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Abstract V& show t hat [{2 A 8] = 0, where 6 defines an integrable sub-

bundle in the tangent bundle T.P. to the principal bundle P associated
t oa gaugefield theoryona general n-dinmensional manifold, is a

necessary and sufficient condition for the existence of potentiall am-
biguities in that gauge theory.

1. INTRODUCTION

For mat hematicians a gauge field theory is described on a
principal fiber bundle P(¥,G) over a finite-dinensional smooth n-mani-
fold ¥ and with a finite-dinensional sem-sinple Lie group G as its
fiber. The gauge potential is identified with a confiection form w on
the bundle, that is, an Z(G)-valued smooth |-formover P(M,G), where
L(G) is the group's Lie algebra. The gauge field is then w's exterior
covariant derivative, that is,

Q=do+ 5[4 ) (1.1)

according to one of Cartan's structure equations’.

Suppose now that £ can be derived fromtwo different poten-
tials wand «' on P(¥,G). Are w and »' gauge-related potential s? ts
there any physically neaningful map that sends w over w'? Gven an
arbitrary gauge field € on P(¥,6), howcan we check whether that field
has a potential ambiguity? The gauge field copy problemahswers those
questions? and characterizes in a conplete way all potentials for a
given gauge field.
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However it has been long known that there isa simple necessa-
ry criterion that a gauge field R must satisfy in order to have any

potential ambiguity: the linear functional system
@ A ej = (].2)

must have nontrivial solutions.
Here 0 is an L(G)-valued tensorial 1-form on the bundle. In a

local coordlnate system eq. (1.2) becomes
uvp. ..o _
¢ B0 = 0 (1.3)

which in four dimensions can be written as

"7 a,.01 = Fa™, 6] =0 (1.4)

It has been recently noticed®that eq.(1.4) is not a sufficlent
condition for the existence of a potential ambiguity associated to the
field R, for G = SU(2) or SO(3). W show here that the correct
necessary and sufficient conditions for a gauge field R to have any
potential ambiguity are slightly stricter than eq. (1.2): the field must
satisfy }:9 A 6__} = 0 aad the geometric distribution thus defined must
be an integrable distribution' 1is the sense of Frobenius' theorem®.

Furthermore, if § satisfies also another condition,

[f,0] =0 (1.5)

where p is a (possibly local) L(G)-valued smooth function, then (and
only then) € will have ambiguous potentials that are (locallyat least)
gauge- equivalent. In the general case however R will not have gauge-
-equivaglent ambiguous potentials; they will be A-equivalent, in the
sense of Einstein's A-transformation®.

The present situation parallels similarconditions ongeometric

structures applied to Physics: for example, let N be a smooth finite-
~-dimensional manifold and let a be a 2-form on N. If X is & smooth
vectorfield on N then X is a cross-section of the tangent bundle T.N.

V¢ then define

B =X, 4, a=0) (1.6)

to be a's characteristic bundle, Then da = 0, and a is a (degenerate)
symplectic form if and only if Ra is integrable, that is, if R is the
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tangent bundle T.4 to a submanifold Q C #; we then have the bundle in-
clusion R, = 7.9 C T.N . As in the gauge field copy problem we have
here a linear degeneracy condition,

iya =0 (.7)
whose nullspace must be integrable in a physically meaningful situ-
ation, for that condition lies at the base of time-dependent Hamilton-
-Jacob! theory .

As another example we may quote the distinction between
almost-complex and complex manifolds®. A complex manifold is an almost
complex manifold with an integrable tangent bundle associated to the
almost complex operator J that maps "real” vectorfields on "imaginary"
vectorfields. Again we can define the relevant distributions with the
help of a linear degeneracy condition such as in egs. {1.2) or (1.7); an
almost complex manifold can be endowed with an analytical structure
compatible with the almost complex structure provided that the almost
complex structure be integrable in the sence described above.

VW believe that the interplay between 'quasi-copied fields'
- which are those fields that satisfy [s:z A 6:[ = 0 - and ‘copied
fields' - those for which & is integrable - can be of physical import,

as copied fields will be gauge fields with a vanishing torsion tensor
t=d0+3 66+ [wnd (1.8)

very much like the situation in the almost complex/complex case, where
integrability also depends on a vanishing torsion tensor.

The parallel is even closer than it may seem at first sight:
we have shown that Kaluza-Klein theories with an analytical Kaehler
structure compatlble with the Kaluza structure necessarily imply that
all gauge fields involved be copied gauge fields®.

