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Abstract W study the dilution of the spin-1/2 transverse Ising Model
by means of an effective fleld type treatment based on an extension of
Callen's relation (Phys. Lett. 4, 161 {1963)) to the present model. The
thermodynamics of the diluted model is obtained and the resultsareshown
to be an improvement over the standard mean field treatment. We also com-
pare the results with the Monte Carlo calculation for the spin -® trans-
verse Ising Model.
1. INTRODUCTION

The transverse Ising model has been used tp describe phase
transitiong in ferroelectrics, ferromagnets and cooperative Jahn-Teller
systems with an applied external magnetic field. This model hamiltonian
was first proposed by de Gennes® to represent the basic features of hy-
drogen-bonded ferroelectrics of the KH,P0, family. In these systems the
Ising term corresponds to the interaction between the protons at dif-
ferent lattice sites and the transverse field accounts for the possi-
bility of the protons occupy one of the two minima of a doublepotential
well in a given site. The model can also be applied to study rare-earth
compounds with singlet crystal field ground states, as has been done by
Wang and Cooperz. In these systems there is a competition between the
exchange interactlon represented by the Ising term and the crystal field
represented by the transverse field. There will be magnetic ordering if
the ratio between these two terms exceeds a certain value. Cooperative
Jahn-Teller systems with an applied external magnetic field is another
example where this model hamiltonian works well®. Here the phase tran-
sition is driven by the interaction between localized orbital elec-
tronic states and the crystal lattice. Even at low temperatures suf-
ficiently high applied external magnetic field can retrieve the high

temperature phase. W refer to a paper by Stinchcombe® which gives a
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more extensive description of the applications and the properties of
the model .

The model has been exactly solved in one-dimension by Pfeutys
and in high dimensions series expansions results have been obtained by
Eltiott and Wood®, Pfeuty and Elliott” , Yanase et al® and Yanase®. The
results of the above works suggested that at a finite temperature the
critical behavior of the transverse Ising model is similar to the Ising
model with a shift in the critical temperature and that at zero tempera-
ture the d-dimensional transverse Ising model behaves critically as d+l
-dimensional Ising at T. Suzuki'?, Young!'and Hertz'!? proved latter
that the above suggestions were indeed exact statements.

Diluted magnetic systems have received a considerable amount
of interest in the last years and we mention theoretical works by Oguchi
and Obokata®® {tlsing and Heisenberg diluted), and by Matsudairal* and
Kaneyoshi, Fittipaldi and Beyer'® (Ising diluted).

The diluted transverse Ising model was recently studied by

6

Moril using the effective hamiltonian method and renormalization group

17

calculations have been applied to the model by dos Santos Recently a

new effective field theory has been applied to the Ising model'® and to
the transverse Ising model 12,

The work on the diluted Ising model by Kaneyoshi, Fittipaldi
and Beyer!® takes as a starting point an exact relation established by

Calien??

and despite the simplicity of the method they obtain results
which are better than the obtained by the molecular fieldapproximation.
A paper by S& Barreto, Fittipaldi and Zeks'® makes an extention (though
not exact) of Callen's relation to treat the transverse Ising model.

It is the purpose of this paper to apply this extension of
Callen's relation to study the diluted transverse Ising model. In sec-
tion 2, we develop a general formalism for the problem, starting froman

1%, {n section 3, we get explicit re-

extension of Callen's relation
lations for the parallel and the transverse magnetization and discuss
some consequences of these results. We obtain in section 4 the critical
temperature and the condition for the percolation concentration. In sec-
tion 5, we analyse the internal energy. Finally in section 6 we discuss
our results, as compared with those calculated in the molecular field
approximation and also with the results of a Monte Carlo simulation ob-

tained by Prelovsek and Sega?®.



2. FORMALISM OF THE PROBLEM

The hamiltonian for the diluted transverse !sing model can be

written as

1 3 3
H=-QLg, o8 -25 J.,E.E,0°6° (1)
z 1 zij g L 7§ T g
where @ is the transverse field, ‘]’Lj is the exchange integral, 03 (o=

=X,y or z) are the components of the spin 1/2 operators and Ei are

occupation operators (5:;7. =1 if the site 7 is occupied and Ei = 0
otherwise).
The local field at site i is given by
g 2
E.= /E: +E, (2)
7 1 13
where
E?:.’X! =0 (33)
and
E, =LJ,. & o b
i g 6 0 (3b)

15,19,20

Based on references , We can write the following gener-

alized Callen's relations, which are exact only for 2 = 0

. Z.Ji.g.oz.
<> =< LM I J tanh BE. > (ha)
7 E, 1
i
&> =< B
<g%> = <22 tanh BE. > (4b)
Z z. 7
Z

where E, is given by eq. (2).
‘ oD 3
Using the differential operator e flx) = flx+a), withDEa?-,,in
expressions (4) we obtain for <ij> and <d$>

(ZJ,. 5, 0D

<g?> =<e Y g >f(x) ' (5a)
A x=0
(27, 8. 0?)0
<cr;f> =<g? >T () ‘ {(5b)
x=0

where



flz) =@/Va? +2? tanh B VQ2 + 2

T'(x) =/v0%z? Jtanh B /% + x?

