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Abstract Some magnetic insulators have a local magnon mode with en-
ergy just below the host spin wave band. Recent high-resolution far-in=-
frared laser and Raman light scattering experiments with FeFZ:Mn2+ re-
vealed a number of very interesting effects not observed in the more
usual case where the impurity mode lies far from the spin wave band.
Among these are the large enhancement of the impurity response, large
impurity mode relaxation and strong frequency dependence of thehost ARVR
mode relaxation. All of these effects can be quantitatively explained
with a Green's function theory for the dynamics of the local mode. in
this paper we review the remarkable variety of experimental observations
on this system and the theory underlying all of them.

1. IMRODUCTION

The properties of localized magnon modes associated with im=
purities in magnetic crystals have been the subject of continuing
interest for nearly two decades". The existence of these modes was in-
itlally preclicted theoretically2 based on the general impurity problem
first studied by Lifschitz® and applied to the electron’ and phonon?®
cases. The antiferromagnetic fluorides with substitutional magnetic im-
purities were the first systems on which theory and experiment could be
reliably cornpared. On the experimental side neutron® and Raman’ scat-
tering, as well as far-Infrared spectroscopye were used to identify the
local modes and to measure their energies. Nuclear magnetic resonancewas
usedg to study the thermodynamics of the spins near the impurity site.
Theoretically the earlier work concerned mainly the models for calculat-
Ing the impurlty mode energies and its thermodynamics. The early models
and systems studled typlcally involved local modes above and well sep-

arated from the continuous spin wave band and were reviewed in detail by

This is an invited review article.
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10 Relatively little work was done on systems in which

Cowley and Buyers
a local mode lies in the antiferromagnetic gap, such as CoF,:Mn and
FeF,:Mn. The former system was investigated by neutron and light scat-
tering'?, but apparently not much artention was paid to the
anomalously high intensity of the gap modes in the earlier studies.

With the development of far-infared (FIR) lasers, high-resoi-
utlon studies of impurity modes became possible and a number of anti-
ferromagnetic systems have recently been investigated in greater detail,
revealing new interesting effects. Of.special interest is the S-sym-
metry mode of a Mn impurity in CoF, or in FeF,. The energy of this mode
lies just below the spln wave continuum, and its absolute and relative
position can be shifted significantly by the appiication of external
magnetic fields. The energetic proximity of localized and band minimum
modes implies relatively weak localization, or substantial participation
of the host spins in the neighborhood of the Mn impurity in the local-
ized excitation. Further, the degree of this coupling to the neighbor-
hood, or the spatlal extent of the local mode, is sensitive to the ap-
plied magnetic field because of the different g factors of the host and
impurity spins. FeF,:Mn has been investigated in greater detail withFIR

14s15 techniques. The experi-

laser spectroscopy’® and light scattering
mentally observed consequences of the involvement of the host spins in
the local mode Include: a) large enhancement of the impurity mode inten-
sity; b) "frequency pulllng' of the host and impurity modes; c) substan-
tial broadening of the impurity mode and d) asymmetric lineshape of the
k=0 host magnon. These unusual effects have attracted considerable at-
tention and as a result a consistent picture evolved in the last few
years.

In this paper we review the recent progress made in the under-
standing of the dynamics of the local mode in FeF,:Mn, as well as its
consequences on the host k=0 magnon. Initially we present a brief in-
troduction to the impurity associated local mode problem in ferromagnets
mainly for the benefit of those unfamiliar with the field (Section 2).
In Sec. 3 we summarize the experimental resuits for the antiferromag-
netic system FeF,:Mn. The theory underlying the new effects observed in
this system is discussed in Sec. 4-7.
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2. LOCAL MAGNON MODES IN SIMPLE FERROMAGNETS

A magnetic substitutional impurity in a magnetic crystal inter-
acts with its neighbors with parameters different than those character-
izing the interaction between host spins. This gives rise to new eigen-
frequencies which may or may not lie inside the magnon band of the host
crystal. If a perturbatlon of the impurity spin oscillates with a fre-
quency inside the magnon band it will excite propagating magnon modes.
On the other hand if the frequency lies outside the band, the response
to the perturbation will be localized and it will involve the impurity
spin and its close nelghbors. The degree of localizatlon of the mode de-
pends essentially on Its energetic separation from the spin wave band.

The main physlcs associated with a local magnon mode includes:
i) its energy and elgenfunction; ii) how it affects the thermodynamics
of the impurlty spin and its immediate neighbors and iii) its dynamical
properties, such as relaxation rate and response to external excitation
(FIR, light and neutron scattering for example). Consider for simplicity
a ferromagnetic crystal with exchange interaction between nearest neigh-
bors only, and with single-ion easy axis anisotropy interaction under a
static magnetic fleld H along the z-direction. The spin Hamiltonian

for such a system can be written as?