The following conventions are used here: all objects are
supposed to be smooth unless otherwise specified. Vectorfields are
denoted by X, Y, Z, ... Scalar constants by k, m, ... Differential
forms by Greek lowercase letters; the single exception is thecurvature
form (the gauge field), always denoted by R.

Lie algebra commutators are [ , ] The algebra of L(G)-
valued differential forms has a natural graded Lie algebra structure
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that arises out of the conbinationof ~and [, ]; its (graded) commu-
tator s witten [a . B]. W notice that for an L(G) -valued p-

forma and an Z(G)-valued ¢-form 8, we have:
g = ()P B oag] (1.9)
2. A PRIMER ON INTEGRABILITY CONDITIONS

Suppose that we are given a famly of linearly independent
vectorfields X(L, ,1=1,2,..., p<n, on a n-dinensional differentiable
manifold M. Such a fam 1y and its (constant coefficient) Tinear combi-
nations generate a p-di mensional vectorspace which we denote by (X(i))'
Cbvi ousl y (X(i)) C r.M, that is, (X ;) is a subvectorspace in the
tangent space to M or, in a nore technical |anguage, (X(i)) is a
subbundl e of the tangent bundle T.M(for a reviewof these and related
georetri ¢ concepts see ref.10. (X(i)) is also usually called a geonetric
distribution in the literature — not to be confused with the nore
famliar Schwartz distributions such as the Drac deltatt.)

V¢ can now ask the follow ng question: is (X(i)) the tan-
gent space (tangent bundle) to a subnanifold NC M The answer is no,
in general . The question is settled by the Frobenius Integrability
Theorem, Stated bd ow

Theorem 2,1, (Frobenius, 1st verfi on) (X m))C TM is tangent to a
subnani fold NC Miff*ﬁ((i),x(j)j & (X(y)s for 12, 4. 1f  that
conditiori is satisfied, (X( )) is catled an <ntegrable distribution.

For the proof see ref .12. [X( )X ] denotes the Lie bracket of
two vectorfields. Vectorfields on nanlfol ds are essentially d rec-
tional derivatives, or infinitesimal displacenent operators; they can
be thus represented in local coordinate systens:

x= x¥ %, (2.1a)
AY)
Y= 13 (2.1b)
Ad thei r Lie bracket,
x, 7Y = ch Y- M ch x/ (2.2)

* niff is common abbreviation for "if and onIy Pf
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Eq.(2.2) looks a bit 1ike a Poisson bracket. in fact Lie and Poisson
brackets are closely related; a Poisson bracket is the Lie bracket of
two gradi ents on phase space; for nore details see references 13 and 14

Geonetric distributions are thus related to a class of systerns
of partial differential equations; since we leave boundary conditions
unspecified, an integrable geometric distributionwll deternineafam
ily of p-dirnensional subrnanifolds of M.Such a farnily is called a p-
dimensional foliation on M Each subnmanifold in the foliationwll be
an Zmmersed submanifold of M it will not in general be an embedded
subrmani fol d. That is to say, it wll fit nicely into #only local |y;
when we patch up everything together the global situation won't be as
well behaved as the local one.

V¢ can aiso define geonetric distributions on M with the
help of differential forms: let w(k), k =1,2,...,n-p, be a farnily of
linearl y independent i-forms on M W& define a distribution (x) as
fol I ows:

= eru o®m =0 (2.3)

That is to say, (X) is the nullspace of the forns w(k). V¢ also say
that the w k211 (send over zero) all vectors in the distribution (X)
Integrability via differential forns is given by:

Theorem 2.2. (Frobenius, 2nd version) (X¥) CT.Mdefined by (2.2) isan
integrable distribution iff there exists a collection of (n-p¥* |-forrns

a(k) on Msuch that
{m)

() _ _ (&) (m)
dw = =0 (m) AW (2.4)
Eg. (2.3) is very farnil iar to theoretical physicists: we can wite it up

in a local coordinate system as:

(k) (k) (m) (k) (m)
3 - - =

u ey 3\) au(m) W, o \)(m)wu =0 (2.5)
That is, it asserts that the exterior covariant derivative of the vec-
tor-val ued | -form w = (wék)) vani shes in order that the associated

distribution be integrable. A still nore farnl iar interpretation for

the OLE:;; readily follows, as Theorem 2.2 is equivalent to:

(k)
(.Ou +

Thereom 2.3. (Frobenius, 3rd version) (X) given by eq. (2.3) is inte-
grable provided that there exists a (n-p) x {n-p} functional matrix



u= (u(?;)) such that

(k) _ (k) (m)
w = U (m) dB (2.6)
ve now apply eq. (2.6) to eq. (2.4) and get, after a fewsinple calcu-
lations

(wlawu +uldu)r dg =0 (2.7)
wher e
(k) ),

; ) _ (B

u = (u (m) a (a (m)) s dB (dB )

As the expression inside brackets in eq. (2.7) is a (n-p)x(n-p) nmatrix
that acts on a vectorvalued form and as degeneraci es are excluded, a
sinple tinear al gebra reasoning leads to the consequence that

w Yau t wldu=0 (2.8)

a is a ''vacuum potential'', a 'pure gauge'.

