(¢) IHIQm(t)Sp(t)>}

where hﬂ(t) and hs(t) are two hermitean time displacement generators,
acting respectively In HR and HS' They describe the time dependeoce of

the natural states through

4 Is,(0)>

- hg(t) ISi(t)>

and

]

: % 2, (£)> = 7y (2) |9, (£)>

These operators are sufficiently defined by equations (6)and (7). 1t is
clear thus that equations (5), (6)and (7) determine completely the dy-
namics of the system and they allow us to analyze conveniently the tem-
poral evolution of each subsystem and of their mutual correlatlons. This

will be done next.

4. THE MEAN FIELD APPROXIMATION

A mean field approximation for coherent initial conditions is
easily motivated by noting that, for small coupling h, the envelope of

the Rabl oscillations (associated with tR’ see Figure 1), a smooth quan-
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tity, together with <Op>t remains close to 1 for several Rabl periods.

This suggests the validity, for such intervals of time, of an ansatz of

the form

[¢> = |2, (¢)> |5, (£)> (8)

for the state vector of the composite system. In terms of the analysis
of the preceding section, this implies constant occupation amplitude,
i.e., ai(t) = 0 and a (¢) = 1. The replacement of equation (4) by these
constraints, together with equations (8) and equations (5) and (6) define
our mean fleld approximation. In fact, when we substitute the expression
(8) Into the coupled equations (5), (6) and (7) we get, for hs(t) and
hQ(t), the expressions

ho(t) = <q,(2) [7(Q,(2)>

and
no(t) = <s,(¢) lz)s, () >

These expresslons show that the generator of the temporal evol-
ution of each subsystem Is given by the average of the hamiltonian H,
calculated at the state of the other subsystem. VW& have thus, in this

approximation

i g_t [5:(£)> = <, (¢} [7#]2,(£)> |5, (¢)>

12% 19,(8)> = <5,(¢) |H]s,(¢)> |@ (£)>

which has to be solved for the initial condition

|91(0)>= o>, [5,(0)> = |+>

To solve the system above we can make ansatze for the form of
the states [@,(¢) and [5,(¢)>

-ip(t) - —'”—(’zbm + v(t)at
o, (2)> = o> (9)

and

e—iw(t) + z(t)o_
|5, (8)> = [+> (10)

V1 o+ |z(‘t$|z'
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obtaining a new linear system for the parameters v(¢), z(¢), ¢(¢) and
Y(%) that can be conveniently dealt with numerically.

Given this mean field solution and in preparation for a pertur-
bative evaluation of the time-dependent occupation amplitudes a(%), we
can also determine the relevant null occupation state {Q,(t)5,(¢)>
(a,(0) = 0) as

I, (8)5,(8)> = w2 (15, (8)><5, (0) ) (1-

2, (£)><q, () N ElQ, (£)s, (£)>

which is just the "'doorway' fed by the complete hamiltonian H when it
acts on |2, (£)s,(£)> .
Using the forms (9) and (10)
[v()|?
E(t) - —y—
e + v(t)a”
12, (£)8, (¢)> = a -v*(t))e [0>[x(]-> -z% () |+>)

1+ |z()]?

which involves the parameters already obtained in egs. (9) and (10) and

the new phase £(%).

5. THE PERTURBATIVE CORRELATION CORRECTION

To obtain our mean field approximation, we kept frozen the am-
plitudes ot,b-(t) imposing that a_b.(t) = 0 always. To correct this, we will
now allow for changes of the OLL.(t) making use of eq. (5) written more ex-

plicitly as

a,(¢) = ag(t) Im{<q, (£)5, (¢) |2]Q, (£)5, (t)>}

a,(£) = a, (¢) Im{<,(£)s, () |H]|a, (£)s5, (£)>}
which are two coupled first order equations for a, (t) and az(t). The
matrix elements on the right hand side of the equations will be calcu-

lated using the states |21(¢)>[5;(¢£)> and |Q,(¢)>|S,(£)>given by the mean
field solutionand Iin thissensethisis akind ofperturbative correction.
Concerning the phases of the states |2, (£)>]S;(¢)> and  |Q, (¢)>]s, (£)>,
it turns out that, if we consider a global phase F(t) given by



F(E) = o) + p(e) + &(¢)

it Is easy to prove that, for our initial conditions it remains constant
(=m/2) 7,

On the other hand, it is necessary to keep in mind that this
perturbative correction will be valid just for times short in comparison
with tD (the envelope characteristic time) but that may be long (for
|v| >> 1) in comparison with tR (the Rabi characteristic time).

This gives us two coupled first order equations for o, () and
uz(t) and through them we obtain the approximate temporal behavior of

a, (£) and a (%).

6. RESULTS AND DISCUSSION

V¢ concentrate on the most relevant quantities associated with
the spin (‘matter") system: <og > - the atomic inversion and <op> - the
intrinsic atomic inversion. In terms of the parameters introduced in

equations (9) and (i10), they are given by

1 - |a(#)|?
<03>t = (df(t) - az(t)) [_]—-}-——{_Z—E-t;%]

and
<o,%; = oi(t) - al(t)

These quantities, as obtained from numerical solution to the
dynamical equations, are shown in Figure 2. W see that in this approxi-
mation'<03>t can be written as steady Rabi oscillations modulated by a
depolarization envelope which results from the dynamical correlations
arising between the two subsystems.

Unlike in previous approaches (see (2) and references therein),
the present approach allowed for a physical definition and for a separate
calculation of the envelope, albeit in a perturbative context as far as
the correlations between subsystems are concerned. (It is Interesting to
note that this envelope is not smooth in the sense that it contains some
structure on the time scale of the Rabi oscillations. The intrinsic de-
polarization which goes along with the several Rabi periods following
the initial time appears therefore to feel the Rabi oscillations them-

selves. This is not particularly surprising in view of the structure of
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Fig.2 - Time Dependence of
the inversion <o;>¢ (smooth
(line) and of <g,>; (dot

i line) as a funclion of
1 2 3 4 t(S) time, for |v|2 >> 1, ob-
i tained from the numerical
solutlon to the dynamical
equations. Both of the
quantities were calculated
at the same points.

A4

equation (5}, which relates the time evolution of the occupation ampli-
tudes ozi(t) (associated with the dynamics of correlations between sub-
systems) to the time dependent natural orbitals which, in particular,
carry the Rabi oscillations.

A perhaps less expected result is that the average gross-struc-
ture of the depolarization envelope bears witness to the perturbative
time tD’ equation (2), which was calculated at t=0, where the curvature
of the envelope would appear naively to be possibly affected by the Rabi
frequency component.

W finally stress the generality of the present approach andits
ability to get hold of some rather subtle quantum mechanical effects in
a physically very transparent way. These features should stimulate its

use in the analysis of other composite systemsﬁ, particularly inthe con-
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text of obtaining corrections to mean-field approximations to dynamical

equations.
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Resumo

Este trabalho estuda a anatomia da dindmica das correlacdes
guanticas de dojs subsistemas em interacdo descritos pelo Modelo de
Jaynes-Cummingsl, fazendo uso de uma decomposicao nos estados naturais,
segundo uma antiga sugestdo de Schrodinger. A modulagdo da amplitude das
oscilagoes rapidas de Rabl, que ocorrem para um campo inicial intenso e
coerente, é obtida da despolarizagao intrinseca do spin que resulta das
correcbes a aproximacdo de campo médio.

363