Neglecting site correlations wve wite

(2J..8.09D 2 z

G A I | (v . 0°)D (7., 5, 03)D

<e J >= <l e zd EJ ) > = T <e zJ 3 J >
J J

whi ch can be substituted in eq{5)to give

£,

<g®>, = T {cosh(Ds..) + <o sinh(DJ..)} Y flz) (6a)
Z F,J. 7 tJ J 2 ,x=0

<o®>_ = T {cosh(DJ. ,) + <d°> s n(DJ )}gj r( )‘ (6b)
Z Eﬂ. : j co ‘2 I g 7 =0

3. A. PARALLEL MAGNETIZATION

Taki ng the configuration average on the expression (6a), we
obtain for the equilibrium parallel rnagnetization defined by << oi»cz
I mg, the result

m, = [(cosh (DJ) + m, sinh(07)]P% flx)] (7)
: lz=0
where p = <>, is the average concentration of interacting spins and
z is the lattice coordination number (Supposing only nearest- nei ghbor
i nteractions).

In order to further devel op expression(7) we introduce the
i nverse transform of the expression Ipz (y) = [cosh (y) + m sinh(y)] pz’
wthy =0, inthe followng form

g . (y) = % da! G;z(oc') 2P
€1 (8)

- - !
§> da’ 6 _(ar) &P
pZ
Cy

pz

- &

+

N>
[

kib

wher e G;Z(oz‘)(G;z (a')) is the analytical continuation of G z(a) defined

in thepositive(negative) regionof the compiex &' plane and a is the rea
part of a'. The direct transforms are given by
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J e % [coshy+ m_ sinh y)P?% ay (9a)
0

[sz (a)] 0>0

[sz (a)]a<0 (9b)

o .
J-me % cosh ¥+ m, sinh y]pz dy

Substituting expression (8) in (7) and performing the calculations in-

dicated by egs.(9a) and (9b)} we obtaln (see also Appendix)

m0=2—;;z— nﬁo [P;] Fllps-20) 7101 +m )P =m )= (1= m )PP (14m )™}
(10)

WIthin the approximatlons used, this expression is general and can be
used to describe varlous situations of dilution. One should noticethat
it depends on the product pz, and this fact shows the limitationof the
results obtained. For example, the resultsfor the undlluted square lat-
tice {(p=1, z=4) are the same as for the diluted triangular latticewith
p=2/3. And there is no way to distinguish the lattice dimensionality,as
for example in the case of p3=6, which is satisfied for the planar
triangular lattice and the simple cubic lattice. However, we should
stress that those limitations, at this level of approxirnation, are not
a drawback in the method. They can be overcome by the proper treatment
of both tharmal and configurational average, where correlations should
be taken intoaccount. The method outlined before can be applied to cal-
culate the correlation functions, which although lengthy are simpleand
straightforward. However we do not intent to show in this paper the
modifications caused by the inclusion of the correlation functions.Here,
we present the results in its most simple form and show that it goes
beyond the mean field results.

Further, we can also make the following coments about ex-
pression (10) for the parallel magnetization:
a) it is easy to see that the right hand side of eq.(10)is apolynomial
in odd powers of my which is infinite or finite if the product pzis a
fractionary or an integral number.
b) my= 0 is always a solution of equation (10), as a consequence of
statement (a) .
c)mpg=1 will beasolutionofequation (10) when 8 ~ « (7=0) and



@0 (in this case the function f[(pz-2n)J] =tanh[(pz-2n)8 J]) .

d) For pz=2 the solution of equation (10) is not determined; in order
to have solution we must have pz>2.

e) Sometimes two solutions satisfy eq. (i0); a trivial solutionand
a finite solution. The way to take the stable solution will be examined
in g forthcoming paper where we will be concerned with the dynamicsof

this system.

f) We show in figure 1 to 3 graphs for the parallel magnetization, @S
compared with mean field results.