The anal ysl's that follows Theorem23 is crucial to our expo-
sition in the comng section. In fact, eq. (2.8) asserts that inte-
grable distributions have vani shing curvatures and are thus flat in the
usual sense.

A few remarks will provide further clarificationonthese ideas:

(i) Duetoeq. (2.6) an integrable distribution defined by a
set of forms w K can be also represented by another set dB(k). A (X
is characterized by dﬁ(k) (x) = 0 wecan integrate this set of equations

and get a system
B(k) = const. (2.9)

In general suchan integration isonly local. (2.9) defines a loca
hol onom ¢ coordi nate system and the B(k) are coordinate functions in
that coordinate system

[i 1) The vector field counterpart to eq. (2.9) is sinply

wayuﬂ=o (2.10)

A hol ononic coordinate vectorfield is then Y(i) = a/ax(").



3. THE FIELD COPY PROBLEM AS AN INTEGRABILITY PROBLEM

W show here that the field copy problem reduces to an inte-
grability condition. In the next Section we show that thisintegrability
condition is equivalent to a linear degeneracy condition as the one given
by eq. (1.7). The main line of reasoning goes as follows: We recognize
the field copy problem as an integrability problem and then apply an
adequate version of Frobenius' Theorem to it. W are then left with a
possible classification for field copies: (i! locally at Ileast gauge
-equivalent copied potentials? (ii) infinitesimally copied potentials and
{(i11) discrete copies. The main proofs are quoted in full.

V¢ suppose that we are given here a smooth principal bundle
P(4,G) over a smooth n-dimensional real manifold M G is ap-dimensional
semi~simple Lie group. |f we endow P with a connection described by the
connection form w then the associated curvature is given by Cartan's

structure equation

Q=dw+;—[w/\w:! (3.1)

{f wand w' are different connection forms for the same curvature form

£ we must have

Bedordh Bond =
= d(w+) + %— ((w+e) A (w+e)] (3.2)
where we have written w' = w + 8, wherefrom one gets that
1
T=do+5 (07 6] + [wAg] =0 (3.3)

. . -1 .
If we now introduce a (possibly local, over an open m {, UCM being a
nonvoid open set) auxiliary connection form®® w® = w + —;— 6 . then eq.

(3.3) becomes

t=dw’)e Zpef ds + [wo/\ g1 (3.4)

Eq. (3.4) is clearly an integrability condition such as the one in The-
orem 2.2; if © is seen as a generalized solder form”, eg. (3.4) defines

a torsion tensor w.r.t. the connection w’. The field copy problem
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amounts to the solution of eq. (3.4) and to the classification of all
connection forms w® that (nontrivially) satisfy it. !f wechoose a local
Lie algebra basis on the bundle, eq. (3.4) becomes:

de? + &%, w? A (3.5)

where Cabc are the structure constants. V¢ have here k £ p I-forms on a
(n+p) manifold; we can then apply Theorem 2.2 to eq. (3.5). Wemust only
notice that eq. (3.4) is an equivariant equation, that is, it does not
depend on the Lie group degrees of freedom when we factor out gauge

transformations. Eq. (3.5) splits into

J de? + cabc whae®, ack (3,6a)

lcabc wParg® =0 |, k<a (3.6b)

Now Theorem 2.3 says that there is a local linear transformation that
sends each G over an exact form dBa; since everything is equivariant,
that transformation extends to a local gauge transformation that maps
eqgs. (3.6) over

[0® A 6]

e =4dB (3.7b)

0, (3.7a)

(Here we have denoted the transformed objects by the same symbols; the
two systems in egs. (3.6) fuse into eq. (3.7a)). As now we have in the

new gauge that w = w® - —;- dR, (3.7a) becomes
[ dd] =5 (@8 a] (3.8)

We can split eq. (3.8) into two situations: either eq. (3.8) holds in

full,
[wn df] =7 [d8 A dg] #0 (3.9a)
or we have a degeneracy,
[w A dg] =0 (3.9b)
s A dgl =0 (3.9¢)