H==Zg1 UB HOS;—Z J 3.3 -ZDQ’ (SZ)Z (1)
L 2,8 2,0+6 & 4+6 2
where R represents an arbitrary site in the crystal, 6 represents the
2z nearest neighbor sites, g is the Landé factor, g the Bohr magneton
and J and I’ are the exchange and anisotropy interaction parameters. |f
the crystal is magnetically perfect, i.e. all the parameters are the
same for every site, the Hamiltonian (1) has translational symmetry, and
its eigenstetes are the plane wave propagating magnons ]k>. By trans-
forming the spin operators into boson creation and annihilation oper-

ators cz and ck the Hamiltonian can be cast in the form

H, = E hwk cZ ey + magnon interaction terms (2)

where cz [0>- is a one magnon state with wavevector K and frequency Wy

whose dispersion relation has the familiar form depicted by the solid
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line in Fig. 1. For the Hamiltonian (1) the gap energy at k=0 is Pw, =
= guB(HO+HA) and the maximum energy at one of the zone boundary sur-

faces is hsz = guB(H0+HA+HE,), where HA = (ZS-!)D/guB and Hy = ZSJz/guB

are the anisotropy and exclnange effective fields respectively.

b e = e i i b w—— — e

Fig.1 = {1lustration of the
" dispersion relations for
o— propagating (solid 1line} and
“““““““ localized (dashed lines)
magnons.

Now assume that there is a single impurity ion at site, R =0
characterized by parameters ', g', J' and D'. The propagating modesare
slighly perturbed by the presence of the impurity and new normal modes
of spin vibration appear involving the impurity and its neighbors. if
the frequencies of these modes lie outside the magnon .band, they are
spatially localized. They are illustrated by the dashed lines in Fig.l,
which reflect the fact that the local modes do not have well defined
crystal momentum. If the energy of the mode for which the impurity spin
vibrates more than its neighbors is well separated from the magnon band,
the mode is highly localized. In this case one can assume in a first
approximation that all the host spins have s¥ = s, so that the exchange
interaction has the simple Ising form ZJSz Sz+6' The impurity spin thus
behaves as if It were in an effective static field (H0+H];ﬂ+Hé'l)5, where
HE = 252J'/g'vg and #, = (ZS'-!)D'/g'uB. The impurity {(s,-symmetry) mode

energy is then

ﬁwI = g'uB(H0+Hé,+H/'l) (3)

This Ising approximation result does give reasonable agreement
with experimentally measured energy when the local mode is far from the
magnon band. Clearly the position of the impurity modes relative to the

magnon band depends solely on the values of the interaction parameters
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in each system. The approximation (3) fails when the mode is close to
the magnon band. Moreover, it does not account for the modes with other
symmetrles. So a more refined treatment is necessary to describe com-
pletely the impurlty mode problem. If we add and subtract to the
Hamiltonlan (1) with an Impurity at 2=0, the appropriate terms for a

host spin at site 2=0, It can be written as
H= Ho +V (4)

where H is the Hamiltonian for the pure crystal and V Is a pertur-
bation which expresses the departure of the impurity parameters from
those of the host spins. V is not a small perturbation, but sinceitis
localized around the Impurity site the impurity problem can be solved
to infinite order in the perturbation. In the usual procedure one uses
as basis states the slngle spin deviation states atindividual sites
ln2>. Denoting by I‘)‘(’L) = <n£|w>‘> the wavefunction of the eigenstate
N}Z> at site R SchrBedinger's equation for the impurity problem can
be written in the form

Xw (Hogr + Vg )T, (&) = By T, () (s)

where HJL!L' and V are the matrix elements between the states at R and

22!
R' and E)\ is the energy of the eigenstate H’f’ If ¥ denotes the number
of sites in the crystal, one can define a Nxl eigenfunctlon matrix T

and ¥x¥ H® and V matrices so that (5) can be written in matrix form

(H°+V)IF =ET (6)
or

r-g° vr==»0 (7)
where

G = (E 1—-H°)! (8)

is the Green's function matrix of the pure crystal. One can also define

a Green's function for the impure crystal as G = (E1-H°—=V)  and

eq. (6) can be written as

G=G" +G* VG (9)

which has the form of a Dyson equation and can be solved by methods s imi-

lar to those used in other quantum physics problems. Solution of (6),
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or equivalently (9), yields the energies and wavefunctions of all nor-
mal mode spin excitations in the crystal, propagating and localized. If
the impurity spln Interacts only with its 2 nearest neighbors, there
are z+| impurity associated modes, with symmetries that are determined
by the point group symmetry of the impurity. This was first done by
Wolfram and CaHaway2 for a cubic symmetry ferromagnet; they had to
find the energies by numerical computation. The case of a one-dimen-
sional ferromagnet s slmpler; it was first solved by White and Hogan‘s,
who determined the energy of the p-like local mode as a function of the
impurity parameters. Recently17 an alternative approach to the one-
dimenslonal problem was deiveloped based on the transfer matrix tech-
nigue. This was used for an easier determination of both the energy and
wavefunction of the s-Ilke mode, which is the one that is studied by
FIR or Raman scattering measurements.

As we remarked earlier, until recently the studies of magnetic
impurity modes in solids consisted mainly of the identification of the
energies and symmetries of local modes in a wide variety of crystals
with many different impurlty lons. This led to the experimental determi-
nation of the impurity interaction parameters. The recent work on the

13~15

FeF2:Mn system is the first investigation of the dynamics of a

local mode.

3. EXPERIMENTS WITH ANTIFERROMAGNETIC FeF;: Mn

In FeF,:Mn an sp-symmetry local magnon exists just below the
host spin wave band. Because of the proximity of the impurity mode to
the k=0 magnon energy, the local mode wavefunction is spatially ex-
tended so that there is a substantial participation of the host Fe2+
neighbor spins in the impurity mode excitation. Due to the two spin
sublattices of the systeni, an impurity spin energy can shift either up-
ward or downward with the applied field H, depending on the sublat-
tice on which the impurity site is located. Because of the spatial ex-
tent of the Sy-modes, the experiments reveal unusual effects, such as:
a) large enhancement of the impurity mode intenslty; b) “frequency
pulling™ of the host and impurity modes; c) substantial broadening of
the impurity mode and d) asymmetric lineshape of the kkD host magnon.