Fig.l - Parallel mag-
netization curve for
the diluted transverse
Ising model, as com-
pared with the mean
field result, for pa=
=4 and Q/J=1.6. (Ver-
tical broken line in-
dicates thetransition
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Fig.3 - Parallel mag-
netization curve for
the diluted trans-
verse Ising model, as
compared with the mean
field result, forpzs=
=35 and §/J = 0.9.
(Vertical broken line
indicates the tran-
sition temperature of
co 0s L MEA the present approxi-
T/Tc mation).
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3. B. PERPENDICULAR MAGNETIZATION

Using the same procedure outlined before we get for the equi-

librium perpendicular magnetization, n, E<<0‘f§ >£'>c , the result
J

n, = [cosh (DJ) + m  sinh(Ds)]P% 1"(:1:)| ()
r =0
lLet us define the inverse transform of the operator

sz(y) = [cosh (y) + my sinh (y)] bz

as

!

] + o'y
v . (y) =——r§c do.’ sz(a') e

pz 2T
1
(12)
] VT ry .Y 1 ' 9% (o ea’y
+ m %c d(l sz(ot )2 + 21.”: %ca d(! pz( )

where 6;2:(0.’)(6;3(0.')) is the analytical continuation of 6_,(a) inthe
positive (negative) region of the complex a' plane and Gopz(a’) is the
analytical continuation of 8pz(a) in an infinitesimal strip around
the imaginary axis.

Substituting this expression into eq. (11) we obtain
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] +
n= gz %0 da’ T(a’Jd) epz(a')
1

] f - i
+7F(}>cz da’ T(=a'J) epz(u’) (13)

o

i 1 ? 0 '
+ g §c3 da' T(a') epz(a)

Proceedi ng in an anal ogous way as in section 3.A we obtain

n'<pz/2 p3
n.= _2# zo [(n )T [(pz=20)]{ (14m YPZ 7 (1o )4+ (1om VPZ T (14m )7}
n=

pa /2 |
b ) TO (%)

W& see that only If pz is even we have a contribution in r(0) for the
per pendi cul ar nmagnetization. In the disordered phase, where mg=0, ex-
pression (14) reduces to

n'<pz/2

n,= —©5 ) {(p:) 2T [(pz-2n)J] + [:(pzjz) F(O)]sz,m 1 (15)

About relation (14) for the perpendi cular nmagnetization
we can nake the fol |l owing coments:
a) The right hand side of relation (14) is a polynomialin even
povers of m,, which will be finiteor infinite whether the product pz
is a integral or a fractionary nunber.
b) At the paranagnetic phase (z,=0) the relation eq.(14) reduces to
relation eq.(15).
c) V& show in figures & to 6 graphs for the perpendicul ar nagneti zati on,
as conpared with the nean field result. Ohe should al so conpare these
figures with figure 3 of reference 21. The qualitative behavior is the
sane in both treatments and totally different fromthe nmean field ap-
pr oach.
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4. TRANSITION TEMPERATURE

In order to obtain the transition ternperature we expand ex-
pression (7) in a power series around the value m, = 0.

In the limit of m, - 0 we obfain

1 = pz [cosh(DJ)]pz" sinh(DJ) . flx) (16)
a\c=0,’l’=Tc

Let us define Av(y), with v = pz-1 and y = DJ, by

A, (y) = [cosh(x)]” sinh ()

The inverse Laplace transforrn of Av(y) is
_ 1 ooty 'y
A @) _7“7'32 da r*(a)e
’ (17)

§ do! L;(oc') e_qu

}
* 2mg I,

2

Substituting }\v(y) ineq.(16) we get

- P2 v ot !
= 57 %@ do Lv(oc)f(OL J)

|
. | =T,

+Jz2_§

i da’ L;(ot')f(-oc'J) .

e =Tc

2
where L:(ot') (L;(a')) is the analytical continuation of Lv(a) in the
positive (negative) region of the complex & plane and @ is the real
part of @' .