V¢ notice that if K is a constant, k dB also satisfies egs.(3.9b) and

(3.9¢), granted that dB satisfies them. Conversely, if we define an
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infinitesimal copy by setting ' = k8, k > 0, k? = 0, eq.(3.3) becomes

approximately

dg'+ wa6] =0 (3.10)

which immediately leads to
[wadg] =0 (3.11a)
[d8'a dg'] =0 (3.11b)

Ve thus call copied connections that satisfy (3.9b-3.9c)(or eqgs.(3.11))
infinitesimally copi ed connections. {f however those conditions are not
fulfilled we can always split the connection form w in eq. (3.9a) into

W=+ % dB, wherefrom (3.9a) entails that

G A8 =o0 (3.12)
wis immediately seen to be an infinitesimally copied connection; the
original connection is w = w + %dB and its unique copy is w' = E)-—;-dB.

In either case it is immediately seen that the gauge potential and its
copy or copies are related by an Abelian gauge transformation that
slightly generalizes Einstein's A-transformation'”.

There remains one final question: when does a curvature form
posses locally at least two different but gauge equivalent potentials?
A necessary condition is simple: if wand w' are potentials for the same
curvature R, and if, say, w' = wleou + u-ldu then u-IQu = R. Thus
there will be gauge transformation generators, that is to say, Lie al-
gebra valued functions such that [Q,p] = 0. Is that condition also
sufficient? Suppose that there exists a non-trivial Lie algebra valued
function p such that one has B?,p:] = 0. Then R has at least one poten-
tial w such that [w,p] = 0. For an infinitesimal constant k (k>0, k220)
and from eq.(3.10) one gets that 8 = dp. All such solutions span a cen-
tralizer for the Ambrose-Singer holonomy group, whose generators are
all values of the Q(X,¥). W thus get that there must be a nontrivial
e such that [:Q,p] = 0.

We can summarize as follows the preceding results:
Proposition. Given a connection form w it will admit a copy if and only
if it admits at least one vanishing torsion tensor T=0 given by eq. (3.3).

It will admit a single copy provided that it satisfies eq.
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(3.9a). In that case both copies are not gauge equivalent

It will admit an infinite family of copies if it satisfies
egs.(3.9b) and (3.9c).

tt will finally admit gauge-equivalent copies provided its

curvature nontrivially satisfies [R,p] = 0.

4. GAUGE FIIELD COPIES IFF [£2 A 8] =0, 0 INTEGRABLE

There is a disadvantage in the preceding criteria for the
existence of group field copies: one would like to recognize the possi-
bility of copies in the fields themselves, and not in their potentials.
Potentials are notoriously clumsy to deal with due to their nonhomogen-
ous transformation law under gauge actions, while fields behave in a
much neater way under the same group. The condition for existence of
gauge copies is given by egs. (3.7); do we have a similar linear' de~
generacy condition involving gauge fields?

We wish to prove here the following theorem:

Theorem. { has a potential ambiguity if and only if [ A 6:] =0, 0 a

nontrivial, integrable, equivariant 1-form,

The proof is divided into several steps. W first showthe

necessity:

Lemma 4.1. 1f R has a potential ambiguity then [&} A 8] = 0 defines a

nontrivial integrable distribution.
Proof: § must satisfy at least two different differential Bianchi con-
ditions:
o+ Jua Q] =0 (4. ia)
a2+ [lw+dR)r Q] =0 (4. 1b)

If we subtract the first equationabove from the second, we get the
desired result. W have used here the fact that w' =w + dB ina par-

ticular gauge.
Sufficiency is much harder. W start with:

Lemma 4.2. [Q A 6:] =0, © integrable, is equivalent to

dw A~ d8] + [w A [wAdE]] =0 (h.2)
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at the gauge where 8 = dB.
Proof: [ Adf] =0 iff (= if and only if)

[(dw+%@0/\ w]) A dB] =0
(due to Cartan's structure equation) . & then get

G n df) + 5 [ a ) ~ df] =0
And then

b adf) +5 [oad) ~ df =0
Finally, due to the Jacobi identity, we get our result:,

dw ndf) ++ wa @add] =0
V¢ now nust |ook for sol utions of
da + [wagl =0 (4.3)

where o is a k-form and d{w) a and equivariant form V¢ settle that
question with the following result:

Lemma 4.3. There is a local gauge transformation u: v xG - yxg such
that d{(w) o = O is napped over
wadl =0 (4.ka)
where a is integrable
o =dg (4.4b)

Froof: o Is anequivariant L(G)-valued k-form If we use a local Z{G)
frame, it can be expanded as a = Uabdib, where the dib are k-1 n(G)-
-valued forns.