13

Effects a, ¢ and d can be seen in the FIR transmission spectrum™” of a
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FeF, sample with Mn impurity concentration %=0.0014 at.% obtained With

a H,0 molecular laser, shown in Fig. 2. The spectrum is Obtained by
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Flg.2 = Transmission data of a FeF,:Mn disk with thickness 786 um ob-
tained with a H,0 laser at 1.36 THz by sweeping the magnetic field.The

Mh Impurity concentratlon is 0.0014 at.%. The dashed line is the theor-
etical prediction of the polariton model. After ref. 13.

sweeping the external magnetic field H, parallel to the ¢ axis of the
crystal, so that the down-going impurity and host modes are brought into
resonance wlth the laser frequency v=1.362THz as illustrated in Fig. 3.
Full details of the experiments are given by Sanders et aZ.'3. Because
of the coupling between electromagnetic and spin waves, the FIR trans-
mission spectrum of the host mode exhibits a broad lineshape with a flat
section charecteristic of the forbidden gap of the polariton dispersion
curve.: As a consequence the data must be obtained by fitting the spec-
trum to the theoretical prediction of a polariton model, which can be
done quite acgcurately, as shown in Fig. 2.

Tht: effects described above have also been observed in inelas-
tic light scattering experiments'**!%. in these rneasurements one probes
magnons with wavevectors %k~10° em™! which is far from the polariton re-
gion {k~10% e¢m~1), so that the scattering lineshapes reflect the true
magnon behavior. Fig. 4 shows two light scattering spectra: (a) obtained
with a double monochromator in standard Raman scattering experiment for
a sample with x = 0.28% and 0.75% at H, = 0; (b} spectrumof a x = Qb
at.% sample in H = 0 obtained by analyzing the scattered light with a

315



8 T T T T ¥ T

-

s
Host Mode

7= -

|

o Impurlty Mode |

N
E <
-
> \
15 =
|
Fig.3 - Fleld dependence of the
; up- and down-going host and im-
4 ) purity modes in FeF,:Mn with
- - X = 0.01 at.%. The horizontal
NN dashes indicate typical FIR
LA S L 2 I ] + - .
o 20 Cox €0 80 laser frequencies.
H, (kOe)

Fabry-Perot Interferometer. In contrast to the spectrum in 4a obtained
earlier!”, the more recent result!® shown in Fig. 4b shows that the im-
purity and host modes have clearly distinct lineshapes and widths. The
light scattering experiments have been used to measure the relative in=
tensities of the local and host modes and the linewidths for impurity

concentrations x > 0.3 at.%. However, due to its higher resolution the
FIR transmission technique has provided more detalled measurements of

the relaxation of both modes. in each of the following sectlons we pre-
sent a brief account of the main experimental results obtained with the

two technlques and glve thelr theoretical interpretatlion.

4. ENHANCEMENT OF THE IMPURITY MODE RESPONSE

The rnost striking feature of the spectra in Figs. 2 and 4 is
the surprisingly large integrated intensity of the impurity mode re-
sponce, typically comparable to that of the host mode even at impurity
concentratlons below 1 at.%. In the light scatterlng spectrum the en-
hancement of the impurity mode is even more surprlsing than in the FIR

data in view of the weak photon coupling to the Mn2+

S-symmetry ground
state. The high intensity here arises itidirectly through theoscillating
transverse component of the exchange fields of the Fe2+ neighbor spins
which couple strongly to the radiation fields. Thls problem was in-

itlally treated within a simple sublattice model which attributes an
equal magnetlzatlon to every host spin (regardless of its position
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relative to an impurity), and similariy for the impurity spins, and
solving the coupled equations of motion of these magnetizations. This
approach explalns the enhancement of the infrared and Raman impurity
intensities only qualltatively. The correct calculation must take into
account the spatially extended character of the local mode. This has
been done using zero-temperature Green's functions in the limit of a
single impurity in the crystal'®, The theory is based on a simple model
Hamiltonian for FeF»:Mn which includes isotropic exchange, single-ion
uniaxial anisotropy along the ¢ axis of the lattice (chosen here as the
z direction) and the Zeeman interaction with a magnetic field H., ap-

plied along the c-axis

> > 2

=, | ngS;;: +27, ] 5,5, 0] (5)*
3 2,8 3 (10)

+ 28, B
;s

x 2
+ 2008, 1B, - p'(sh)?
0z 81

1
where sites are labeled by subscripts on the spin operators and a single
impurity is located at the origin (2=0). W have retained only the domi-
nant exchange terms, between next-nearest neighbors on opposite sublat-
tices of the body-centered tetragonal arrangement of magnetic atoms, for
the pure FeF, host, or between Fe spins. The impurity spin is taken to
couple with its eight next-nearest neighbors at positions 52, and its
two nearest neighbors at positions 51. The magnetic response of the
system to a uniform electromagnetic field (frequency w) is given by the

relevant frequency dependent uniform susceptibilityl9

++ o
(w,q=0)-ﬁ ¥ Mgy <<SSL’S9V' (11)

where m, expresses the strength of the coupling between the radiation

fields gnd the spin 52, V is the volume of the crystal and <«<gt SQ.