Finally we obtain the relation frorn which we can deduce the

transition temperature

Jnk(pz)/z
1 =(PZ/ZPZ_]) ) (pz-])f[(pz-Zn)zT]
{ n=0 n 7T,
n|'<(pz-2)/2 pa-1 1
- ~2n-2)d
ngﬂ ( n )f[(pz ? )]T=T0J (18)
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The percolation concentration can be obtained from eq.(18) in thelimit
of TC:O. Using the definition of f[(pz-Zn)J} we get for P

n'<(pz)/2 _
| = D3 I { ) (pz ]) (pz - 2n)J
2~ n —_—
2 1 n=0 |/Qé+(pz-2n)2 J?
n''<(pz-2)/2 \l
- @) lpanzd)d (19)
n=0

——my
/Q;+ (pz-2n-2)2J2

For example,applying relation (18) for pz = 3 and 3.2 we obtain

=f(3J)}TT +f(J)|TT for pz = 3
=c =

N W

i = f(3.2J) | +1.2 f‘(l.ZJ)I for pz = 3.2
3.2 | 7=, T=T,

The results of relation (18) can be better understood looking
at the graph of figure 7. There, we represent the level lines of the
surface ¢(Q/7, ch/J, pz) = 0, which separates in the space of these
three variables, the ordered and disordered regions. V¢ have traced
out the level lines for pz going from 2 to 6 in intervals of 0.5. Note
that for pz=2 the level line reduces to a point, If we cut the above
mentioned surface at the plane Tc = 0 we obtain figure 8, which gives
us the critical transverse field as a function of pz. W also show in
figure 8 the mean field result in order to compare with the present
work. Note that for the mean field surface the level line will reduce
to a point only at pz = 0.

5. INTERNAI. ENERGY AND SPECIFIC HEAT

The internal energy is given by

X 1 2 2
V=<2 0> ~5<L d, 8,8, 0,0,> (20)

7 zJ

To calculate the correlation function which appears in eq. (20) we

use the relation



4.0+

30}

2.0+

kT
Fig. 7 - Level lines of the section cut of the surface ¢(‘j£» %, pz)=0,

which separates the ferromagnetic and paramagnetic phases of the di-
luted transverse Ising model. From inside we have pg = 2 (which co-
incides with the origin), 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 55 and 6.0.

4
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I”
I3
', -
0 200 400  pz 600

Fig.8 = The percolation curve for the diluted transverse Ising model,

as compared with the mean field result (the straight line).
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2 2
%> = <g% (ES/E.)tanh BE, >
7J( J/ J) anh B ;

which is valid within the same approximatlon as relation (4).
differentiiil operator defined previously

nr®
2

<g 0§>=<o e > ¢ fla)

o N

* lx=0
. , DES
Defining Gﬂ.(x ,D) =<e

the following result

)
J;aj ( " G;(x',D). 5) f(x)l

Taking the configuration average

U, = -(p/2)2 (:;—, G(z',D). %)-f(x)}ﬁo,x,:,
But
z '
. (i Jw £, 9, %)z 'D {7 i )x DE,
Gj(x',D) = <g > = <e . >

z
= [cosh(z'Ds) + m, sinh(z'Ds)]P?

which gives, after substitution in eq. (22)
v, = - (p%2/2)071{ [cosh (D) + m, Sinh(DJ)]P?"

x[Sinh(DJ) + m, cosh(DF)]} . f(x)l
In order to proceed further we must define the function h (y)
o (y) = [cosh y + m, sinh y]? [sinhy + m, cosh y]

Which gives for 172

xOx

(21)

Using the

> we obtain for the second term in eq. (20)

(22)

(23)

through



- 2 1
7 = - E_;EJ_ ['__‘_. ﬁ; du'-p;'(a'\ TP ()|
- c

1 ' la‘c=0

dat F;((l') EG'IJD.f(.’E)I ]

3
+ 5
2me jc=0

=]

where Fj(a') (F;(OL')) is the analytical continuation of Fv(a) in the
positive {negative) region of the complex o' plane and a is the real
part of a'.

Using Fv (a) we obtain

n'<
) (

g, = - B ZPZ)/ZEPZ“) [(pa-22)]
2 o o ) Flpz-2n

2 P | ae
- o +m°)pz-n (1 _mo)n + (1 _mo)pz-n Q1 +mo)n :]:I

n'<pz-2)/2 [~ _,
i ! &pn )£ Lpa-22-2)7) [(14mg)P* 71 (1 o) ™!

n=0

(a _mo)pz-n-l (0 +mo)n+lj]]> (24)

+

The expressions for Ux can be immediately obtained from expression (14)

5 X
Ux= -QNp <>

n'<(pz)/2{
. fp& ) J
2P% - n=0 l

() T(pz-2n)] [(14m ) P57 (1om )"

+

- bz
(g PZT (am )] % () T(0) (1-m)PR/2 ‘sz,znl (25)

The internal energy is given by,

U=0_ +T, (26)
x 2

and the specific heat is obtained from ¢ = du/dr . Forpz= 3 we get
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g
L}