It is immediately checked that o will be equivariant provided
that & = Eb Xy be equi variant (where the X, are Lie algebra gener-
ators.) The above conditions can be witten in matrix notation as:

O =UdE= Aadw) dE = u_ d&u (4.5)

whereu is a (local) gauge transformation. Egs. (4.5) result fromthe
following two facts: first, as ¢ is equivariant,that property wll be
preserved only under the linear action of the gauge group. Second, as
0 is L(G)-valued, such an action nust be an adjoint {(4d) action.



If we now substitute eq. (4.5) into d(w)o = 0, we get eqs.
(4.4).

V¢ have already shown that [@ a dB] =0 1is wequivalent to
dlw ad8] + [ A [w Adg]] = 0. Lemma 4.3 allows us to solve that
equation: we impose the condition that [m/\ds:] be an exact form, and
then substitute it into eq. (4.b4a).

V¢ first notlce that all exact forms that solve eq. (4.3) will
appear exact at the same gauge (or at the same set of gauges), which
will be "holonomic'' gauges for the connection w. in those gauges some
components of w will be made to vanish. Thus we can write that, for a

I-form o,

@A dg] = [do A dB] (4.6)

W can split w = & + do, and because of eq. (4.6), we must have:

wadg] =0 (4.7)

where & is supposed to be no cocycle. That decomposition, taken into
eq. (4.4a) leads to

G A [dondg]] + [do A [doa dB]] =0 (4.8)

Since the First term is no cocycle and as the 2nd term is an exact
form we must have

{@A@md@j

<

l (do A [do AdB:[:[

]
o

(4.9a)
(4.9b)

]
=]

V¢ must now classify solutions for the above equations, granted
that & must satisfy eq.(4.7), that is,
[@Adf] =0
We notice that eqgs. (4.9) form a partial first order differential sys-
tem of equetions for a; it is an equivariant, overdetermined system.
As da is already present here as an exact form, it must satisfy the

flatness condition given by eq. (2.7) w.r.t. & , that is, one must

have

@/\dﬁj =0 (4.10)



Now,since w = w + do, w is imediately recogni zed as a copied connec-
tion. In particular, as eq, (4.9b) is equivalent to

[[do A dd] ~df] =0 (4.12)

via the Jacobi identity, we may check that [do n@d = 0 givescontinu-
ous copies, and that do =k dB, k a constant, gives discrete copies.
we have thus proved that w is a copied potentlal.

5. CONCLUSIONS

we have shown that integrability of the bundle & descri bed by

the linear honogeneous system
RaArgl=0 (5.1

is equivalent to the vanishing of the torsion-like tensor
t=dost Brd+ wad (5.2)

and it thus leads to the existence of potential anbiguities in gauge
fields. Possible meanings for the tensor T given by eq.(5.1) have been
recently discussed’®. A very striking exanple relates that object to
the extension of analytical structures to general phase spaces in
Classical Mechanics; one is left with a theory that has some of the
flavor of a Kaluza-Klein-type unified theory!®.

Anot her renarkabl e devel opnent lies in the situation of copied
fields in the space of all G-gauge fields. Singer has shown?® that
reduci ble unitary fields belong to a stratified manifold structure in-
side gauge field space (a stratified manifold is a union of submani-
folds of a given manifold such that a n-k-p dimensional subnanifold is
in the boundary of a #»-% dimensional manifold in the collection). We
can show that the Singer structure is also the way gauge fields with
gauge- equi val ent copi es appear in field space, and eq.(5.1) allows us
to describe a stratificationfor all fields that globally satlsfy a
condition Tike it?'. But what about fields that only local 1y do
satisfy eq.(5.1)? These fields belong t oa much more conplicated
domain in gauge field space; it is a fractal domain in the sense of
Mandelbrot®Z, a kind of Devii's ladder?® where every stratif ication
is bounded by stiil another stratification, and so on ad infinitum
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but everything kept inside a nowhere dense, a ''zero-volume'' region of
gauge field space. That structure is a dynamical system attractor for
gauge field theories with broken syrnmetries; it is also a very general
phenomenon that may rnanifest itself fromPhysics to Mathematical Ecology
and sociobiological models2*. Work on it is now in progress?®.
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Resumo

Mostramos que 2 A 6] = 0, onde © define um subfibrado inte-

gravel do fibrado tangente T.P ao fibrado principal P que se associa a
Uma teoria de ''gauge’’ sobre uma variedade ”-dimensional genérica, e

uma condigdo necessaria e suficiente para a existéncia de ambiguidades
de potential naquela teoria de gauge.
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