is the time Fourier transform of the retarded Zubarev Green's functnon”
for the spin operators. In order *o find x** one must solve the
equations of motion for the Green's functions of the impure spin system.
This is easily done if the spin operators are expressed in terms of the
boson operators Cy and g which diagonalize the quadratic part of the

Hamiltonian (10). These are introduced by

318



These determine the eigenfrequencies and the normal mode  amplitudes

associated with the impurity A and its interacting neigbors Ad and
1

Agys subject to the orthonormality condition (13). Note that there are
only 3 amplitudes here because only a totally symmetric so-mode isbeing

Considered. With the knowledge of these amplitudes and the crystal
Green's functions one can flnd the wave function at any site in the

crystal. From egs. (7}, (14) and (15) one has®’22
r=G°A
or

I‘z(‘iw) 63 (W) 4+ z Ghs, @ A§1 + g 6, @) Aéz (16)

1 2

There are four types of pure crystal Green's functions that can be ex-

pressed in terms of their Fourier-transforms

G W =51 e 6l (w) (17)
k

where o = 1 for mand R in sublattice 2, a=2 form=<, R=g, 0 = 3
form=g, R=m_,and a =4 form= j,R= j'. These Green's functions

can be easiiy obtained'®

0w Fu,+w
Gz(<1) W) = E A
wlZ w2
Yk
Y, W
6w = - oW - - (18)
W' - w5
k
w' - {0, + w)
ng“)(w) - F 4
w12 - (A)Z
K
where w' = w4y, fw, = gup Ho, fwy = 252 3, A, = (25-1)Dp, Y is the
usual structure factor which appearsin the spin-wave frequencies.
wa = wk wH
B (19)

[(w +(D )2 ]2( ng 1/2
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The cluster formed by the Impurity, its two nearest, and its eight next
-nearest nelghbors in the rutile structure belongs to the symnetry group
Dh whose irreducible representations are 34, + 24, + B+ B, +E +.F,

h g 2u g u

Tu 2g

The three Alg modes have s-like wave functions which are even and non-
zero at the impurlty slte. For the s modes we make AG = A and A(S :

Eq. (15) can be solved as In ref. 18, and the Wavefunctlons are eaS|I§/
obtained with eq. (16). The total Hamiltonian (10) is diagonal (in the
noninteracting magnon approximation) in the normal mode operators Cy
and aI, so that the equations of motions for the Green's functions of

the various palrs of operators ey and eI can be solved exactly, leading

to
8
) 1 %W
NN T I By
«elsey > = oL 6)‘}" (20)
AN TTw T 2w w+w>\
<<cx;c)\l>> = <<a;:;c;\.l >>(1) =0

WIth the transformations inverse to (12) and (20), the susceptibility

(11) at frequencies w near the s-local mode frequency Wy becomes®

m23 1 28 ¥ s
AT e L™ T,

- U%/SE- 1] T, {Z rz* - r;’.*] - c.c:]‘

Eq. (21) shows that the response of the local mode depends on how far

the wavefunction spreads over the impurity neigbors. The summations in

x(w=ws) =
(21)

eq.(21) can actually be evaluated analytically using eq. (16). Theylead
to the g=O components of the Fourier transform of the pure crystal
Green's functlons (18), which measure the response of the host magnons
to a uniform (g=0) excitatlon. Assuming that there are N\X non-interac-
tingimpurities in each sublattice the total susceptibility near an s-

-mode frequency becomes

2TuB (w) Blw) *
'X(OELL) ) = Nmzs [[: Ou w - w ] ] (22)
8

s v (ws+wH) z—wf,:] [(ws+wH) z-wﬁ] 2

where
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-1/2 o .+ -1/2 o .+
= 5. , T 5,
e, Z (zsi) I 8; +§ (sz) 5 5 02)
+ o ~1/2 B - -1/2 1JS g7
cp ) (25,) I S, + Z (2sj) 55
Z J

where | and J denote the sites of the up and down spin sublattices re-
spectively and a and B denote the normal modes (propagating and local-
ized) which shift up or down with the magnetic field respectively. The

wavefunctions obey the orthonormality relations

A ALk A AR
- = +
Z Iy Iy ) I I 85, (13)
1 J
where the positlve sign holds for the a mode and the negative for the B
217 22
one. Clearly the treatment of antiferromagnets Is more cumbersome

than for ferromagnets because of the two-sublattice nature of the prob-
lem. However, the equations of motion can be cast in the same form as
those in Section 2 by defining suitable matrices made up of submatrices
characteristic of the two sublattices. The eigenvalue equation then has
the same form as (7). |Its solution yields the normal mode energies and
wave functions, subject to the condition of eq. (12}. Due to the finite
range of the perturbation caused by the impurity the solution of eq.
(7) reduces to solving a set of 11xl1 secular equations (for theassumed

19 of the Hamiltonian). The calculation of the corresponding de-

form
terminant can be simplified by block diagonalization of the matrix G°V.
This can be accomplished via a unitary transformation from a basis of
individual cites to linear combinations that transform according to
the irreduclble representations of the symmetry group of the cluster
formed by the Impurity and its interacting neigbors. The 11x11 unitary
transformation for this case has been given by Shiles and Hone?3. In-
stead of the site wave functions a more convenient set of normal mode

18

ampl i tudes can be used to solve (7). They are represented by the 11x11

column matrix A obtalned from I' by the transformation,

A=VT (14)