- 3 wpa{ [ 39) + £O)] + BFGI) - £ Imt ) (272)

<2
]

- 3 A D) + 30@)] +3[GI) - T@)n? )

For pz = 4 we get,

0, = - B ([rs) + 2020 + rhlin® + [£(40) - 27(2)]m}

2
(28a)
7. = - ’-VgLQ ([T (4s) + 4T(27) +3T(0)] +
(Brus) - 6r(oyJm? + [T(4) - 4T(27) + 3T(0)]my} (28b)
(28b)

Looking at relations (27a) and (28a) we see that they give a
contribution of the short-range order for the internal energy 172. This
can be easily verified if we put my = 0 at egs. {27a) and (28a) and rep-

resents an improvement over the traditional mean field approximation.

6. CONCLUSIONS

We see that with this new effective field, we have obtained
general explicit relations for the thermodynamic quantities of the
diluted ti-ansverse Ising model, in all temperature range. In this as-
pect, this method resembies the traditional mean field approximation.
However, there is a difference, even in quality, because this treat-
ment takes into account some of the short range order effects. This
evidence is displayed particularly in figure 7, where the present re-
sults show no long range order for p2<2 in contrast to the mean field
result and also in the contribution of the two particle parallel spin
component correlatlons for the internal energy above Tc. However we
must have in mind that this treatment is far from exact and can be
used due to its generality as an alternative way to the mean field
treatment.

Let us now compare our results with those obtained by Prelovsek
and Sega?! for the S = ® transverse Ising model. W can see from fig-

ure 1 to 6 that the curves of the present work compare with the curves



of Monte Carlo calculations of Prelovsek and Sega21 for infinite spin,
showing a qualltative behavior dlfferent from the mean field results.
This can be understood, if we look at reference 19, where the gener-
alized Callen's relations for the transverse Ising model were obtained
in an approximation which can be understood as treating the neighbors
as classical variables, a situation similar to the § = » model.

W are grateful to Dr. I.P.Fittipald'i for many valuable dis-

cussions.

APPENDIX - TRANSFORM OF THE OPERATORS g, (v} AND 7,1y}

By definition
g,() = [cosh y + m sinh ]’ A1)

wherey:JD:J%andv:pg

Then, m
[Gv(a)]a>0 = J e gv(y) dy (A.2)
0

Let us introduce a new variable u = e-oty

1

[_-Gu(a)jcpo =(2-v/°‘ )J. [___(1 + mg) u_‘/a + Q —mo)u]/a_.[vdu (A.3)

0

Changing again to a new variable w = uZ/a

1
_ ) o -
[gv(a):]opo < o (1) J Jr2)a-v) -1 (""’”O)DD .

0

Mo »
+’”o)w] dr (AL)

Note that the limits of integration are the same because a is positive

erting
1=-m v o v L-m, n
E + ('m:)ﬂ = nzo (72) [(}Tm—o-') w] (AS)
we get
1
S ) 7w v Tent 0/2)a-0)an-)
E}v(d)]a>0 = + nzo (n) (]+m0) (m_;) Jo W +n dw

(A.6)
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Therefore, after integration

_ o7V P v V7 i
EGU(OL)]ODO =2 nZO (n) (14m) Um)” s (A.7)
Similarly for the other branch,a <0, we get
ve v-n 1
= - - - - H- ————
IZGv(a>]a<0 = -2 nzo (O =m )7 (1w ) s (A.8)

In order to calculate ':épz(a)], 90 "€ must proceed in the same way as

before and we can show that

(6,5 (@] ysg = (6045 (A.9)

However,for 0<0 we must define Lepz(a)]oKO in such way that
- -
I.epz(cx)jct<0 = ‘-sz(a):la<0 (A. 10)

because when my = 0, in the disordered phase, we must have <<o‘z>€i>cz
=0, # 0, due to the presence of the transverse field
The transforms of the operators )\v(y) and hv(y) can be

obtained in a similar way.
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Resumo

A diluicdo do modelo de-Ising num campo transverso € estudada
por intermédio de uma aproximacao do tipo campo efetivo. O trabalho €
baseado em uma extensdo da relacdo de Callen (Phys. Lett. 4, 161(1963))
apropriada-para tratar o modelo presente. A termodindmica do modelo
diluido é obtida e mostramos que os resultados sdo melhores quando com-
parados aqueles obtidos via tratamento convencional do tipo campo me-
d i ~ Também comparamos os resultados com calculos existentes por téc-
nica de Monte Carlo para o modelo de Ising num campo transverso para
spin = o,



