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Abstract The expression for the vacuum polarization is obtained for any
momentum transfer 1In v dimensions. Using the Wilson loop for QED, the
renormalized electrlc charge in v dimensions is calculated.

1. INTRODUCTION

It Is well known that the vacuum polarization can be obtained
solving the pararnetric integral'. However, the hypergeornetric function
that appears In the final expression diverges for large momentum trans-
fer. This behaviour is not desirable because the vacuum polarization
for large momentum transfer is important for physically observable
phenomena such as the Uehling effect .

In this work, we derive an expression for the vacuum polariz-
ation which is valid for any momentum transfer. Our technique is based
upon an analytic continuation of the hypergeometric function. Using the
dimensional regularizationl’3 and expanding the result around v = 4 and
k? = 0, the expresslon for the vacuum polarization is derived in a form
that can be readily compared with the one obtained via cut-off regular-
izatlon. The observable physical charge or renorrnalized charge® is ob-
tained through the Wilson loop for Q€D; in particular, an expression

for the renorrnalized charge in Vv dimensions is derived.

2. FEYNMAN RULES AND THE LOOP AVERAGE

fn this section, are Iisted for completeness the Feynman rules

in Euclidian space with the metric (1,1,1,1) in v dimensions for QED.
Using the proper definition®, one sees that the rules can be written

as
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As usual, one attaches to each vertex the factor (Zn)v and integrates

over all internal momenta with [ dvq/(Zﬂ)v.

The Wilson loop vertices for QED are written as
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The utility of the given rules is evident since the loop

average for an Abelian theory is given by the perturbative series®
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(6)
where
<Aa1 (:cl)...Aan(xnb = D°‘1"'°‘n (xi,...,xn)
are Green's functions.
To second order, only the graph
W, = « g (7)
X X2

contrlbutes to eq. (6). Using the Feynman rules, one has
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It is worth-recalling that this integral is gauge independent,

since
o -k.xl
§ dr ke =0 (9
The gauge depend term in eq. (8) will be dropped from now on.
The correction due to the insertion of the photon self-energy
is given by
P
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3. ANALYTICAL CONTINUATION

First of all It [s convenient to notice that the trace in v
dimenslons Indicated in expression (10) is given by

am [- ppp(‘S - pépé + '”2506 +p.p Gpéj (1)

where d(v) is an analytic function of v and, for v integer, coincides
with the number of components of the spinor in a v-dimensional space".
It Is convenient to introduce the Feynman parametrization
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where
p, = p-k(1-2)
and

e? = k%2(1-2) + nm?

With the substitution of eq.(11) and (12) intoeq. (10), one
obtains, after integrating in p', k', and p
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The integration In p was carried out using the formulae of
appendlx B of ref. 5 . Now the parametric integral can be performed
with a convenient change of varlable and the use of the formulae
(3.681-1,2) of ref. 7. We obtaln
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The hypergeometric function that appears in this expression
ts divergent for k® = 4m? and Is equal to one for v=h., This divergence

can be avolded if one uses the transformation formula (9.131-1) of ref.
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After the substitution of eq. (15) into eq. (1%), one obtains

the exact expresslon for the correction term W, in eq. (10)
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4. VACUUM PQLARIZATION

Adding up egs. (8) and (16), one has
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Then one obtains that
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is the new photon propagator with a correction due to the Insertlon of

the second-order photon self-energy. The Fourier transforrn Is now well
defined, because of the transforrnation (15). Hence one can write eq.
(18) in momentum space as
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where s

D (k) = - -8
aS( ) K
Is the photon Green'‘s function fn the zero-order approximation. From

eq. (19) one sees that the vacuum polarization in v dimenslons is glven

oY ,. ROV
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If one expands the series of the last equation around v=k, one

obtains
R v (4=v) /2
n (k) = —2 d(v) (v-b) | km?
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(21)
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Notlce now that the part of eq. (21) without pole Is well de-

flned for any momentum trapsfer in the limit of v=k.

5. THE RENORMALIZED CHARGE

From eq. (19) one obtalns, for k%= 0, an approximate relation
between Dag(k) and Das(k)

s =D ) 1 - i}d—)(-%%m(v-h)/z r(“—gi} (22)
m
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Now, one can write
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Instead of regarding

, .
| . e2dW) (v-4)/2 I‘(l‘;\’)] (24)

as a correction factor to the photon propagator, one can alternatively
regard It as a correctlon factor to the coupling constant. Notice that
expresslon (23) is the same as the lowest-order expression (8) except

that the electric charge is decreased as follows

oo s ]

This is the observable physical charge?’? which is oftencalled
the renormallzed charge denoted by €,- Since the calculation was car-
ried out in v dimensions, one replaces the dimensionful coupling con-

stant e by a dimensionless one,

. eu(h-v)

where y is the traditional mass paramecer of dimensional regularization.

If one takes the residue of eq. (19} in the limit of v + 4, one

has
= e? o B d’% | ik(x2_xl) 1 e?
Re W, = T§ dx, § dxz J ] — (kakB-kzt’S B)
(2m)* k" R bl
(26)
With this expression, the approximate formula (22) can be
written as

D) = g0 1 - 5y TER] (27)
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and the renormallzed charge ts now given by

2 -

e el - iy (28)
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Notlce that thls expresslon has a pole in the limit v >0 in-

stead of the well-know cut-off dependence obtained via Pauli-Villars

larization?’?®

2 2
e? = ezE - £ log(M—) (29)
r 1212 m?

which is valid for M2 > m?.

6. CONCLUSION

In this work the photon propagator, in v dimensions, with cor-
rectlon due to its self-energy, is derived up to second order In momeota
space wlthout encountering any difficulties with the Fourier transform.
From the corrected propagator, in momentum space, one can write, also in
v dimenslons, an expression for the vacuum polarization tensor. Notice
that the part of eq. (21) without pole Is well defined for any momentum
transfer and this result coincides, for small kz, with the usual one.

The renormalized electrlc charge in v dimensions is also ob-

talned using the Wilson loop as a trick.
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Resumo

A expresséo da polarizacdo do vacuo é obtida para qual quer mo-
mentum transferido em v dimensdes. Usando o loop de W lson para QED, a
carga renormal izada em Vv dimensfes, € cal cul ada.