Equations (7) and (14) lead to a new set of secular equations,
(1-VG°)A =0 (15)
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) SI 1/2
U= ”—;n- [-g:} -1
Bw) = wE(A': + ZAf) (w1 - BwEA‘:(m- +1)

i ]
where w = {(w

* wy * wE)/wE. Egq. (22) shows that the intensity of the
local mode increases rapidly as its frequency approaches the =0 magnon
frequency Wy~ This results from the fact that the wavefunction of
the local mode close to the ¢=O magnon spreads over many impurity neigh-
bors, leading to a large enhancement of the impurlty response, as ob-
served in the experiments on FeF,:Mn. An enhancement, not as large as
in FeF,:Mn has also been observed?*’25 in CoF,:Mn in which the q= 0
magnon is at -35 em™! and the impurity mode is at -28 cm™! at Ho=0. In
a neutron scatterlng experiment with momentum transfer equal to the zone
-boundary wavevector 9,35 ONe should observe a similar enhancement for
local modes above the magnon band and near the frequency W,z such as
in FeF;:Co 26, The large enhancement observed in FefF2:Mn has been ex-
plained quantitatively with the theory above. The impurlty s -mode en-
ergy, wavefunctlon and dynamic response for this system have been cal-
culated in detail In ref. 18. Comparison with the energy and relative
intensity measurements have allowed the determination of the impurity-
-host exchange interaction parameters J; =0.2 em™?, J; = 1.79 cm?,

both antiferromagnetlc.

5. FREQUENCY PULLING

Another evidence of the strong coupling between the local mode
and the ¢=O magnon in FeF;:Mn is the pulling of their frequencies rela-
tive to the values in the single impurity limit. Relative frequency
shifts are of order a percent for 0.1 at.% impurity. Fig. 5 shows the
measured frequencles at # =0 versus impurity concentrationls. The light
scattering data are obtained directly from the spectra. The FIR values
are obtained by extrapolating the data to zero field. The curves shown
are the frequency pulling predictions of the magnetization coupled mode
model for various choices of the exchange interactlon parameter A, be-
tween the impurity and the two nearest neighbors. Though the coupled
magnetization model gives a good description of the frequency pulling

as a function of X, it requires parameters which correspond to interac-
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' 13 These are very dif-

tion constants J} = 2.0 om ' and Jy = 2.04 em
ferent from the values which explain a wide range of other phenomena
(including the local mode response just discussed). In particular, J;
is far too big. Actually it is not surprising that the coupled magnet-
ization model does not yiéld the correct parameters because inthe limit

x=0 it gives the Ising model frequencies, a result which is known to

T L T LR T

Vo(THz)

Fig.5 - Zero-field resonance pos-
sftions of both host and impurity
modes obtained by extrapolating
to Hy=0 the values measured at
several FIR laser frequencies
{ref. 13).

A 1 1 i i ye i
0 0004 0008
X
fail if the Impurlty mode is not sufficiently localized. The correct

theory for the energies at finite impurity concentrations has yet to be
developed. Of course, this problem cannot be treated within the single

spin formalism presented earlier.

6. LOCAL MODE LINEWIDTH

Fig. 6 shows the impurity mode line width data obtained from
the low temperature FIR transmlssionspectraofseveral samples withdif-
ferent impurity concentrations and different thicknesses. Three main
mechanisms have been identified!® for the broadening of the local mode
in FeF,:Mn at low temperatures, namely: i) Radiation damping,ii) Single
impurity processes and iii) Impurity-impurity interaction. The radi-
ation damping mechanism?’ is greatly enhanced by the participation of
the Fe2+ spins in the local mode and is the source of the linear depen-

dente of the linewidth on the sample thickness, as shown in detail in
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ref. 13. Extrapolation of the data of Fig. 6 to zero thickness givesthe
intrinsic linewidth of the local mode. Impurity banding effects?® are
responsible for the concentrption dependence of the linewidth but they
cannot account for the large residual value of about 1k0e as x—~+0. The
latter is due to single impurity damping processes, which have recently
been studied theoretica]lyzg. For the up-going local mode, anisotropy
and dipolar interactions which break the spin-rotational symmetry about
the field axis provide®® a mechanism for the decay of the local modes
into band magnons in the frequency range 1.54-1.93 THz. However, since
the down-going mode is energetically the lowest-lying magnetic exci-
tation in the system, other excitations must be involved in the relax-

ation process.

20 T T

i5p x=3x10 4
o
o
~
~_0- 4
x
=]
A =10"3 . . . .
Fig.6 = Impurity mode linewidth
measured by FIR laser spectroscopy
5 ’ . for several M concentrations in

| =10-* FeF2 vs. sample thickness. The
straight lines are best fits tothe

"""l/‘-/xﬂﬂ's data; their slopes detgrmine the
p———r J radi?glon damping contribution to
G as TO 1
SAMPLE THICKNESS  (mm)

At least two arguments suggest that phonons play a dominant
role in the damping: Acoustic phonons are the only collective exci-
tations in FeF, with energies below the Mh impurity mode, and the mag-
netic moments (''spins'') of the Fe?* ions that participate in the local-
~-mode excitation couple strongly to lattice vibrations. In pure FeF,

phonons do not contribute to the relaxation of magnons because their
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dispersion relations are very different; thus energy andmomentumcannot
be conserved simultaneously. But in Mn-doped Fef, there is no trans-
lational symmetry around the impurities, and the requirementof momentum
conservation is relaxed. Fig. 7 illustrates possible decay processes.
The coupling between spins and lattice vibrations arises from several
sources, but in FeF, it has been shown?? that the dominant mechanism is
phonon modulation of the crystal field, which can be calculated from
flrst principles. Using the spin-lattice interaction in FeF, and the
results of the Green's function calculation of the impurity mode proper-
ties in FeF,:Mn, it has been shown?? that two phonon assisted processes
can effectively relax the local mode: one is the direct decay into a
degenerate acoustic phonon and the other is the decay into a magnon-
-phonon pair.

30 1100
{em™)
20 T
¥ 4
E ‘
5 50
5
z 7 Fig.7 - Illlustration of possible
10 4 processes for the decay of a local
magnon into phonons. A mode in the
L A down-going branch can decay into
TA an acoustic phonon.An up-goingmode
) can decay into an acoustic and an
0 Lo 4o a1 ado optical phonon (ref.29).

0 0.5

)
WAVE VECTOR [110] (&™)

The interaction Hamiltonian for the decay of the local mode

into an acoustic phonon can be written as?®

H = - 2(ms*/m) 2 b ] [q/wé/zj F(q)aj;cs + hoc. (23)

.f.
where aq is the creatlon operator of the phonon with frequency 09' the
form factor F(q) ts essentially the Fourier transform of the magnon wave
function at the phonon wave vector
-iq.rg *
Flg)= | e Ty (24)
2#0
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and b is a magnetoelastic coupling coefficient

A\2(25 - 1)PS

b= (25)
Vi, b S
Y X3
where A is the spin-orbit coupling constant of the Fe2+ ions, P is a

Coulomb matrix element and Aacy and sz are crystal-field energy split-
tings defined in ref. 31. The form factor #{g) in (24) measures the ex-
tent of spatial matching of the magnetic and phonon excitations, exclu-
ding the impurlty spin at RO because the Mn2+ ion does not couple to
the crystal field. With the wavefunctions calculated by (16) the form
factor has been given explicitly for the s, local mode?®.

In general, the local magnon can decay into any phonon ener-
getically degenerate with it (unless other symmetrles prevent magnon-
-phonon coupling). In FeF, the transverse-acoustic phonon bands extend
as high as 3THz, and above 2.04 THz the magnon also becomes degenerate
with phonons in the Blg optical band, but the contribution from the op-
tical phonon to the linewidth has been shown to be negligible. At tem-
peratures low compared with the local-magnon energy, where the number of
thermally excited phonons degenerate with that magnon is negligible, the
standard golden-rule calculation gives for the decay rate of the local
mode into acoustlc phonons a contribution

AH_, = 7P sl [ (26)
A myhp w_le, - 3¢ q°)
8 10

where P is the mass density, F(qﬂ) is the local mode form factor, q, is
the wave number of the phonons degenerate with the local magnon w(qo) =
=W (00-3616728) = dw/dq characterize the acoustlc phonon density of
states in our approximation of the dispersion relation, and Yy is the
gyromagnetic ratio (y# = guB).

When the up-golng mede has frequency above 1.54 THz (H,>1) kOe}
it can decay into an acoustic phonon-down-going propagating magnon pair.

The contribution of this process to the linewidth Is2®

A Graph) = S2°0 J &% ¢ (k) [c(k,q,)]2/e? (27)
by Ap 0
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where g, (k) is the phonon wave vector demanded by energy conservation,
C is another suitably defined form factor and R the unit cell volume.
The linewidths glven by (26) and {27) were evaluated numerically for
FeF2:Mn. Their dependenceson the local mode energy are shown in Fig. 8
by curves A and 8. The obvlous w® dependence (from q:/ws) in eq. (26) is
dominated by the rapid falloff of the form factor F(qo) above g, of
the order of the inverse of the local magnon size, so curve A decreases
with w . Note that the ranges below and above 1.507 THz correspond to
the down-going and up-going local mdes respectively. As polnted out in
ref. 29, near 1.7 THz there is a strong admixture of magnons andphonons
and the actual normal modes are magnetoelastic excitations. But far
from this region the bare phonon is a good approximation to rhe exci-
tation into which the local mode decays. The data point at 1.36 THz in
Fig. 8 is the residual impurlty mode linewidth obtained from Fig. 6 and
it is clearly accounted for by the calculation described above. The bars
at 0.85 and 2.5 THz represent data taken at the High Magnetic Field lab-
oratory of Osaka University®? and both are also in good quantitative
agreement with the theory.

3,0

Fig.8 - Residual local-mde
linewidth from phonon-as-
sociated relaxation pro-
cesses. Theoretical curves
are labelled A (decay into
a phonon) and B (phonon-
-magnon pair)}2®. in the re-
gion between 1.54 and 1.93
THz Sz-nonconserving mag-
netic decay alsocontributes
to the linewidth®®, Data
are represented by the dot

N
[=4
1

LINEWIDTH (kOe)
)
T T
p
*

~.A h
[ )] - b b ke T and the vertical barsl3:32.
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Within the frequency range 1.54-1.93 THz marked by vertical
dashed lines in Fig. 8, the up-going local mode is degenerate with the
down-going magnon band. Thus in this region the local mode can decay
into the magnetoelastic excitations not only via the couplingtophonons
as already discussed (and represented by the dashed extensions of curve
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A in the figure), but also in principle via explicitly magnetic inter-
actions to the magnon component of the final states. This does #not occur
through the dominant magnetic Hamiltonian (10), because that operator
is invariant to spin rotations about the z-axis, whereas the decay pro-
cess here requires a single spin flip (the initial and final excitations
belng on the up-going and down-doing branches, respectively). But there
are small magnetic interactions terms, otherwise negligible, which do
break thls spin rotational symmetry. The most obvious of these is the

magnetlc dipole-dlpole Hamiltonian

Hy = (R2/2)¥* ] [37;-'5} - 3(§i.ﬁig.)(§j.§iJ.)]r;; (28)
In addition, there is an orthorhombic magnetocrystalline anisotrpy term
associated with the electrostatic fields of the ions surrounding a Fe2+
site. Although the dominant departure of the environment from cubic sym-
metry is the tetragonal dlstortion measured by the uniaxial term D(Sz)2
in eq. (10), there is also a smaller symmetry in the x-y plane, leading
to the term

Hop = —E/29) [ n, [ - (54)7] (29)
where ni is +1 for i on the up sublattice and -1 for i on the down sub-
lattice, because the F cage is rotated by m/2 about the z axis in going
from a magnetic site on one sublattice to one on the other. Thus, there
fs a local, but not global, orthorhombic anisotropy.

Independent calculations of this Sz-nonconserving magnetic

3% and the phonon-associated mechanism discussed above

decay mechanism
demonstrate that the two contributions to the linewidths are expected to
be comparable. Since the final states involved are the same, we should
properly take Into account the quantum interference between the ampli-
tudes for the two processes in calculating the total probability for
decay; the corrections from the interference terms may well be large.
However, to carry out the amplitude calculation for the symmetry-
-breaking anisotropy Interaction to find both magnitude and phase,
we need the final-state wave function. The impurity offers primariiy a
magnetic contrast to the host atoms, and as opposed to the phonon final

states we have considered above, which are well represented as plane
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waves, the continuum magnons are distorted from plane waves precisely
in the neighborhood of the impurity, where their overlap with the in-
itial local mode state is substantial. This difficulty is avoided inthe
approach of ref. 30 where the local impurity susceptibllity is calcu~
lated directly; its imaglnary part measures the local mode linewidth
contribution from the dipolar and orthorhombic anisotropy interaction
included. As is common to Green's function calculations this one has
the advantage of not demanding explicit knowledge of the form of the
wave functions, but the price paid is that it also does not yield the
essential Information about the phase of the transitlion amplitudes. W
do not know whether constructive interference, a slightly larger orthor-
homblc anisotropy constant E than estimated in ref. 30 ora combination
of these may explaln the relatively large observed linewidth of 3 kOe at
1.75 THz, as compared with a combined theoretical value of about 1 kOe
from the two mechanisms treated independently. But we do note that a
factor of 2 in the anisotropy constant or completely constructive inter-
ference would each essentially remove the discrepancy, and neither seems
unreasonabie. 1t is also concelvable that there may be other symmetry
breaking interactions, lncluding anisotropic exchange or Dzialoshinski-
Moriya interactions, which make substantial contributions to the line-
width here. However, none of these has been demonstrated to exist by
independent experiment.

At sufflclently low impurity concentrations it is reasonable
and useful to view the concentration dependence of the local mode line-
width as arising from the spatial overlap of the wave functions of lo-
cal magnons centered on different impurities. To second order in the
concentration one effectively sums the results of the dynamical inter-
actions of impurity pairs over a random spatial distributionsof im-
purities. The four Green's functions labeled by the sites of the single
pair of the two impurity problem are coupled by the equations of motion.
W are interested in the behavior of the system near the local mode fre-
quency w=w,; the parts of the Green's functions singular at w=w, can be

reproduced by an effective interaction?®

_ o +
Hope = Y ! T ) Vig ©4%5 (30)
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where ey destroys a local mode associated with the impurity site i, and
we have written the Hamiltonian for the full system as a sum of pairwise
interactions. Clearly at higher concentrations one would have to modify
the effective medium which moderates the interactions between local
modes. V¢ have essentlally calculated theuniform magnetic susceptibility
appropriate to this Hamlltonian averaged over impurity distributions.
More accurately, we have calculated the frequency moments of the imagin-
ary part of the susceptlbility, which is directly related to the absorp-
tion lineshape, again to second order in concentration.

The predictions of the theory for the linewidth are compared
with experiment at # = 50 kOe with a laser frequency of 1.36 THz in Fig.
9. With the inclusion of an independent single impurity phonon-related
width of 1 kOe, as calculated earlier, we find excellent quantitative
agreement. It is true that the concentration dependence is relatively
weak, but we emphasize that there are no adjustable parameters. For
completeness in Fig. 9 we compare the results wlth the predictions for

a system with perturbation strength twice as large, which could not be

T T T T T T T

10 E
g i
< [
X
7 Fig.9 - Concentration dependence
3 i of the impurity banding contri-
1E P bution to the local mode line-
F - ] width?®, Data are obtained at
C il e 0] 136 THz '3,
=5 - -3
10 107 10
reconciled wlth this experiment. In Fig. 10 we compare the He=0 light

scattering linewidth data with the results of phonon decay and impurity
banding calculation the latter scaled inversely proportional to the lo-
cal mode k=0 magnon energy splitting. Again the agreement is quite good.
More directly and unambiguously affected by impurity parameters are the
positions of satellite resonance lines associated with Mh impurity pairs
in various spatial positions. V& have successfully identified®*3six such

experimental lines with the predictions of theory. The agreement s
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1

! and J' = 18 cm™,

quantitative with Impurity parameters J' § 0.5 em”
in agreement with the values found necessary to explain the enhancement

and lInewidth data above.

2 T
T
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I .
= — Fig.10 - Comparison between the
S local mode IInewidth data'® in
o FeF,:Mn%* and the prediction of
Z- theory as a function of the im-
d purity concentration. The solid
line represents the sum of
. 9 . .
phonon assisted and impurity
o ! banding28 processes.
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7. HOST MODE LINESHAPE

As we remarked earlier, the lineshape of the FIR transmlssion
spectrum of the host mode In FeF2:Mn is dominated by the polariton
nature of the propagating magnetic mode in the sample. Nevertheless, by
letting w - w *+ ZyAH/2 in the coupled magnetization equatlons of motion,
the linewidth of the host mode can be obtained from the lineshape by
carefully fitting the experimental spectrum to the calculated trans-
mission. The most signiflcant features of the data are: I) the relax-
ation rate of the host mode is lower than that for the Impurity mode;
il) the llnewidths increase rapidly with the impurity concentration and
iil) the relaxation rate Increases with increasing frequency. All  of
these features are conflrmed by the light scattering measurements®®,

The first attempt to explain the hést mode linewidth based on
impurity exchange and anisotropy scattering led to values above the
polariton gap which were more than two orders of magnitude smaller than
the data. The reason for this failure is that the perturbationpotential
associated with the Mh impurity is so strong that the spatially extended
local mode appears; hence, the usual perturbation theory (Fermi Golden

Rule) is not directly applicable. It has been shown that Inclusion of
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multiple scattering effects (from a single impurity) corrects this
problem and accounts for the observed linewidths3*.

The broadenlng mechanism for the host mode 1is a two magnon
scattering, in which a rnagnon of wavevector k decays via impurity scat-
tering into degenerate magnons with % # %Z. In the usual situation where
the impurity mode is far from the spin wave band, the linewidth is cal-

culated by the standard Golden Rule expression35

M (w) = L

e ] gl s o
Y ™

where w is the frequency of the mode k, and Fkok is the Fourier trans-
form of the scattering potential V. In the presence of a strong pertur-
bation the plane wave magnon states |k> are replaced by the wavefunc-

tion
> = 1>+ 6 v |y (32)
The linewidth can be conveniently calculated by Introducing the t-matrix

as the operator which acts on the unperturbed states (k> to give the

same result as V acting on the distorted state 'U)k>

Tk> =V lwk> (33)

so that T accounts for multiple impurity scattering to all orders. From

From eq. (32) and (33) we have
T=0 - v (34)

Then rnultiple scattering results are included by replacing V by Tin the
first order time dependent perturbation expression for the transition

probability; i.e., the squared matrix element becomes
P<k|r|e>12 = <u, |v]k,>]* (35)

Of course, far from a scattering resonance or a bound state 7=V and the
modification to ordinary first order perturbation theory Is small. How-
ever, here the effect is enormous, as the exlstence of a local mode
implies, and as a consequence the linewidth is enhanced by three orders

of magnitude®®. The frequency dependence of the observed Tinewidth is
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accounted for by the increasing density -of degenerate magnon states with

increasing frequency. Flg. 11 shows the calculated Tlinewidth for
10 T T
sk -
v
S e N
= o
}__
o L .
= Fig.11 - Linewidth due to two-
=z -magnon impuritymultiple scat-
- .l 4 tering in 0.5% Mn:FefF, as a
function of position of the
magnetic mode relatlve to the
o , , bottom of the spin wave band 3",
) ' F] 3
wk 'U)H
Yagp/Z

X = 0.5% as a function of the mode frequency relatlve to the bottom of
the magnon band, in units of AFB/Z (the width of the splnwave manifold).
W% note that the contributions from exchange, anisotropy and g-factor
scattering are equally important for the linewidth, which has the mag-
nitude of a few kOe and is strongly frequency dependent. In Fig.12 the
experimentally measured transmission host mode lineshape obtained for a
sample with x = 0.5 at.% Is compared to theoretical predictions of the
polariton medel with a frequency dependent relaxation parameter given by
the above theory. As can be seen, the agreement between theory and ex-

periment is remarkably good.

8. CONCLUDING REMARKS

We have seen in this review how rich can be the physics of the
dynamics of spin excitations in a simple magnetic system with a sub-
stitutlonal impurity, by way of the particularly Interesting and well-
-studied example, FeF,:Mn. The variety of phenomena studied and infor-
matlon available Is remarkable. W have indicated that a single, rela-

tively simple, Hamiltonian (10) is quantitatively compatible with all
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available observations. This and closely related systems can continue

to be used as quantitatively understood models of magnetic insulators.
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Resumo

Alguns isolantes magnéticos com impurezas tém modo local com
energia logo-abaixo da banda de onda de spin. Experiéncias recentes de
alta resolugao no infravermel ho distante e de espalhamento Raman em
Fef,:Mn* revelaram varios novos efeitos interessantes ndao observados
no caso mais comum emn que o modo da impureza esta longe da banda. Entre
esses efeitos estdo um grande aumento da resposta da impureza, rapida
relaxacdo do modo local e forte dependéncia com a frequéncia do modo de
AFMR. Todos esses efeitos podem ser explicados quantitativamente com uma
teoria de fungdes de Green para a dinamica do modo local. Neste traba-
tho apresentamos uma revisdo da grande variedade de observagbes experi-
mentais nesse sistema e da teoria que os explica.
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